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A simple model for the dynamics of a continuous spin system in contact with a temperature bath is developed
from a generalization of the Glauber model. The dependence of magnetization on time is then found in an
approximation which becomes exact at temperatures far from T,. For nonscalar (N > 1) systems in contact
with a temperature bath at T < T., symmetry-breaking magnetization will develop and persist for a time T,
after which it is destroyed by transverse fluctuations. 7is « Q T,/ T for d > 2, while In(t) « T,/ T for d =2 (d
is the spatial dimensionality and ) is the volume). As Q— oo, 7 is finite for d = 2, as required by rigourous
theorems. In practice, however, a 7 for d = 2 which is comparable to the 7 for d = 3 systems which are large
but finite is found at experimentally obtainable temperatures T '« T, 'In(10”}). We estimate that
proportionality factors are such that “virtually macroscopic” persistence times are obtained close to T,. In
addition, there is evidence that the nature of the t >>7 decay of magnetism for d = 2 systems provides a
qualitative means of distinguishing subcritical from above critical systems. No virtually persistent

magnetization is found for 4 = 1.

I. INTRODUCTION

The nature of phase transitions in two-dimen-
sional systems having nonscalar order parameters
has been of interest for some time. It has been
rigorously proven by Bogoliubov! that no persistent
superfluid condensate can exist in one- or two-
dimensional Bose fluids at finite temperature.
Bogoliubov’s proof has been extended to show the
impossibility of permanent long-range order in
finite -temperature one- or two-dimensional super-
conductors,? crystals,® and ferromagnets and anti-
ferromagnets, when no external field is applied.*

The core of the Bogoliubov proof is a rigorous
inequality. For magnetic systems with no easy
axis, the Bogoliubov inequality states* that, so
long as the spatial dimensionality is =2, the sys-
tem will, if it is to have a nonzero magnetization
in the absence of any external magnetic field, also
have spin fluctuations per lattice site which are
infinite in the direction transverse to the magnet-
ization. Since the magnitude of the spin per lattice
site is finite, an infinite (S®) is impossible. Thus,
so long as the spin dimensionality (N) is greater
than one (and, consequently, transverse fluctua-
tions are a factor) permanent symmetry-breaking
magnetization is prohibited in d = 2 spin systems.

It should be noted that the Bogoliubov proof ap-
plies only to nonscalar systems, the proof cannot
be applied to systems with scalar order param-
eters such as the Ising model and fluids displaying
a liquid-gas transition. In two dimensions, at
least, such systems display long-range order.

For one-dimensional systems, however, an argu-
ment due to Landau® prohibits permanent magnet -
ization at any nonzero temperature.

Although persistent long-range order is ruled

out for nonscalar d= 2 systems, there remains
strong evidence for the existence of a finite criti-
cal temperature in such systems at least for the
case d=2. Stanley and Kaplan® have done numeri-
cal calculations of the statistical mechanics of the
classical two-dimensional XY model and have de-
termined a finite critical temperature, on and be-
low which the magnetic susceptibility is divergent.
Superfluidity is observed in liquid-helium films.”
There is some controversy as to whether the sin-
gularities on the critical point for d =2 nonscalar
systems are power-law singularities® (as usual
renormalization-group considerations lead one to
expect) or essential singularities.® However, the
existence of a finite-temperature critical point for
nonscalar films is well established, at least when
the order-parameter dimensionality (which we
shall denote by N) is 2. It should be pointed out
that work by Polyakov and by Migdal®® indicates
that there may be no nonzero critical temperature
when d=2 and N exceeds 2.

Given a nonzero critical temperature for at least
some d=2, N>1 systems, the remaining unan-
swered question is what happens below T.. In this
paper we shall deal with part of this problem by
considering the dynamics of a system in contact
with a temperature bath. The specific system
which will be studied is the “continuous spin”
model developed by Wilson'! and applied with
considerable success, to critical -phenomena
problems. It will be assumed that the spin sys-
tem is coupled to a temperature bath through a
local interaction. By “local” we mean that spins
are changed one at a time; the temperature bath
will not simultaneously change spins at different
locations. After also assuming detailed balance
we obtain a generalization to continuous spin sys-
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tems of the Glauber'? model for Ising-model dy -
namics. For this paper we will use the simplest
possible dynamical model which satisfies the gen-
eralized Glauber equations. The particular model
used has a convenient “universal” property; the
full class of generalized Glauber models reduces
to this model near the critical point. In a subse-
quent paper more complicated dynamical models
will be considered. The fundamental results of
this paper remain intact.

It should not be entirely unanticipated that a
dynamical study will yield interesting results. A
standard problem in experimental work on sys-
tems near the critical point is the long time re-
quired for thermal equilibrium to set in. For ex-
ample, fluids in contact with temperature baths
close to, but not on the liquid-gas critical point
will typically require times on the order of hours
before equilibrium is established. Liquid-gas
systems have a scalar (N =1) order parameter
and, at temperatures near but not on the critical
point, will have a large but submacroscopic cor-
relation length. By Bogoliubov’s inequality, the
transverse spin-spin correlation function, for
N>1 subcritical systems with symmetry -breaking
order, will have an infinite position space range
once thermal equilibrium sets in. For symmetry -
breaking order to be destroyed by transverse
fluctuations in d=2, N>1 systems, it is impor-
tant that equilibrium be established to the point
where the transverse correlations have a very
long range. The range required rises exponen-
tially with 1/7. It should not be surprising that
the same physics which, in critical slowing down,
says that long-ranged correlations take a long
time to develop will also imply that a singificant
amount of time will elapse before transverse
fluctuations in subcritical d=2, N>1 systems will
be large enough to destroy magnetization. This
makes possible a “virtual ferromagnetism,” for
d=2, N>1 systems — magnetization which endures
for times which are, for laboratory purposes, in-
finite.

We shall deal, in this paper, with a kind of hy-
steresis experiment. A spin system at a high
temperature is subjected to an external magnetic
field. This magnetic field may be small, it is
only needed to single out a direction in which mag-
netization may subsequently develop. The external
magnetic field is then removed and the spin sys-
tem is placed in contact with a temperature bath
at near or subcritical temperatures. We examine
the subsequent time dependence of the magnetiza-
tion in an approximation which amounts to a mean-
field approximation with first-order corrections.
This approximation—like the mathematically
similar Bogoliubov®® approximation for a weakly

interacting low-temperature Bose gas — has the
useful feature of satisfying Bogoliubov’s inequality
once thermal equilibrium obtains. We may self-
consistently check the appropriateness of the ap-
proximation by observing when the first-order
corrections become important. What is found is
that for d=2, N>1 systems, at low enough tem-
peratures the mean-field approximation is good
for a substantial time, during which significant
magnetization develops and perisists. Inthis per-
iod the d=2 system is qualitatively similar to a
bulk ferromagnet. Ultimately, however, as ther-
mal equilibrium is approached, transverse fluc-
tuations will develop to the point where they begin
to destroy the magnetization. At this point, the
mean-field approximation begins to break down.
For subsequent times, we may use Bogoliubov’s
inequality to determine a lower bound for the
time -dependent transverse fluctuations. It is
found that, after magnetization and the mean-
field approximation break down, transverse fluc-
tuations will remain large enough to prohibit mag-
netization from redeveloping. The conclusion is
that, at low temperatures, the mean-field theory
with first-order corrections gives a good figure
for the persistence time of symmetry-breaking
magnetization. For d=2, N>1 systems of infinite
volume, we find that the persistence time 7 is
given by

InT<T,/T

for T« T,, where T, is the critical temperature.
By comparison, we find the persistence time in
ad=3, N> 1 system of large but finite volume to
be

T

for subcritical temperatures. Thus we see that
virtually macroscopic persistence times are found
at readily obtainable temperatures 7 such that

In(R)=1n(10®) < T,/T .

The proportionality constants will be estimated

in Sec. III. It should be noted, at this juncture,
that no virtual ferromagnetism of the type just
described for d=2, N>1 is found at nonzero tem-
peratures for one-dimensional nonscalar systems.
It should also be pointed out that, although our
primary interest is in those two-dimensional sys-
tems which have a nonzero critical point, the re-
sults quoted in this paragraph are valid for all N—
even when there is no d =2 critical point. We are
considering the properties of the approach to ther-
mal equilibrium and not of thermal equilibrium it-
self. If, for some N, no critical point exists, one
may substitute the mean-field critical point for

T, in the results of this paragraph.
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For those systems which do have a critical point,
a relevant question is how the time behavior of
magnetization will reveal it. Although the ap-
proximations of this paper are developed for tem-
perature baths which are not too close to T, they
do give qualitatively reasonable results in the vi-
cinity of the critical point for d=2, N=1 systems
and for d=3 systems. It is, therefore, of interest
to summarize what behavior they predict in the
critical region for d=2, N>1 systems. What is
found is that, as the critical point is approached
from below, the persistence time 7 goes to zero.
When T is close to T, (and, consequently, T is
ignorable), the manner in which the magnetization
ultimately decays with time provides the qualita-
tive way to distinguish the subcritical region from
the above critical one. We find that, so long as
the temperature is below the critical point, sym-
metry -breaking magnetization will ultimately
(after time 7) decay at a slower than exponential
rate. Above T, magnetization decays exponen-
tially with time. The time constant for this ex-
ponential decay goes to infinity as T, is approached
from above. In Sec. III we show that the slower
than exponential subcritical decay is consistent
with Stanley and Kaplan’s® finding that, when sta-
tistical equilibrium is ultimately established, the
magnetic susceptibility is infinite below T,.

The work in this paper does not contradict that
of Kosterlitz and Thouless.'* Kosterlitz and Thou-
less specialized to such d=2, N=2 systems as the
XY model. They found that, below a certain tem-
perature such systems could be characterized by
their resistence to “stirring.” That is, the crea-
tion of vortexlike configurations is free-energy
unfavorable at low temperatures and favorable at
high temperatures. Such a situation does not, of
course, rule out the system also exhibiting a
more traditional ferromagnetic low-temperature
behavior.

In Sec. II we will develop a simple dynamical
model for continuous spin systems in contact with
a temperature bath. In Sec. III this model will be
used to find the time dependence of the magnetiza-
tion. The results summarized in this Introduction
are developed in Sec. III.

II. DYNAMICS OF A CONTINUOUS SPIN SYSTEM

In this section, the reasoning of Glauber'? will
be used to develop a dynamical model for con-
tinuous spin systems. Let us begin by reviewing
the dynamics of a simple system consisting of two
levels. Transitions from one level to the other
occur through interaction with a temperature bath.
So long as the temperature bath is either quantum
mechanical or very large, we must describe the

two-level system statistically. Let P, and P, de-
note the probabilities of occupying the respective
levels. We use a to denote the rate at which the
temperature bath induces transitions from level 1
to level 2 and b to denote the transition rate from
2 into 1. Then

P,=—-aP,+bP,, P,=-bP,+aP,. (2.1)

It may be seen that (2.1) conserves total probabil -
ity P, +P,.

Dynamics controlled by a temperature bath must
be such that when equilibrium obtains, probabili-
ties are given by statistical mechanics. Thus
when I"l =P,=0

Pl/P2=e-(E1-E2)/kT, (2.2)

where E, and E, are the energies of level 1 and
2, respectively, and T is the temperature of the
temperature bath. We see that (2.1) and (2.2)
imply a condition on a and b:

a/b=eFr-F kT 2.3)

For example, let us suppose that the temperature
bath consists of a gas of photons and that level 1
has the lower energy. Then the transition rate
from 1 to 2 is given by the matrix element squared
multiplied by the number of photons of energy
E,-E,

a=M[1/(e B E0/FT _1)],

We see that (2.3) immediately implies stimulated
emission:

b=M[1/(eF=E0 /AT _1)4 1]

as, of course, was originally discovered by Ein-
stein.

The generalization of (2.1) and (2.3) to spin sys-
tems is quite straightforward. The energy “levels”
of a multiple spin system are the various spin con-
figurations. The energy of a spin configuration,
S(x), is H[S]. H is the Hamiltonian and is a func-
tional of S(x). We will assume that the tempera-
ture -bath-induced interaction is local. That is,
transitions out of a given configuration S(x) will
be into configurations S(x)+ &, 4, which differ only
by having a single spin at some location y changed
by some amount A. We will label the generaliza-
tion of the photon occupation number by

B(E[S,Al/kT,
where E is the energy difference between the con-
figurations S and §+ é:

E[S, A]=H[S(x)+ b, Al - H [SX)]. (2.4)

We shall make the ansatz that the generalization
of the matrix element M depends only on the mag-
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nitude of the spin change A. We label this gen-
eralized matrix element M(A). Thus the transi-
tion rate from a configuration S(x) into a config-
urations S(x)+95,,, A is -

dp[ S (x)

where P[g(}i)] is the time-dependent probability
for a given spin configuration E(’i)- By summing
both sides of (2.5) over all possible configurations,
it may be seen that total probability is conserved.
If we assume detailed balance, then the gen-
eralization of the temperature bath. condition (2.3)
is
B(E[S, A)/kT)/B(~E[S, A]/kT) = e F1&21/AT
(2.6)

For example, Glauber chose to study a dynamical
model which satisfied (2.6) with a B which depends
on its argument as

B(z)=29"/2/(e‘/2+ e-z/z).

For the purpose of studying continuous spin sys-
tems, the simplest possible realization of (2.5)
and (2.6) is obtained when the generalized matrix
element M(A) is very short ranged. In this limit,
we may expand the terms in (2.5) which are en-
closed by curly braces in a power series in A, If
we label the second moment of M by M,,

MZEEA:M(A)(A,)2

(where i is a component of the generalized vector
é) and if we choose the normalization B(0)=1
then (2.5) and (2.6) reduce to the simple form

dP[S] ZZ 1 P 6H

[6s (y)]2 KT 85 i(y) 85:(y)

y i=1

L L _H
kT [6S;(y))?

where S; denotes the i component of the N-dimen-
sional vector S and M, is the fourth moment of M.
For the remainder of this paper we will choose
units of time which set %M2= 1. This choice of
units of time, when coupled with the choices of
units of distance and field which are made at the
beginning of Sec. III is tantamount to setting equal
to unity the characteristic time for short-wave-
length (~ 1 lattice constant) spin-spin correlations
to approach thermal equilibrium [see Eq. (3.15)].

P+OM,), (2.7

B(E[S, Al/RTIM(A)

and the generalization of the two-level dynamical
equation (2.1) is

EZM(A){ P[S)]B(E[S, Al/kT) +P[S(X)+6,,, A1 B(-E[S, Al/kT)}, (2.5)

(2.7) is the simplest possible dynamical equation
which both conserves probability and which has

P[S] « e HISI/AT

as its equilibrium configuration. It should be
pointed out that, not only is the assumption of a
short ranged M(A) a perfectly reasonable assump -
tion at any temperature for at least some dynami-
cal models, it has the convenient property of being
an appropriate approximation near the critical
point for all dynamical models which satisfy (2.5)
and (2.6). In the critical region P[S] and factors
of e"#/*T are slowly varying functionals of the lo-
cal spin; near T, M will always be relatively short
ranged and, therefore, ignoring terms of O(M,)
and higher is a valid assumption. Thus, if one
were to take the first moment of (2.5) and obtain
an equation for the time derivative of the mag-
netization, one would find that the leading critical
behavior would be described by the O(M,) terms.
Halperin, Hohenberg, and Ma'® have studied the
dynamics of continuous spin systems using a for-
malism in which the spins S were time dependent
(a “Heisenberg” formalism as opposed to the
“Schrédinger” formalism of the present paper).
It may be shown that the short ranged M(A) as-
sumption is equivalent to their case A. Thus the
mean value of S(x, t) is

M, [6H/8S(x, )]
and the mean value of S(x, )S(x’, #') is
M,0(x —x")o(t - ¢').

Halperin, Hohenberg, and Ma also consider sev-
eral variations which, while important near the
critical point, are not of interest here.

It is convenient to rewrite (2.7) in terms of the
Fourier transform, o of the position space spin
field S: B

eik x

o(k)= Z S(x) o)

where Q is the system’s volume. In terms of o,
(2.7) becomes
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s - 8°P 1 &P 6H
=§}:<60(k)50( k) kT d0,(k) 60,(-k)

1 5*H
*me> (2.8)

if we choose units of time to set zM,=1.

[II. TIME DEPENDENCE OF MAGNETIZATION

In this section we will use as a Hamiltonian the
continuous spin model of Wilson.!!

ol . 3w+ oK) o= )

+2 YT Lolk) -o(ky)]
ki k k3

X [E(E:;) .c(—El “_1{2—53)] .
(3.1)

For stability purposes, X must be positive; u may
be either positive or negative. In (3.1) o(k) is the
Fourier transform of the position space spin field,
S (x) In general ¢ is an N-dimensional vector.

We will denote the dimensionality of k space by d.
We have chosen units of spin to set the coefficient
of the “kinetic energy” (k?) term equal to one. In
addition there is a maximum magnitude for the
momenta k. This corresponds roughly to the
Brillouin-zone edge. We will choose units of
distance to set the k-space cutoff equal to one.

Note that the temﬁerature T has been incor-
porated into the definition of the parameters u
and X. At the end of this section we will restore
explicit temperature dependence in order to ex-
press the most important results of this work in
an experimentally testable form.

At this point it is worth recording the form that
Bogoliubov’s inequality takes for a continuous spin
system. The reader is referred to Mermin'® for
more detail. We generalize (3.1) slightly by in-
cluding an external magnetic field. The com-
ponent of ¢ which is parallel to this field will be
labeled by op

- Z(p.+ k) oo+ 5)\ ZZZ(g-g)2+moP(0) .

If equilibrium statistical mechanics obtains, then
there will be a spatially uniform mean magnetiza-
tion o in the direction of k. Denoting any com-
ponent of o(k) which is the transverse to the £
field by oT(k) Mermin’s extension of the Bogoliubov
inequality states that

(orp(k)or(-K)= (3.2)

1
(n/5)Vse +2r*(1+D/5?) °’

where D is analogous to the depletion in a super-
fluid:

MYERSON 14

D=Y (oK) *o(-k)) - 2. (3.3)

Let us now turn to the problem of investigating
the time dependence of a system with the Hamil-
tonian (3.1). In principle we could attempt to dis-
cuss the dynamics of such a system by defining a
time-dependent Hamiltonian-like functional A,[ R

H[ o] = -kTIn(P[0))

and rewriting (2.8) as a hierarchy of equations for
the coefficients, in Ht, of various powers of 0.

As statistical equilibrium is approached . H will
approach H. A formulation in terms of H would
not be very illuminating, however. In particular,
it has no strong dependence on the spatial dimen-
sionality d. What depends strongly on d is not H,,
but how the parameters of H, add up to determine
expectation values of P. We find it more useful
to examine these moments of P directly.

We may obtain an equation for the time depen-
dence of the magnetization by multiplying both
sides of (2.8) by o(0)—the zero Fourier component
of the spin—and then functionally integrating over

all o(k). After several integrations by parts we
obtain
d{a(0)) <6(H/kT)‘
i\ Tea ) 6-4)

where, in general, ( f[ ¢]) denotes a moment of
the time-dependent probability P:

(rleb = [ Plolrla] (3.5)
o
and [, is a functional integral over all o(k).

As Stated in the Introduction, we will be con-
cerned with a kind of hysteresis experiment. A
system is initially lined up by applying an external
magnetic field z, which is then turned off. For a
system with such a history we must distinguish
between the component of spin which is parallel
to the original magnetic field (which shall be de-
noted by ¢,) and the transverse spin components.
The dynamical equations tell us that, for the
hysteresis experiment, there will be no anisot-
ropies besides that between parallel and trans-
verse directions. In particular, there is no need
to distinguish between the N — 1 different trans-
verse directions. We will, therefore, denote the
component of spin in any one transverse direction
by a single symbol o.

Whatever magnetization the system can retain
will be in the direction parallel to the formerly
applied magnetic field. Thus (3.4) may be re-
written as

(07(0)) =0
and
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d 0 — 4x — 4r
J_%_Dz_zuo- = T0- 50 2[36,00+ W -1)6,0)] - ZZ Fplly, o)+ (V= DF 1k, )]
k
(3.6)

where, for notational brevity, we define time- dependent quantities:

o =(0p(0) ; (3.7)
second moments of ¢

Gplk) =(opk)op(~K)) - 0%0y0 , Gr(k) = (or(k)or(-K) ; (3.8)

and third moments of o

F ok, Ea) =( UP(EI)UT(_IE 20 (- k, ~ Ez» -0G rk 2)551,0 s

Fp(ljn ljz) = (Up(&)op(gz)"p(' k - Ez» - 361_:2,OEGP(51) - 651,0552,053

To deal with all of (3.6), we would need to also
write equations for the time derivative of (o?)
and (0% . These, in turn, would involve factors
of (0*) and (o¢°) which would necessitate still
more equations. A simple approximation to (3.6),
however, is to make a mean-field approximation
and ignore second and higher moments of P. We
then have

do 4 —,

———Zuo-—ﬁc

7 (3.9)

The reader is reminded that, for stability reasons,
A must be positive. In the mean-field approxima-
tion, systems of any d or N will have an above
critical region given by u>0 and a subcritical
region given by 1< 0. Thus (in the mean-field
approximation), when p is positive, the only root
to d,0 =0 is ¢ =0. Whatever initial value ¢ had,

it will ultimately decay to zero as e”2*!. When

L is negative, however, the root ¢ =0 is unstable.
In the negative p region, the stable root to d,oc =0
is 0 = (- u2/20)'/2. This is ultimately approached
exponentially as

o - (_ [JQ/Z?\)I /2 ¢ ptht

when ¢ is close to (- usz/zx)l /2, For u<0, then,
if the initial value of ¢ is even sllghtly nonzero, o
will ultimately approach (- uQ/22)!/2. The char-
acteristic time to establish this magnetization is
~1/|4r|. We see that, as we pass deeper into
the subcritical region by making u more negative,
the magnetization, (- uQ2/2))*/2, grows and the
time needed to develop it, (~1/|4u|), shrinks.

In order to test the appropriateness of the mean-
field description we now examine the two-spin
correlation functions (¢2). One may establish,
by considering the hierarchy of equations for

d,o), d,o%), d(c®,..., thatif (o?) is smaller

than (o) by a factor y<« 1, then, self-consistently,
(e™ ~¥™(o) .

If we find that (¢2) is very small compared to

{0) for certain times and/or certain values of

W, then, in these cases, the mean-field approxi-

mation is good. But, by multiplying both sides of

(2.8) by o(k)o(- k) and functionally integrating, we

obtain

dGp(k) _ G(H/kT) dc _
at < P0 o ® > 23 90,0
(3.10)
dG (k) 5(H/kT)
dt =2-2 <GT(1_<) —GUT(E) > (3.11)

where, as defined in (3.8), G, and G are, re-
spectively, the parallel and transverse (to o)
correlation functions. We shall, at present, keep
only the leading terms in the mean-field approxi-
mation to (3.10) and (3.11). We then may check
the self-consistency of the approximation by ap-
plying our results for G, and G, to (3.6). The
mean-field theory will break down when the con-
tribution from the G’s is no longer small com-
pared to those terms which were retained in (3.9).

In the mean-field approximation, (3.10) and
(3.11) reduce to

éﬁ;}ﬁ -2- 2<Z(u+ k?) + 6A0® +O(G))GPQ<_) ,
EI_G_(;T(K_LZ_ 2<2p+2k2+ oF +O(G))GTQ<_) ,

or, after applying (3.9),
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ZZP_9_9( - t— 2
3 2 2< =+ +2k +O(G)>GP(§) R
(3.12)
%:2-2<-5§+2k2+o(c)>c,(5) . (3.13)

Note that, when all time derivatives are zero,
(3.13) reduces to [ after making a mean-field
approximation and ignoring O(G) terms]

Cr)= 5z »

which satisfies the Bogoliubov inequality (3.2).
We now consider the O( G) corrections to (3.9):

-2 (53 650+ - D T6,W).
(3.14)

Let us suppose that o is given by the mean-field
theory plus a correction, Ac which is presumed
small. Then, for times large compared to 1/ | |
the time derivatives of ¢ will be zero, to O(Ac),
and the correlation functions will be given by

2(1 - e-n’t)
4r®

2(1 - e-(4k2- zu)t)
4k -2

Grlk)= +GLK)e ¥t (3.15)

GP(E)g +G£(E)e-(4h2'2“)t

(3.16)

for ©< 0. GT denotes the initial values of the
correlation functions. We assume that, prior to
placing the system in contact with a subcritical
temperature bath, it was initially at a high, above
critical, temperature. In this case the initial cor-
relation functions G’ do not display any strong de-
pendence on their momentum index k. The con-
tribution of G to o in (3.14) goes to zero with
time as ~# %/2 and may be ignored. Putting the
remainder of (3.15) and (3.16) into (3.14) we find
that, for p< 0, the deviation Ac of o from (- uQ/
2)\)*/2 is given by

dac — 4r[-puQ\ 12
= —+4p.Aa——§< R ) 3 Gplk)

+(N=1))G,k) . (3.17)

In the large volume limit we may replace the
sums on k with d-dimensional integrals. We see
that, in this limit, for d> 2 or for d=2 and N=1
the ratio of Ao to the mean-field value of ¢ is

MYERSON 14

Ac
(‘,J'Q;ZXI : t—> o

So long as A is small and [u] is large (i.e., the
system is not too near the critical point) the above
ratio will be small and the mean-field theory will
give a good approximation to subcritical dynamics.
Similarly, for p.>0, we may show that, so long as
u is large enough for

MW/pu<< 1,

~ "(TLT’(N'I)>'

the mean-field theory will give a good approxima-
tion to above critical dynamics. The most in-
teresting case, however, is that of subcritical
(u< 0) d=2, N> 1 systems. In this case (3.17)
and (3.15) imply that the deterioration in mag-
netization is given by

A ANV =-1)

~

(- Q72072 7 Tul8n
@=2, N>1,t>1/|p|, p<0). (3.17")

In(r4)

This means that the mean-field approximation is a
good one for times less than a time 7 given by

T=4exp[8n|u| /AWN-1)]
(d=2, N>1, p«<0). (3.18)

We see that as we move deeper into the subcritical
(1< 0) region, T grows exponentially. The rapid
increase of T with |p| for 1< 0 has more sig-
nificance than simply saying that the mean-field
theory is an increasingly good approximation for
d=2, N> 1 systems. During the time that the
mean-field approximation is good the magnetiza-
tionforan N> 1 film will behave like the magnetiza-
tion ina d=3 or in a d=2, N=1 ferromagnet. That
is, a substantial (< V= 1) magnetization will de-
velop in a short (~1/ |4p]) time, so long as the
initial magnetization is even slightly nonzero. This
quasistable magnetization will not show signs of
deteriorating until a time 7 has elapsed.

By comparison, we may apply the analysis which
led to (3.18) to a d> 2, N>1 system of finite vol-
ume. If Q< « then we must be careful to include
the k=0 mode when we apply (3.15) to (3.14).

Since Gr(0) increases linearly with time, there
will be a finite 7

Qlul

YY)

d>2, N>1, u<0) (3.19)
after which the mean-field theory breaks down and
bulk magnetization begins to deteriorate. Later

in this section it will be shown that for u< 0, after
the mean-field theory has broken down the mag-
netization will continue to decay to zero. Thus

the 7’s given in (3.18) and (3.19) are estimates

for the persistence times of substantial sym-
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metry-breaking magnetization. Equation (3.19)
gives a figure for a macroscopic persistence
time—it will be ~Q~10%, Hence two-dimensional
systems will display virtually macroscopic per-
sistence time—and will have behavior indistin-
guishable from conventional ferromagnets —when

|u|/Az[(N=-1)/87] In(10%) . (3.20)

It is useful, at this point, to reformulate (3.18)
and (3.20) in terms of temperature. Let us re-
write (3.1) to explicitly include temperature:

= (LB pla -0+ 2 T T o)

or, after choosing units of o to set k,/kT =1 and
suitably redefining {i, and A,

D SURTLLR T <) D) D) DAL

(3.21)

The critical point is determined by setting the in-
verse of

Lim (o(k)o(- )

-0

equal to zero, with (o)=0 and when equilibrium
statistical mechanics apply. For small A, we may
make a Hartree-Fock-like estimate of T,:

Ak T 4
Q

0=2p, - (N+2)3 " (o(k)o(-k)).

Assuming that, on the critical point
(o()o(~ k) =1/2>",
we find that for d=2
T, = pon (2m)/kX,(N+2) (d=2). (3.22)

Using (3.21) and (3.22) in place of (3.1), we find
that (3.18) may be rewritten as

4T (N+2
exp[va(N-l)] (d=2, N>1,T<T,).

Wl

T=

(3.23)

Using Lublin’s® renormalization-group figure of
0.21 for the n of the XY model, it may be seen
that virtually macroscopic persistence times will
be obtained quite close to T,. Although more
careful estimates of T, may change the proportion-
ality constants which appear in (3.23), the basic
results remain unchanged: 7 rises exponentially
with 1/T for T <T, and virtually macroscopic per-
sistence times — virtual ferromagnetism — are
obtained below some finite fraction of T.

We should note that when the work of this section
is repeated for d<2, N >1 systems, there will be

no virtual ferromagnetism at finite temperatures.
Assuming that a nonzero T, can be found at all for
the case d < 2, the persistence time below such a

T, will be

T (/T @ (N>1, T <T,, d<2). (3.24)

This 7 will not be comparable to 10* except at
microscopically small temperatures. It is only
for the case d=2 —~when the divergences implied
by Bogoliubov’s inequality are marginal, logarith-
mic divergences — that virtual ferromagnetism
can be obtained.

In order to obtain a qualitative picture of systems
close to the critical point and in order to establish
that, after time 7, magnetization will decay to
zero, we make use of Bogoliubov’s inequality. If,
in a hysteresis experiment on a system with the
Hamiltonian (3.1), the time-dependent probability
P is given by

u,t
~InPlo]=3 L+ #) o 0+ 373 TY a0 o
+ -y () 0OV,
then it may be shown that Bogoliubov’s inequality
implies that

dG (k) -do D
;t__ 22_2[_%_+2k2<1+—6-2>]cr(5),

(3.25)

where the definition, (3.3), for D may be rewritten
as
D=3 [(N -1)G 1K) +Gp®)]. (3.26)

To obtain (3.25), note the Bogoliubov’s inequality
provides a lower bound on the time-dependent
correlation function G ,(k), with u,, u,, and u, re-
placing i, p, and A, respectively, in (3.2). In
addition, if H were replaced with In P in (3.4) and
(3.11), then the time derivatives would be zero.
The resulting pair of equations, coupled with the
Bogoliubov inequality, (3.4), and (3.11) leads to
(3.25).

The fact that the parameter X\ in H/ET is positive
means that the position space spin-spin fluctuation
at a given lattice site must be finite

> (S(x) *S(x))

=%2+(—21;;afddg [Gp(K) + (N =1)G (k)]
or
©>F2/Q+D/Q. (3.27)

It may be seen that 3.25 implies that, for d=2, D
will grow without limit as ¢ -+« — and thus violate
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(8.27) —unless T goes to zero at f~«<. Converse-
ly, @ must begin deteriorating when D becomes
comparable to the upper bound for (S(x) S(x))

the mean-field estimate of —u/2X provides a rea-
sonable figure for this, then ¢ must begin deteri-
orating after the time 7.

While the manner in which @ decays for times
t> T is an academic question for d=2, N >1 sys-
tems at low enough temperatures to have virtually
macroscopic 7, it is an important issue for sys-
tems near the critical point. The full treatment
of systems near the critical point will require use
of the renormalization group. For our present
purposes, however, we may obtain a description
which is, hopefully, qualitatively correct by tak-
ing (3.25) as an equality

dG (k) _ [dﬁ
dt 2-2 o

s 2k2<1+ = >]GT(1_<_). (3.28)

In addition, we expect G to equal G, when G—0.
We, therefore, modify (3.12) to give

dGP(k)_z o 4D 20° +2k2<1+(-_7132>}cp(@.

L-—-+

(3.29)
(3.28) and (3.29), together with (3.14)
s _ _, - 4o
72 +)

_ <3ZGP(k)+(N 136, (k)> (3.14)

provide a dynamic approximation which yields
qualitatively reasonable results in the vicinity of
the critical point for the ferromagnetic systems:
d>2 and d=2, N =1, except for the fact that the
critical point for these equations remains at p=0.
For above critical systems (u>0) ¥ will still ul-
timately decay to zero exponentially as e 2*!. Note
that, as the critical point is approached from above
(as w—0*) the decay time 1/2u goes to infinity.
Below the critical point (u<0) for d> 2 and for
d=2, N=1, © will approach a stable nonzero root
to d;0 =0. The value of the subcritical magnetiza-
tion, goes to zero as the critical point is ap-
proached from below ( u—07).

Finally let us sketch the behavior of subcritical
(n<0)d=2, N>1 systems under (3.28), (3.29),
and (3.14). For times small compared to 7, D is
small compared to (G)? and these dynamical equa-
tions reduce to the already discussed equations
(3.12)—(3.14). For times large compared to T,
transverse fluctuations become substantial and
will, through (8.14), cause T to deteriorate. The
reader may examine (3.28), (3.29), and (3.14) to
determine that the ¢- < solution for d=2, N>1
systems is one in which @ goes to zero at a less
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than exponential rate

O ——— ~ — < =2, N>1 .
Ut»‘r T (<0, d=2, I ) (3.30)
and
- uN
D— —
t»,Z)\(N+2)

It should be emphasized that this ultimate decay
cannot materialize until after a sufficient time 7
has elapsed for transverse fluctuations to estab-
lish themselves.

The slower-than-exponential decay for sub-
critical nonscalar films is a feature which is in
agreement with the finding of Stanley and Kaplan.®
To see this, observe that, when equilibrium sta-
tistical mechanics obtain with the Hamiltonian
(3.1), then the zero-momentum correlation func-
tion is given by!’

(G (0] <6H/kT>/

provided that ©=0. But, equilibrium statistical
mechanics will obtain in the limit #-«. Thus,
by (3.4), (3.31) reduces to

nm([Gp(O)]" -- ‘?)

(3.31)

(3.32)

t—>o0
provided

lim 0=0.

t— o

With the above proviso, (3.32) is a rigorous result.
We see, from (3.32), that the slower-than-expon-
ential decay after times > 7 for any subcritical
nonscalar film — which was predicted by using the
approximate dynamical equations (3.28), (3.29),
and (3.14) — implies that the subcritical suscepti -
bility is infinite:

1

) ',:‘:0

This is the result obtained by Stanley and Kaplan®
in their numerical calculations of the equilibrium
statistical mechanics of the d=2 XY model.

[Gp(0)]

IV. CONCLUSION

For the model system considered in this paper,
we have shown that nonscalar films can, at a finite
fraction of their critical temperature, develop and
sustain magnetization for times which, for labora-
tory purposes, are infinite. In addition, using an
approximation which gives qualitatively reason-
able results for d>2 systems and for d=2, N=1
systems, we predicted that the near but sub-
critical region may be distinguished from the
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near but above critical region by the nature of the
t -~ decay of magnetization. For above critical
systems the decay rate is, in the {—« limit, ex-
ponential with time, for subcritical systems it is
slower than exponential. This result is consistent
with Stanley and Kaplan’s® calculations.

The most interesting area for future research is
the near-critical problem. The prediction given
here of subcritical magnetization ultimately de-
caying as 1/VIn{ is probably only qualitatively —
in the sense of its being a slower -than-exponential
decay — correct.

The prediction of virtual ferromagnetism at ob-
tainable temperatures is a sound one, for the spin

system considered in this paper. It is conceivable,
however, that there exists a different type of N
>1, d=2 system, governed by different dynamical
equations, which will not display virtual ferro-
magnetism. A search for such a system may be

in order, although it is probably a much less
pressing matter than the study of slightly sub-
critical, nonscalar films.
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