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The Schrddinger equation for a crystalline slab of finite thickness is separated under certain assumptions into
a one-dimensional equation in the coordinate perpendicular to the slab surface and a two-dimensional band-
structure problem. The independent solution of both problems yields zero-order wave functions for the
electrons in the slab. Weyl’s theory for second-order differential equations is used to solve the one-dimensional
Schrodinger equation numerically for arbitrary potentials using square integrability as the only boundary
condition. The behavior of the solutions for a particular model potential is studied in detail emphasizing the
effect of the potential in the surface region on the surface states.

I. INTRODUCTION

One-dimensional models for the electronic
structure of finite crystals with surfaces'~? have
had considerable importance in the development
of our understanding of the electronic structure of
finite 7eal crystals and the effect of the surfaces.
These models have mainly relied on analytical
solutions to a limited number of highly simplified
situations.

Although major advances have been made in the
computation of the electronic structure of sur-
faces in three dimensions,?'® these calculations
are generally quite involved and do not give a
simple qualitative picture of the essential physics.
The main sources of complication are the nonsep-
arability of the three-dimensional one-electron
Schrddinger equation and the treatment of the
boundary conditions.

The purpose of this paper is to explore a mod-
el'® in which these two main difficulties are over-
come. The part of the one-electron local potential
which is responsible for the nonseparability is
first neglected, yielding a zero-order separation
of the Schrddinger equation.® The zero-order so-
lutions which could then be used in a perturbation
calculation require the exact solution to a one-di-
mensional Schrédinger equation. This equation
gives a one-dimensional model of the finite crys-
tal and it can be solved conveniently for quite
general potentials by numerical methods and the
use of Weyl’s theory. The zero-order solutions
are capable of giving considerable qualitative in-
formation about the electronic structure of sur-
faces, making them worthwhile to be studied in
more detail. The present paper is mainly devoted
to this point.

Since the question of the electronic structure of
surfaces cannot be isolated from the question of
the electronic structure of the finite crystal, at-
tention is paid to the level structure of a finite-
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crystal model which exhibits a minimum of su»-
Jface effects. Then the effects of the form of the
potential in the surface region are discussed.

In Sec. II the main assumptions for the separa-
tion of the Schridinger equation are stated and the
separated equations together with the zero-order
solutions are discussed. Section III presents the
mathematical techniques for solving the one-di-
mensional equation. The solutions for some mod-
el potentials are discussed in Secs. IV and V.

Il. SCHRODINGER EQUATION FOR A SYSTEM
WITH INTERFACES

The energies and wave functions for the single-
electron stationary states in a general local poten-
tial are given by the solutions of the time-inde-
pendent Schréddinger equation
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- )+ V() = Ey() m
satisfying the boundary conditions required by the
physical situation. A general model of a finite
crystalline solid can be defined by a potential ex-
hibiting a repeating pattern over a certain number
of unit cells which fill a given finite volume in
space. Far away from this volume the potential
approaches a constant value arbitrarily defined
as zero. The boundary condition for wave func-
tions representing bound states is square integra-
bility. No practical way of solving this problem
in general has yet been found and a number of re-
strictive conditions have to be specified. The
first restriction concerns the geometry of the
solid. The most commonly used geometrical con-
figurations are the semi-infinite solid exhibiting
a single plane boundary and the film configuration
exhibiting two plane boundaries. The plane bound-
aries or surfaces are in both cases of infinite ex-
tension. The flat surface configurations are still
quite ideal situations; nevertheless, they are rea-
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sonable approximations to a great variety of ex-
perimental situations, mainly those concerning the
study of well-defined surfaces along a definite
crystal plane. A second restriction concerns
translational symmetry. There can be no trans-
lational invariance along the direction perpendicu-
lar to the surface, but in both the semi-infinite
solid and the thin-film configurations, transla-
tional symmetry parallel to the surface may exist.

In most cases the primitive two-dimensional
surface cell is a multiple of the one correspond-
ing to a given crystal plane and a repeating pat-
tern can be found which is valid for both the bulk
and the surface.

The model to be considered below is that of an
infinite crystalline slab of finite thickness which
may include in its interior an arbitrary number of
plane, parallel interfaces separating different
crystalline structures, but in such a way that
overall two-dimensional translation symmetry
parallel to the interfaces is conserved. The inter-
faces, including the surfaces, are not meant to be
mathematical planes but transition regions of cer-
tain thickness.

Under these assumptions the potential in the
Schrodinger equation (1) has the property

VE) =V([R+23,)=V(R+m+2z3,), (2)

where the general position vector T is written as
the sum of a vector R parallel to the interfaces
and a vector 23, perpendicular to the interfaces.
m is a two-dimensional translation vector

m=m 3, +m,a, (3)

of the plane lattice defined by the coplanar vectors
a,4,.

Using Bloch’s theorem for the variable R the
general form of the solution y(¥) can at once be
written,

Un ka5 (F) =" O Ry, ¢ & (@), )
where n is the quantum number arising from the
quantization in the z direction, K is the two-di-
mensional wave vector and G a two-dimensional
reciprocal-lattice vector. The functionu, %, &(¥)
has the same translational symmetry as the poten-
tial in Eq. (2). Substitution of (4) into (1) gives
the differential equation for these functions,

V2 +2i (K +G) Vau

2m

2 (v - ”—Ei@—)

2m
where V3 is the gradient applied to the variable

R. The periodic boundary conditions have reduced
the problem to finding the functions u,,,hg(F) over
a cell of tubular shape extending from z= -« to z

u=0, (5)

=+, its cross section being the unit cell of the
plane lattice.

Under the additional assumption that the poten-
tial V(T) can be written as a sum

V(E) =V,([R)+V,(2), (6)

Eq. (5) separates into two equations:

v+ (R) +2i (K +G)V-u'(R)
2m - 2

I gt
+? <ET<+6—V1(R —m(K+G)2>u (R)=O,

(1)
d%v,(z) 2
——;Z"z(z)Jr% (E; - Va(2)] v,(2) =0,

and the solution # can be written as a product

Unfr &) =ug 2 R)vy(2) . (8)
The solutions y(T) then have the general form

¢n,T(+5(-f):ei(K+G).R“%+6(R)l’n(Z)’ (9)
with energies

E,%+& =En" +ER4 G - (10)

As has been pointed out by Statz,® realistic po-
tentials cannot be written in the form (6). This is
easily seen by considering the case of the solid-
vacuum interface. At a sufficiently long distance
into the vacuum the potential should reach a con-
stant value,

V() =V,(R) +V,(2) = const. (11)

for large z and all R. The only possibility is that
Vl(_ﬁ) is constant, i.e., there can be no variation
of the potential along the surface for any value of
z.

However, owing to the symmetry property (2),
the nonseparable potential V() can be expanded
in a Fourier series in the variable _ﬁ,

V(E) =V2)+ Y, Valz)e't ®, (12)

>
G #0

The first term in the expansion is independent of
ﬁ, while all other terms involve both R and z.
Formally this suggests that all the expansion
terms except the first be neglected.

That this may even be physically acceptable in
some cases has been shown by Schulte and Bross,®
discussed by Kenkre,'! and applied by Garcia,
Solana, and Cabrera'® to the calculation of surface
bands on the (111) faces of Si and Ge.

The physical idea behind this approximation is
that the periodic variations in the potential should
be small compared to the potential jump at the
surfaces. The form of V,(z) obtained by Caruthers,
Kleinman, and Alldredge® for the (001) surface of
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aluminum displays this feature nicely. Under
these conditions one could consider all the terms,
except the first one, in (12) as a perturbation and
use the set of equations (7) to obtain zero-order
wave functions. The solutions to the first of the
two equations are simply

u'©(R)=const., B s =(n*/2m)K+G),
(13)

since V, is zero. To find the functions v9(z) the
one-dimensional Schrédinger equation

),
dzv(o (z) _2_,_,{

dz2 + 7z [E,’,(O) - Vo(z)]v(;?)(z) =0 (14)

has to be solved. This would give zero-order
wave functions

Wrig(@) = ® R0 2) (15)
with energies

B3 ¢ = (12 /2m) & +GF + B0 (16)
Rayleigh-Schrddinger perturbation theory could
then be used to calculate higher-order correc-
tions to the energies and the wave functions.

The main difficulty in carrying out this program
is the calculation of the solutions to Eq. (14) for
an arbitrary potential V(z), as for example the
one obtained by a superposition of atomic pseudo-
potentials.’® I will devote the rest of this paper
to show how this can be done numerically for
most cases and discuss the nature of the solu-
tions for a simple case.

IIIl. MATHEMATICAL TECHNIQUES

The one-dimensional Schrddinger equation (14)

is more conveniently rewritten
2
~LYD  [y(z) - Elu(z) -0 an
az

using rydbergs as units of energy and Bohr radii
as units of length.

This equation has to be solved in the interval
2 & (=», ) with the boundary condition of square
integrability for bound states or the finiteness of
the solution for unbound states (e.g., tunneling
states). A singular boundary-value problem is
thus defined. In the theory of the infinitely peri-
odic solid the singular boundary-value problem is
reduced to an ordinary boundary-value problem
by means of the periodic Born—von Kdrmédn
boundary conditions. No such thing is possible
here since the potential V(z) in Eq. (17) will be
oscillatory in some finite region of the z axis and
then level off to a constant value as one moves
away from it.

The theory for singular boundary-value prob-

lems of self-adjoint second-order differential
equations was developed by Weyl'® in 1910 but has
found only very limited applications in physics.

A short review of this theory has been given re-
cently in this journal.* The theory is also con-
veniently described in Coddington and Levinson’s
textbook' or the references given therein.

One may assume that in the interior of the slab
there is a region where the potential along the z
axis is strictly periodic over a certain finite num-
ber of periods; i.e., the presence of the surface
influences the potential only in the outermost lat-
tice planes. Then the singular boundary-value
problem can be split into two singular boundary-
value problems on semi-infinite intervals and one
or more boundary problems on finite intervals
with a periodic potential. This separation turns
out to be quite useful because the theory of differ-
ential equations with periodic coefficients can be
used.

Equation (17) is a second-order self-adjoint dif-
ferential equation of the standard form,

—(pu') +qu=»xu . (18)

The prime indicates derivation with respect to the
independent variable, p and g are real functions,
and A is a complex constant. For the particular
case of (17) p is a constant equal to 1.

A solution ¢ of (18) is uniquely defined, up to a
constant factor, by its phase « at a point z,. The
phase « is defined by

p@’(20)/9(2,) = —cota(z,), (19)

which has the advantage, particularly for numeri-
cal work, of specifying a real initial condition in
terms of a single parameter in the interval (0, 7).

The singular boundary-value problem. To find
solutions to the one-dimensional Schrédinger
equation arising in the previously stated model
the solution of a singular boundary-value problem
on the semi-infinite interval (0, ) is of primary
interest. The main feature of Weyl’s theory is the
use of complex eigenvalues in the self-adjoint
second-order differential equation (18). Depend-
ing on the function ¢(z) the problem can fall in one
of the two categories: the limit-circle case and
the limit-point case. In the limit-circle case all
solutions of (18) are square integrable, whereas
in the limit-point case there is one and only one
square-integrable solution for each x. All the
situations considered in this paper belong to the
limit-point case. In this case the square-integra-
ble solution is given by

x(z; A) =@(z; A) +my(z; A), (20)

where ¢ and y are two linearly independent solu-
tions satisfying the initial conditions
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(0; A) =sina, ¥(0;A)=cosa,
¢ (21)
p@'(0; X)) ==cosa, py’'(0;1)=sina.
If one asks for the value of m such that y satisfies
the boundary condition

px'(b; A)/x(b; A) = —cotB (22)

at some finite point z =5, then one finds that m
lies on a circle in the complex plane which can be
generated by varying 8 from 0 to 7. Furthermore
for any &'> b the corresponding circle is entirely
included in the one for . Letting b go to infinity,
m tends to a limit point independent of B,

lim m(d, A, B) =m (7). (23)

b

It can be shown'® that

i @052

Mo(A) = —}gg o6 1)’ (24)
which allows the calculation of m from the knowl-
edge of two linearly independent solutions. From
the function m(\), in turn, the initial phase at the
origin for the square-integrable solution for each
A can be calculated. The numerical procedure is
then as follows: For a given energy (A =E +1€)
two linearly independent solutions can be calcu-
lated by numerical integration starting with an
arbitrary initial condition; from these solutions
the initial phase of the square-integrable solution
is calculated via the m function. The imaginary
part in the energy is taken small (e <10-%) accord-
ing to the accuracy required in the calculations.
The m function is further of central importance
because its imaginary part relates directly to the
spectral function p(w) and hence to the spectral
density

1 B
p(EB)—p(Ed)=li_{r(1)—f Im{m.(E +i€)] dE .
i (25)

For a discrete spectrum the imaginary part of the
m function exhibits peaks when calculated as a
function of A, which become $ functions in the limit
€ ~0. When the energy range is scanned using the
proper initial phase in the integration, eigenvalues
can be detected by looking for peaks in the m func-
tion.

Final phases for a periodic potential. Whenever
the infinite interval is divided into subintervals for
the periodic and aperiodic parts of the potential,
the dependence of the phase on the energy is of
interest, since the construction of the overall so-
lution by joining the solutions in neighboring inter-
vals requires the matching of the phases at the
common boundary. The phases at the end point of
a finite interval (final phases) in which the poten-
tial is periodic can easily be calculated by numer-
ical integration starting with some definite initial
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phase. Making use of the properties of the solu-
tion to a second-order differential equation with
periodic coefficients it is sufficient to integrate
numerically over a single period. It turns out
that final phases exhibit a quite typical behavior
in their energy dependence. This was first noted
by Schokley,? who showed that in the case of a
symmetric periodic potential, of period a, the
logarithmic derivatives y and pu of the even and
odd solutions satisfy the following relation at a/2:

y(a/2)/u(a/2) = —tan®(ka/2), (26)

valid for both real and imaginary k. This result
can be generalized for points nza/2 by considering
a new potential made up of n periods of the origi-
nal one:

y(na/2)/una/2) = —tan®(nka/2) . (27)

This equation predicts an oscillatory dependence
on k of the quotient of the phases in the bands
(real k), the number of oscillations increasing
with n, whereas in the band gaps the quotient of
the phases is not oscillatory, converging exponen-
tially to unity, with increasing ». The numerical
results, as those shown in Fig. 2, indicate that
this typical behavior is also true for other points
than na/2 although a general proof is still lacking.

Numerical Methods. To calculate the m function
and the initial phases for the singular boundary-
value problem I followed the numerical technique
introduced by McIntosh'® for the Weyl theory. The
integration of the complex equation (19) is done in
matrix form with the sixth-order Runge-Kutta for-
mulas given by Sarafyan!” which proved to be quite
efficient. When using Weyl’s theory numerically
a fundamental point has to be remembered, name-
ly, that with arbitrary initial conditions the two
linearly independent solutions will in general both
be divergent (in the limit-point case). Therefore
the square-integrable solution which usually goes
to zero for large values of z will be given as the
difference of two large numbers and in any calcu-
lation with finite precision the calculated square-
integrable solution will sooner or later exhibit an
exploding tail. Fortunately this diverging tail is
generally out of the region of interest and appears
after the solution (and its derivative) has already
become very small. Therefore the tail can be ne-
glected and the function set equal to zero there-
after without seriously affecting the accuracy of
the results.

The magnitude of the imaginary part of the ener-
gy has a minor effect on the relevant quantities
(real part of the wave function, initial phases and
energies) and convenient values are between 102
and 10~* unless extreme precision is desired.
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IV. ELECTRONIC STRUCTURE OF FINITE CRYSTALS

The model. Most of the theoretical work on sur-
face states has been done for the limiting case of
a semi-infinite solid.!®+'® Surface states appear
in the forbidden energy gaps giving rise to addi-
tional peaks in the density of states but leaving it
unaffected in the bands. In this situation the sur-
face states can be considered separately from the
electronic structure of the bulk. This is not so for
the finite crystal, where bulk and surface states
have to be considered on the same level, as we
shall see below, because surface states can be
transformed continuously into bulk states and
vice versa.

In this section we will concentrate our interest
on the question of how the electronic structure de-
pends on the crystal size. A qualitative under-
standing of the behavior of the energy levels with
increasing size of the crystal proves to be very
helpful for the understanding of the effects of the
surface. For the purpose of the study we will
select a definite model potential. Many results
will not depend on the precise form of the poten-
tial, but whenever a feature depends on the spe-
cific form of the potential this will be stated ex-
plicitly. The model potential will be purely sinus-
oidal up to a point z,, where it is matched contin-
uously to a —1/z-like decay. The point z, is se-
lected so as to produce a minimal distortion of the
potential in the surface cells. The potential is
shown in Fig. 1 and defined as follows:

V(z)=C,;-C, cos(212/C,), lzl<|z,y|
V(z)==C,/(z=2,), |z|>|zl (28)
z2,=(m+3)C,, 2,=2,-C,/C,.

The potential is symmetric, the number of poten-

D)
-7
region II

region I

POTENTIAL ENERGY
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<

FIG. 1. Illustration of the potential defined in Eq. (28)
for n =2,

tial wells is 2n+1, and C,-C, are constants which
allow a wide range of variation of the potential
while retaining the same functional form. The
Schrddinger equation (17) with the potential (28)

in the interval (-z,, z,) reduces to the standard
Mathieu equation®® by means of the change of vari-
able v=7z/C,. The stability intervals, i.e., the
band structure, for this equation are known and
served as test cases for the numerical calcula-
tions. The connection between the parameters in
the potential and the quantities a and g of Ref. 20
are given by

a=(E+C,)C3/m, q=-C,Ci/2n. (29)

A sinusoidal potential was selected for the bulk
for several reasons: It is known that a sinusoidal
model potential reproduces qualitatively many of
the characteristic features of the electronic struc-
ture of real solids. Good band structures for
metals can be calculated by potentials represented
by a Fourier series with few components. It fur-
ther leads to a band structure which depends on the
single parameter g [see Eq. (29)] and contains the
tight-binding and nearly-free-electron approxima-
tions as limiting cases for large and small values
of g, respectively. Finally, it has been used in
previous®+21+?2 works, which allows a comparison
of the results. The image potential is certainly
appropriate at larger distances. Truncating it and
fitting it to the sinusoidal potential is probably the
simplest thing to do which still seems to resemble
roughly the more complicated behavior at small
distances from the surface.?

Exchange and correlation contribute significantly
to the effective one-electron potential so that a
good potential should at least be self-consistent
for this case. The potential (28) probably does not
satisfy this requirement, but this is not a severe
limitation here because the primary interest of
this study is the dependence of the electron energy
levels on the characteristics of the potential.

From the symmetry of the potential it follows
that the solutions of the Schrddinger equation have
to be either even or odd functions of z and the left-
hand side of the boundary-value problem can be
substituted by the initial conditions:

2(0)=1, g’(0)=0 for the even solution,

u(0)=0, u’(0)=1 for the odd solution.

The problem can further be divided into two
regions: Region I comprises the interval (0, z,)
and region II comprises the interval (z,,«). The
boundary condition at z, is the matching of the
phases of the solutions in region I with those of
the solutions in region II. The methods outlined
in Sec. III can be applied directly to these regions
to calculate the final phases (phases at z,) of the

(30)
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even and odd solutions in region I and the initial
phases (phase at z,) of the square-integrable solu-
tion for region II, all as a function of the energy.
The crossing points of the curves of the initial
phases vs energy with that of the final phases vs
energy determine the energies where a matching
is possible, and thus the energy levels. Once the
energies are known the wave functions can be cal-
culated.

The final phases at z, for the even and odd solu-
tions as a function of energy are shown in Fig. 2
for n=1 and n=4. The parameters of the potential
have been selected in such a way so as to produce
an allowed and a forbidden band of approximately
equal width in the range of negative energies.
Many other different cases were actually calcu-
lated, but those shown are the most illustrative.
The final phases display the qualitative behavior
already discussed in general terms in Sec. III,

where no specific assumption on the potential was
made except its periodicity. The phases vary
slowly outside the bands and the even and odd
phases tend to the same limiting value. In the
band the phases vary rapidly and tend quickly to a
set of very steep almost parallel lines. Phases
for higher values of n» are not shown in the band be-
cause of the obvious plotting difficulties, but the
behavior is clear. In region II we deal with a
boundary-value problem singular at infinity. In
this region the Schriddinger equation takes again a
form which, in principle, can be handled analyti-
cally since it can be reduced to a confluent hyper-
geometric equation of a special form, the Whit-
taker equation. The properties of its solutions
have been studied by Wannier and have been ap-
plied to the study of surface states by Cole** and
Garcia and Solana.” I will not solve the problem
analytically here because numerical methods will

n
2
2
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FIG. 2. Energy dependence of the final phases at g, of the solutions in region I and inital phases in region II. The
final phases are shown for » =4 (solid lines) and » =1 (interrupted lines). The even solutions are labeled 1, ¢ and the
odd solutions 2,x%, respectively. The potential parameters for this case are C;=0.3, C,=5.0, and C;=1.0. The curves
numbered 3, 4, and 5 correspond to the initial phases and to values of C, of 0, 0.1, and 0.5, respectively. The inter-
sections of the initial- and final-phase curves determine the allowed energies (in rydbergs).
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be needed anyway for the other cases to be dis-
cussed. The numerical procedure is sufficiently
fast and accurate for the range of values of inter-
est for C,. The largest value of C, of interest is
2.0, which corresponds to the ordinary Coulomb
potential. Figure 2 shows the initial phases for
various values of C, and fixed C,. The initial
phase is a monotonically increasing function of the
energy because the wave functions become more
oscillatory when V(2) - E is positive, or the expo-
nential decay less strong, when V(z) —E is nega-
tive. In the case of an abrupt potential step at z,
(C,=0), the square-integrable solutions are decay-
ing exponentials and their initial phases are all
positive. If the potential rises more slowly to
zero then there will be an interval to the right of
z, where V(z) - E is positive, and this interval
will become large for higher energies. Then it can
happen that the wave function at z, has a diverging
(negative) phase, i.e., the wave function grows
away from the axis first, goes through a maxi-
mum, and then decays to zero. I the potential
rise is sufficiently slow the phase may again be-
come positive. All this means is that as the po-
tential rises more slowly the initial phase be-
comes a more steeply increasing function of the
energy. Note that in this discussion we have im-
plicitly used the theorem which says that the solu-
tions to the Schrodinger equation depend continu-
ously on E and on the potential as long as V is a
continuous function of the potential parameters.
This theorem will be used implicitly throughout
this study.

The enevgy levels. The crossing points of the
final phases in region I with the initial phases in
region II (Fig. 2) determine the energy levels. The
most important feature of Fig. 2 is that the levels
are grouped in energy intervals completely con-
taire” in the bands of the infinite crystal. There
may be at most one crossing point for the even and
one for the odd solution in the band gap since there
the final phases vary by less than 7 over a band
gap.

At this point it is convenient to make a comment
on the meaning of bands and band gaps. For a
finite crystal a band in the usual sense does not
exist, but it could be defined by the lowest and
highest energies of a group of closely spaced lev-
els. Such a definition will, as shown below, not
allow for making a distinction between bulk and
surface states. Here instead the term band will be
used in the sense of stability intervals as defined
for the solutions of differential equations with pe-
riodic coefficients.!® For a given potential these
are perfectly defined energy intervals.

Returning to Fig. 2 we see that inside a band the
levels are rather uniformly spaced, being of the

order of
E,,,-E;=AE/m, (31)

where AE is the bandwidth and m the number of
levels in the band. The levels are more com-
pressed towards the border of the band. This is
probably not a general feature but a potential-
dependent one. Even so, the spacings are all of
the same order of magnitude. If there is an even
and an odd level in the band gap, they approach
each other exponentially with increasing » and be-
come degenerate for the limit of the infinite crys-
tal. Because of the exponential behavior, for
practical purposes, the states can be considered
degenerate already for relatively small values of
n, say between 10 and 20. The convergence to this
limit is slower for levels with higher energy than
with lower energies, but is always exponential.
The effect of varying C, can be directly estimated.
For a fixed energy the initial phase increases with
increasing values for C,, but since the final phases
are monotonically decreasing functions of the en-
ergy the crossing points and thus the energy levels
are shifted to lower energies. The final phases
have steep negative slope in the bands and there-
fore the energy levels there are very insensitive
to changes in the surface potential, whereas in the
band gaps the slope is considerably less steep and
the levels in the band gap will be much more sen-
sitive to changes in the surface potential. The
lowest level in the lowest band will always be even.
Even and odd levels alternate in the band. If the
number of potential wells n’=2n +1 is even then
the highest level in the band will be odd; if »n’ is
odd it will be even (there is only one level in a
band for each well). The lowest level in the next
higher band will be odd (even) for n’ odd (even) and
so on. This will still be true when there are states
in the band gap since they occur in closely spaced
pairs (for the symmetric crystal). When the crys-
tal is small and or the levels in the band are very
close to a band edge then it may happen that only
one level is actually located in the gap. Finally

we can conclude that the band structure itself, i.e.,
the location and width of the bands, does not depend
on how the potential is terminated at the surface.
It is entirely determined by the periodic or bulk
part of the potential. The potential at the surface
will, however, influence the exact position of the
levels in the energy range of the band. The exis-
tence and position of the states with energy in the
band gaps is dominated by the behavior of the po-
tential at the surface.

To further investigate the behavior of the energy
levels, in particular their dependence on the sur-
face potential, we will study the effect of a strong
systematic perturbation of the potential in the sur-
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face cells. A very illustrative way to do this is
simply to vary the matching point z, over a whole
period of the periodic potential, but leaving the
potential to the right of z, unaltered. This has been
done by Levine® for a semi-infinite Mathieu poten-
tial terminated by an abrupt potential step. He
made an approximate analytical study of the levels
in the band gaps. By means of a qualitative analy-
sis of the finite periodic potential it is possible to
interpret Levine’s results in a more general way.
For that purpose let us do the thought experiment
of letting the crystal increase in size continuously
(and symmetrically) from »’ to n’ +2 potential wells
by moving the matching point from (n +1)C, to
(n+1+%)C, continuously. Calculation of the curves
for the final phases of the solutions show that the
curves for # and g in the band gap move in a more
or less parallel way over the whole range of the
phase as they are evaluated at increasing values
of z over one cycle. They move from positive
values of the phase to negative values. The speed
with which they shift downward is, however, not
constant and the exact way of doing it depends on
the potential. The general feature is, however,
that after one period the phases have essentially
the same position as before, with the difference
that they have come closer to their limiting value.
The crossing points with the initial phases show
that the two levels close to the bottom of the sec-
ond band move out into the gap, across it, and
finally become included in the lower band. The
levels in the lower band compress towards the
bottom of the band to accommodate the two new
levels. In the higher bands the levels will also
shift to lower energies. There will be a certain
position, in general a certain range, for z, where
there are no states in the band gap, which means
that there is a certain threshold value for the per-
turbation of the surface cell for producing levels
in the band gap. After the threshold is achieved an
increase in the perturbation makes the levels fall
rather quickly through the band gap into the lower
band. This is the situation for the lowest band gap,
illustrated in Fig. 3.

For the next band gap the situation will be some-
what different because the net gain in the number of
levels of each band has to be two, since two poten-
tial wells are added to the total potential. The sec-
ond band, for example, loses two levels to the
lowest band and thus has to receive four levels
from the third band. Since there can, in general,
only be two levels in a band gap, as can be seen
from the behavior of the final phases, the four
levels will shift through the second band gap in
pairs, one pair after another. The behavior in the
higher bands will be similar. From this we con-
clude that the nonexistence of levels in the lowest
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FIG. 3. Behavior of the energy levels in the first gap
when the matching point z ; is shifted over a whole period.
Curves (a) and (b) correspond to the odd and even states,
respectively, when 2, is shifted across the second poten-
tial to the right of the origin. Curve (c) shows the result
of moving z, across the tenth well. The even and odd
states are practically degenerate in the last case. The
potential parameters are C;=0.3, C,=5.0, C;3=1.0, and
C,=0.

gap does not mean that there will be no levels in

the second gap and so on. For the higher-order

band gaps the perturbation of the surface cell re-
quired to press out some levels into the band gap
becomes smaller.

When the bands are very broad and the surface
potential has a long range out into the vacuum,
such as, for example, the Coulomb potential
(C,=2), the initial phase can become a rapidly
growing function of the energy and it may happen
that the initial phase varies over more than 7 in a
band gap, thus crossing the final phases of the
periodic part more than once. In this case the
rule of having at most two states in a gap breaks
down.

The wave functions. In region I and except at a
band edge, the even and odd solutions can be writ-
ten as linear combinations of Floquet solutions:

@ (z) =af (z)e™* + bf (z)e"*= (32)

where a,b are constants and f,,f_ two functions
periodic over a lattice spacing. The solutions in
this region will be identical with those of the in-
finite symmetric crystal for the same energy.
For the finite lattice those values of & which make
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¢ satisfy the boundary conditions at the origin and
at z, are selected from the continuum of possible
k values.

If there is a level in a band gap, % can be taken
as purely imaginary, since the real part is con-
stant over the whole gap, and in region I the solu-
tion ¢ will diverge exponentially, both in positive
and negative z directions (from symmetry re-
quirements). Near the edges of a band gap the
imaginary part of & will be small since it is zero
at the band edges and grows to attain its maximum
near the center of the band gap. The exponential
growth will thus be strongest near the middle of
the band gap. The solutions in region I join
smoothly to square-integrable solutions in region
II which are of decaying character. The overall
solution will consequently have a maximum in the
amplitude around the surface (z,) representing a
particle localized in the surface region. States in
the band gaps are then always surface states which
decay exponentially into the crystal. The localiza-
tion is strongest when the energy is near the mid-
dle of the band gap. The localization increases
also strongly with the size of the crystal. In Fig. 4
the wave functions for a surface state slightly
above the band top and one near the middle of a
gap are illustrated. The crystal is small; one of
the states is only slightly localized at the surface.

Let us now turn to the states inside a band where
k is real. The exponentials in (32) are now com-

AMPLITUDE

FIG. 4. Wave functions for states in the band gap.
Only the part of the wave functions to the right of the ori-
gin are shown since the functions are either even or odd.
The model crystal has a total of nine potential wells
(atoms). The functions are normalized with respect to
their initial conditions (unit matrix). The function which
shows strong localization lies near the middle of the band
gap and its amplitude has been scaled down by a factor
100. The other function corresponds to a state just
slightly above a band edge and is thus only slightly loca-
lized.

plex and the form of the solution in region I is that
of a superposition of two oscillatory functions, one
with period a (the lattice constant) and the other
with period 27 /k. Near the bottom of the lowest
band % is real and very small. For all those en-
ergies for which z,=n /2k the wave function will
have a decreasing amplitude towards the surface.
The amplitude at the surface will first decrease as
the energy increases away from the band gap, at-
taining a minimum and increasing again, going
through several oscillations as we approach the
center of the band. The wave functions for the
lowest level in the band will, as a consequence of
this, be more localized towards the center of the
crystal. A similar behavior occurs for the ener-
gies close to the top of the band and at the bottom
of the next band, but here because the periods of
the two periodic components in the wave function
are close multiples (27/k~2a) and the wave func-
tion shows “beats” of long period. In conclusion,
for a finite crystal the states in the bands still
extend over the whole crystal but the probability
of finding a particle at a certain point will vary
both with position and energy. Particles in states
near the band edges are pushed away from the
surface; in the centers of the bands the particles
extend homogeneously through the crystal, while
in the band gaps they become localized at the sur-
face. In Fig. 5 all the wave functions of the first
band for a finite periodic lattice are shown. The
potential parameters are such that in this case no
surface states are present in the first gap. It can
be clearly seen how the amplitude of the wave
functions near the band edges decreases near z,.

The local density of states. The density of states
p(E) does not account for the local variations of the
relative probabilities of finding a particle in a cer-
tain state. Many surface spectroscopies, such as,
for example, photoemission, ion neutralization
spectroscopy and others, probe the occupation of
states over a small region of space. The relevant
quantity in these cases is the local density of
states defined as

p(E, 7= [9:0)|*6(E-E)), (33)

which is appropriate to describe differences in
weight of the states in different regions of an ex-
tended system.

For a finite crystal the local density of states in
the bulk and at the surface shows some character-
istic differences. From the discussion of the be-
havior of the wave functions we conclude that at the
surface the local density of states is reduced com-
pared with the regions in the center of the crystal.
This effect has been observed in photoemission?®®
and ion neutralization spectroscopy® for transi-
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FIG. 5. Wave functions for the first band and » =4. The potential parameters are the same as those in Fig. 6. C,
=0.5. Normalization is again only with respect to the initial conditions. The odd solutions have been scaled down by a
factor 7.5. The functions are numbered with increasing energy and their reference lines show their position in the band.
The potential parameters used do not produce localized states in the first band gap.

tion metals. Calculations of this effect have been
made in the tight-binding approximation®”® and it
has been interpreted as due to the reduced coordi-
nation number of the atoms at the surface. It may
be interesting to note that the effect appears in
this one-dimensional model where no mention is
made about neighbor interactions since all neigh-
bor interactions are automatically included. The
reduction of the amplitude of the wave functions
diminishes as the size of the crystal increases.
As a function of size the local density of states
should also display an oscillation superimposed on
it on the shoulders near the band edges because of
the already discussed modulation of the wave func-
tions in these energy regions. Such superimposed
oscillations should also appear in the local density
of states for a crystal of fixed size as we move
away from the surface into the bulk. Such a struc-
ture in the local density of states is shown in the
calculation by Haydock and Kelly.?® The case of a
crystal with surfaces is always different from the
one where periodic boundary conditions are ap-
plied, even when the surfaces are translated to

infinity by letting the crystal become infinite,
since surface states if present do not disappear
from the spectrum with increasing size. The total
densities of states will differ in both cases, but
because of the localization of the surface states,
for large crystals the local densities of states will
be indistinguishable far inside the bulk.

V. PERTURBED SURFACE

In Sec. IV it was found that a finite crystal may
have surface states with energies in the forbidden
gap whenever the potential in the cell at the sur-
face was sufficiently perturbed. The perturbation
used there may appear to be highly unrealistic,
but from the general arguments we expect a very
similar behavior for more realistic perturbations.
We expect that the outermost two states in a band
can be continuously transformed into surface
states by a continuous variation of the potential in
the surface cells or in the vacuum part.

The kind of surface perturbations we may con-
sider as realistic are essentially two: the modifi-
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FIG. 6. Definition of regions I and II and the potential
parameters C{ , C; for the case of surface perturbation.

cation of the strength of the potential in the last

cell, which can be thought of as a very crude mod-
el of adsorption, and the modification of the lattice
spacing in the last cell, which would simulate lat-
tice relaxation. The model is essentially the same

as before, but with the difference that the last
half-period of the cosine potential is included in
region II. The amplitude and the period of the
cosine there will then be varied independently of
the values in region I. The definition of regions I
and II and the parameters C{ and C] are shown in
Fig. 6.

The effects of C, and C, are not independent.
They, together, determine the band structure of
the periodic potential in region I by means of the
parameter g defined in (29). For this reason C,
is given a fixed value and only C, is varied. The
effect of C, is only to shift the bands as a whole up
or down in energy, but it does not influence the
bandwidths. (C, has, however, a small effect on
the potential in the vacuum side.) Restricting the
variation to the parameters C,, C{, C}, and C,
leaves ample space for exploring the main features
of the model.

In Fig. 7 the initial phases at z, for region II are
shown for various values of the parameters C/| and
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FIG. 7. Initial phases for region II for different values of the parameters C{, C4 (C3=C,=6.0,C3=1.0). The curves
in each of the circles have the same value of C,: A, 1.0; B, 0.5; C, 0.1. The values of C{ are 0.15 (—), 0.3 (---),
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C,. C}is fixed. In the high-energy region the
initial phases are mainly determined by the way in
which the potential approaches zero in the vacuum,
whereas in the low-energy part they are dominated
by the depth of the potential well at the surface.
This can be understood by noting that the wave
functions for low energy levels will not extend
very far into the potential barrier at the surface.
When C, is varied one has to remember that the
-1/z decay is adjusted such as to have always the
same value at z,+C%/2, namely, —-C, (for any val-
ue of C,); thus the potential barriers differ little
at low energies in the region where the wave func-
tion is appreciably different from zero. At high
energies the potential increases very slowly and the
wave functions will extend far out into the vacuum
and the region over which C{ produces a change in
the potential will be relatively small, having a
small effect on the wave function.

In Fig. 8 the final phases at z, for region I have

been superimposed on the initial phases of Fig. 7.
The final phases are evaluated at z,=3C,. This is
sufficient since we know that in the band gap the
curves for the even and odd functions define the
region where the limiting curve for large n lies.
In the bands the phases become a set of regularly
spaced almost vertical lines for large n. C, equals
C! in all the cases shown. From Fig. 8 we can
read off the level structure for 27 different situa-
tions by combining the three values of C, with the
three values of C| and the three values of C,.

We first observe that no surface states originate
from the states at the bottom of the second band.
We can, however, extrapolate the results and
guess under what condition this would be possible.
Since the initial phases shift upwards with increas-
ing C, and C{, it may be possible, by widening and
deepening the potential well at the surface, to low-
er the levels in energy such that they fall outside
the band. An increase in C, will be most effective
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FIG. 8. Initial phases of Fig. 7 superimposed on the graph of the final phases of region I. Final phases for three dif-
ferent values of C, and # =1 are shown. They are the same as the values for C, in Fig. 7. The band edges are indicated
for each case as well as the limiting curves for large » in the band gap. From left to right the succession of bands and

gaps is band-gap-band-gap.
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since the levels are in the high-energy region.
The effect can further be enhanced by increasing
the amplitude of the bulk potential (C,) which wid-
ens the band gap and raises the bottom of the sec-
ond band.

No surface states at all occur when C,=Cj,
which means that the range of values for C, pro-
duces a perturbation which is not sufficiently
strong, but those selected include the range of
physically reasonable values for C,, namely,
small values for insulators and a maximum of 0.5
for metals. The conclusion would be that a perfect
crystal surface does not necessarily have surface
states. From the figure we further see that in this
case there is a level very close to the band top for
very small values of C,, which may move slightly
out into the gap for C, approaching zero. This is
then an abrupt step and in such a case the sinu-
soidal potential is also no longer very reasonable
and no significance should be given to this limit of
the model.

For the case of a narrow bulk band (C,=0.6) sur-
face states exist in the gap. They have been lifted
up in energy because the surface potential well is
less deep than the wells in the bulk. As the ampli-
tude of the potential variation in the bulk de-
creases, the bands become wider and the top of the
first band rises but the levels in the band gap rise
only very slowly and as the band becomes broader
it finally swallows the surface states. Something
similar happens when the surface well is deep
enough to bind a level at an energy lower than the
bottom of the lowest band. When the bulk potential
is modified in such a way as to raise the energy of
the bottom of the band, the surface states remain
essentially at the same energy as the band bottom
moves up and away. The levels can again be swal-
lowed if the bulk potential is changed so that the
band bottom moves down in energy. This general
behavior suggests that the energy of a surface
state is primarily determined by the potential well
at the surface (and of course the potential tail in
the vacuum), the complex band structure of the
bulk being of less importance. Roughly speaking
one might say that a surface state will exist when
the surface potential well binds an electron at an
energy which lies in a band gap for the bulk. Un-
fortunately it is not completely defined what ex-
actly the surface potential well is. It may be that
criteria can be found which allow the definition of
an equivalent suvface well, which could then be
studied separately from the bulk and which may
allow a first guess about the existence or non-
existence of surface states.

Finally we take a quick look at the effect of sur-
face relaxation. Very little is known about the
changes in the lattice spacing at a surface but

calculations®*° and experimental results®' indicate

that it may be of the order of 10% or less. I have
tested the effect of varying C} up to 20%. No new
features appeared and the results could be inter-
preted in the same way as for the cases above.
One case is, however, worth mentioning, namely,
when the bulk bands are narrow and the band gap
is wide, and further, the surface well is less deep
than the bulk wells. In this case a pair of surface
states appeared at the bottom of the band gap and
another pair appeared near the top of the gap. The
surface well was such as to bind two states in the
range of energy of the band gap. The origin of the
states can also be understood as the lower pair
being pushed up in energy because the surface
well was less deep than in the bulk. At the same
time, because of the increase in lattice spacing,
the levels decreased in energy, but not enough to
fall back into the band. The widening of the well
also pulled down two levels from the next higher
band into the gap. This illustrates that there may
be more than two states in the same band gap, but
it is certainly a more exceptional case.

Wave functions. In Fig. 9 the wave functions in
the lowest band and for the surface states are
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FIG. 9. Wave functions for a model crystal with nine
potential wells and with a perturbed surface well. Two
levels have been pushed out into the first gap producing
localized states. The parameters are C;=0.6, C| =0.15,
C,=C%, C;=1.0, and C,=0.5.
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shown for the case of C,=0.6 and C;=0.15. In this
case the surface states are nearly in the middle of
the first gap. The surface states, which are prac-
tically degenerate, are strongly localized at the
surface potential well. There is stilla non-negligi-
ble amplitude at the next two subsurface atoms.
More remarkable is the fact that the amplitudes of
the bulk states at the surface are strongly reduced.
If the levels are filled with two electrons each, the
result will be a crystal displaying a strong positive
surface charge. The situation will be similar for
the case when the surface cell distortion is such
as to produce a pair of levels below the first band.
Now the surface states will be occupied producing
a negative surface charge. The other cases dis-
cussed will be somewhere between these two limit-
ing situations. It may be worth pointing out that
these cases can be considered as one-dimensional
analogs to charge transfer due to adsorption.

VI. CONCLUSION

Our theoretical understanding of the electronic
structure of perfect crystalline solids is based
primarily on the solutions of the single-particle
time-independent Schriédinger equation with pe-
riodic boundary conditions. Application of these
boundary conditions implies, however, the ex-
clusion of all surface effects. The proper bound-
ary condition for a finite crystal is the square
integrability of the wave function over the whole
space for bound states and the finiteness of the
wave function for free states. These boundary
conditions account naturally for surface and finite-
size effects but they give rise to considerable
mathematical complications. In atomic calcula-
tions the separation of the Schrddinger equation is
of fundamental importance for the mathematical
treatment of the problem. The zero-order solu-
tions in the form of products of radial and angular
functions have been the very basis of the qualita-
tive understanding of the electronic structure of
atoms. In this paper a similar approach to the
study of finite-size and surface effects has been
explored. Under certain restrictive conditions the
Schrddinger equation for an infinite crystalline
slab can be separated into a one-dimensional
equation in the coordinate perpendicular to the
slab and a two-dimensional equation in the paral-

lel coordinates. For the equation in the parallel
coordinates translation symmetry produces a two-
dimensional band-structure problem. The one-
dimensional equation can be solved numerically

for quite general potentials by means of Weyl’s
theory, retaining the proper boundary conditions.
It is the solutions of this equation which introduce
the zero-order finite-size and surface effects. In
fact the study of the solutions of a model potential
for a finite one-dimensional crystal reveals many
features which have been observed in real systems
and predicted by more elaborate three-dimensional
calculations, such as the narrowing of the bands at
the surface and the rapid approach with increasing
size of the level structure to that of the band struc-
ture of the infinite crystal. The appearance of sur-
face states can be directly related to the distortion
of the potential in the outer cells. By such distor-
tion of the potential in the last cell, surface states
can be made to appear anywhere in the forbidden
gap, and more than a pair of levels may possibly
be found in a gap. Through changes in the outer-
most potential well, adsorption and the possibility
of charge transfer can be simulated. Besides the
use of the zero-order solutions for three-dimen-
sional perturbation calculations, the techniques
used in this study can also be used to study the
level structure in the presence of an electric field
for applications in field emission and also in met-
al-semiconductor contacts.

The most serious limitation of the calculations
in this paper is the lack of self-consistency of the
solutions and the neglect of electron-electron
interactions, but there seems to be no fundamental
obstacle for using this calculation as part of a
self-consistent scheme. Studies in this direction
and the effect of an electric field are under way.
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