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A mean-field—crystal-field theory is developed for random, multicomponent, anisotropic magnetic alloys. It is
specially applicable to rare-earth alloys. A discussion is given of multicritical points and phase transitions
between various states characterized by order parameters with different spatial directions or different ordering
wave vectors. Theoretical predictions based on known parameters for the phase diagrams and magnetic
moments for the binary rare-earth alloys of Tb, Dy, Ho, and Er, Tb-Tm, Nd-Pr, and pure double-hcp Nd
agree qualitatively with the experimental observations. Quantitative agreement can be obtained by increasing
the interaction between different alloy elements, in particular for alloys with very different axial anisotropy,
e.g., Tb-Tm. A model system consisting of a singlet-singlet and singlet-doublet alloy is discussed in detail. A
simple procedure to include fluctuation corrections in the mean-field results is also discussed.

I. INTRODUCTION

The physics of anisotropic mixtures have several
interesting aspects. Multicritical points (bi-, tri-,
tetracritical points, etc.) may be realized for sim-
ple model systems. We shall discuss these within
the context of mean-field theory. We show that
the free energy near a phase transition reduces to
the anisotropic Landau expansion, the critical be-
havior of which case has been discussed using
scaling arguments or renormalization-group tech-
niques by a number of workers (Fisher and Pfeuty*
and Bruce and Aharony?). The theory is a general-
ization of the mean-field theory for an antiferro-
magnet in a magnetic field by Thomas,® and also
of the theory by Wegner* for an antiferromagnetic
mixture.

Another aspect of anisotropic magnetic alloys
that is of interest is their significance for the
understanding of the rare-earth metals. A number
of experiments on rare-earth alloys have been
made giving phase diagrams and magnetization
curves, e.g., Er-Tb and Dy by Millhouse and
Koehler,> Nd-Pr and. Tm-Tb by Lebech ef al.,*
while a number of dilutions of rare-earth metals
with the nonmagnetic Y or Yb have been described
by Koehler.” To a large extent these data have not
been analyzed and fully utilized to extract informa-
tion about the crystal fields and exchange interac-
tions in these materials. One of the reasons for
initiating the mentioned experiments was to at-
tempt to determine whether the origin of the aniso-
tropy in the rare-earth metals was predominantly
of single- or two-ion origin. The present theory
may provide a basis for answering this question.
Nagamiya® developed a complete theory for the
pure heavy-rare-earth metals in which the crys-
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tal-field quenching of the magnetic moments to a
good approximation can be neglected. This is not
the case in general, and not in particular for the
light-rare-earth metals. However, by formulating
the theory in terms of susceptibilities the effect
of the crystal field is easily taken into complete
account.

The two-component theory is given in Sec. II,
and the general case is briefly discussed. In Sec.
IIT the case of competing order parameters is dis-
cussed, either with respect to moment directions
or ordering wave vectors, or both. The various
multicritical points are discussed in general
terms. Appendix B gives a detailed calculation of
the typical example of a singlet-singlet-singlet-
doublet alloy. A similar treatment of the singlet-
doublet system in an external magnetic field was
discussed in detail by Wang and Khajehpour.® In
Sec. IV the theory is applied to a number of rare-
earth alloys. Section V gives concluding remarks.
Appendix C presents a simple procedure to go be-
yond the mean-field approximation and include
fluctuation corrections in the single-ion free en-
ergy used in the theory.

II. MOLECULAR-FIELD THEORY FOR PHASE TRANSITIONS

Let us begin by considering the phase diagram
for magnetic phases of an alloy of two elements
with different susceptibilities; for example an al-
loy of ions of types 1 and 2. When the exchange
interaction between the ions is of long range, as
for the rare-earth metals, the fluctuation in local
concentration is unimportant. The virtual-crystal
approximation is then valid and the Hamiltonian
can be written
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where c, are the concentrations, Vin the crystal
fields, and §,,,(ij) the isotropic exchange interac-
tion between the angular momenta 3,“- and '5"“.. At
the same level of approximation we may treat (1)
by the molecular-field theory whereby (1) reduces
to a single-site Hamiltonian. For simplicity we
shall in detail first consider the case where (31)
and (32) are parallel in the ordered phase. The
general case considering ordering in arbitrary di-
rections for a multi component alloy with aniso-
tropic exchange interaction is treated subsequent-
ly; it is more complicated, but analogous. The
molecular fields are then

H =¢,8,,((J)+s)+c9,,((T)+5,)
()
H,=¢, 3, (T +5)+ ;8,00 +85)
where s, are variational parameters set equal to

zero in the final result; the Fourier-transformed
interaction constants and angular momenta are

‘gnm = Z z‘gmn(R)eia.;t ’
R

- - (3)
In= Z A
R

and é is the wave vector characterizing the order-
ing. We have then obtained two single-ion Hamil-
tonians

3, ==-HJ + Vcl, 3, = - H,J,+ ch. (4)
The total free energy is
F(s1y55) =, Fy(81,8,)+ ¢, Fy(s,, 8,) (5)

where the elemental free energies are determined
from

eFFnlsus)=Tr 8 p=1/p,T. (6)

The phase diagram and the magnetic moments as
a function of temperature can be obtained from the
free energy (5).

The transition temperature for a second-order
phase transition can, however, be obtained sim-
pler by the following observation. Near the order-
ing temperature the molecular fields are small,
and the magnetic moment induced at a site is pro-
portional to the molecular field, with the propor-

tionality constant being the paramagnetic suscepti-
bility (see Appendix A):

I =HX)=(I,c{I )+ 8,,6,4T:0)x3
(7
<J2> = Hzxg =(dy, 1)+ ‘92262<J2>)Xg .

Nontrivial solutions can only be found if the de-
terminant for the equation system is zero. This
gives the condition

(8,2)°cyc,= 1/(X1X2)
=(1/X(1)- 61311)(1/)(2—02322), (8)

where Y, is the enhanced susceptibility. The con-
dition for ordering of a pure system is, as is well
known, that the inverse enhanced susceptibility
goes to zero at the transition temperature. Equa-
tion (8) is clearly a generalization of this condition
to the alloy case, expressing that the product of
the inverse elemental susceptibilities must equal
the squared interaction between the systems. It
we express the concentrations in terms of c=¢,
and 1 - c=c,, then the condition for the ordering
temperature T, is an equation of second order in
c:

Ac*+Bc+C=0, 9)
with the coefficients

A= 11522 - (“912)2 ’
B=&11/X(2)_‘922/X(1"A, (10)
=- (I/Xg - 522)/x§’ .

B and C depend on T through the susceptibilities
XnlT).

By considering the free energies (5) we find the
ratio between the two elemental momenta in the
ordered phase near T :

Cl(J).)/Cz(Jz) = (X?/xg)cl‘glzxz . (11)

Both systems therefore “order” simultaneously,
although the induced moments may be significantly
different. In some cases it may be more illustra-
tive to say that one system orders spontaneously,
but polarizes the other by its molecular field.
Equation (11) is valid near the transition tempera-
ture T, when the molecular fields are small enough
to allow a linearization of the equations which de-
termine the moments. We notice the ratio be-
tween the moments using the simple equation (7)

is incorrect in the ordered phase, although T, is
correctly given. Away from T, when the molecular
fields become stronger a simple magnetic struc-
ture described by one 6 vector (3) is no longer
consistent with molecular-field theory. Then an
expansion of the type
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Jo=3a, 3 &Ry,
n R

is required in order to satisfy the nonlinear self-
consistency equation. The higher harmonics with
wave vectors né lead to a “squaring up” of the mo-
ment distribution” and give rise to extra satellite
peaks in a neutron diffraction pattern. The effect
was discussed in detail by Nagamiya,® who derived
the expression and temperature dependence for

a, for a simple model system. The theory for the
alloy can easily be generalized to take this effect
into account. However, if no higher-order satel-
lites are observed experimentally, the theory is
greatly simplified by ignoring a, for n#1. In the
numerical calculation this is assumed and the
phase boundaries are obtained by a self-consistent
calculation of the free-energy and the magnetiza-
tion components.

The concentration dependence of the paramag-
netic transition temperature 7 ,(c) is found from
(9) with the coefficients (10). This result is quite
general and holds when the ordered moments (31)
and (32) are parallel. Special cases have been de-
rived for the singlet-singlet model by Shiles
et al.,'® and we have used it for illustration pur-
poses for the (singlet doublet)-(Kramers doublet)
alloy of Pr-Nd (Lebech et al.®) (see Fig. 1). On
Fig. 2 is shown a comparison between the calcu-
lated (full line) and measured T (c) for Pr-Nd
using the complete level scheme. Possible T (c)
curves for alloys of two singlet ground-state ele-
ments are also shown (broken lines).

The generalization of Eq. (7) to a multicomponent
alloy with anisotropic exchange interaction 472
and the ordered moments in arbitrary directions
is simply the equation system

(Tay= D Hax®e =3 (e, I7xse (12)
8 B,IY
where x%%¢ is the paramagnetic susceptibility ten-
sor, with the components indicated by greek in-

—_ oL =3
J, I dy I,

i I X

(a) (b) (c)

FIG. 1. Level schemes and transition probabilities
for the model systems considered in Sec. III. (a) Singlet
singlet; (b) singlet doublet; and (c) singlet triplet.
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FIG. 2. Transition temperatures vs concentration for
alloys of crystal-field-split systems. The full curve
shows a (singlet doublet)—(Kramers doublet) system,
for instance P=Pr and N=Nd. The critical ratio for
Pr was found (Ref. 6) to be 0.95<1. The dot-dashed
curve shows the typical behavior of an alloy of two
(singlet doublet) systems, as for instance P =Pr and
N =Tb, for which P is undercritical and N is over-
critical. The dashed curve is typical of a mixture of
two strongly interacting, undercritical systems. The
points show the Néel temperatures for Pr-Nd alloys ob-
tained by neutron diffraction (Ref. 6).

dices and the alloy elements by italic indices; the

concentrations are of course subject to the con-

straint E, ¢,=1. Moredetailsare givenelsewhere.!

1II. PHASE TRANSITIONS BETWEEN ORDERED PHASES
AND MULTICRITICAL POINTS

So far we have considered the stability limits be-
tween an ordered and a disordered phase. Phase
transition between phases with different order pa-
rameters is also possible,

A point in a phase diagram at which several
phases consist we shall here denote a multicritical
point (MCP). The investigation of critical phe-
nomena is of particular interest near a MCP
since it may provide a sensitive test of theories
of critical phenomena.”? Using the molecular-
field theory we shall show that the anisotropic
magnetic alloys exhibits a variety of MCP.

A. Uniaxial antiferromagnet in a magnetic field

A well known example of a bicvitical point® is
the spin-flop transition in a uniaxial antiferromag-
net in a magnetic field along this axis. The bi-
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critical point at which the paramagnetic and the
two antiferromagnetic phases coexist, with the
antiferromagnetic moment parallel and perpendi-
cular to the field direction, is determined by

l/Xn(HyT):l/Xl(H;T):O, (13)

where x,(H, T) is the enhanced paramagnetic stag-
gered susceptibility in the presence of the field.
The phase separation line between the ordered
phases is of first order in the ordered phase. If
the axial anisotropy is strong, and therefore x, is
small, it may not be possible to fulfill (13) until
at a critical field H, and temperature T, at which
the transition to the paramagnetic phase becomes
of first order at higher fields. This point (H,, T,)
is a so-called tricritical point (Griffiths!?), This
has been observed in FeCl, by Birgeneau ef al.'®
The two situations are illustrated schematically in
Fig. 3.

B. Multicritical points in anisotropic magnetic alloys

An analogous situation arises in anisotropic
alloys where the enhanced susceptibility varies
with the concentration. The competing order pa-
rameters are the different spatial components of
the angular momenta or corresponding mean
fields. In a coordinate system, where the en-
hanced susceptibilities are diagonal, the condition
for having a multicritical (bi- or tetra-) point is
simply that (8) is fulfilled for two components «
and B8. That is when

X2%(c, TIXE%(c, T) = x8(c, T)x(c, T) . (14)

In the mean-field approximation the nature of the
transition between the ordered phases is most
conveniently discussed using the Landau expansion
of the free energy near the multicritical point.

The most general expansion in the order parame-
ter components m, is

ANTI FERRO MAG. ANTI FERRO MAG. MAG.ALLOY
S~
(=) 3 -
o o . ;:i TETRA
T re . =
) 4]
2 < o3 0
s s D\ 2 )
(&)
TEMP. TEMP.

FIG. 3. Schematic phase diagrams showing multi-
critical points. An antiferromagnet in a uniform mag-
netic field shows a bi- and a tricritical point. The
solid lines represent the locus of xj !(#) and x; !(H)
equal to zero. A tetracritical point is exemplified by
an anisotropic magnetic alloy.

5F(c,T)= Z A, (e, TImE + E Bg(c, TYmZm}
[ 7]

+ Z Cuplc, TYMEmim2++++.  (15)

aBy

The second-order phase boundaries between the
ordered and disordered phase is given by A,(c, T)
=0. The multicritical point occurs when A,(c, T)
=A4(c, T)=0. If the coefficient matrix B, to the
fourth-order term is indefinite (i.e., not all eigen-
values are positive), the transition between the
ordered phases is of first order and the transition
point is called bicvitical. If B, is positively defi-
nite (i.e., all eigenvalues are positive), there
exists an intermediate mixed phase and all four
phase boundaries are of second order—the transi-
tion point is then called a tetracritical point. If
one or more of the eigenvalues of B,z are zero,
the minimum condition for 5°F, for finite m,, is
determined by C,,,, the coefficient to the sixth-
order term. We shall denote such a point a {7i-
critical point. This is a slight generalization of
the conventional tricritical point which is the
point along A,(c, T)=0 at which B,,(c, T) goes to
zero and the second-order phase line becomes of
first order. It is not possible to have a bicritical
point with second-order transitions between the
ordered phases and a first-order transition from
the disordered to the mixed phase—although some
of the matrix elements of B, are negative. The
various cases are shown schematically in Fig. 3.

Let us illustrate the general discussion by a
simple example that approximately describes many
systems in practice. The details are given in Ap-
pendix B. A simple model system which shows
two kinds of multicritical pointsisanalloyof (i) a
singlet-singlet ion (Se”=%) and (ii) a singlet-doub-
let ion (S, =1), with the crystal-field splitting
2D’ and 2D, respectively. We assume that the
singlet-singlet spontaneously order in the z direc-
tion and therefore has the susceptibility compo-
nents x97=x9=0 and x9*:=(1/D')(1 - n')/(1+n"),
where n’ =22’ /*T, The singlet-doublet is as-
sumed also to order in the z direction at high
temperature, but with the x-y plane being favor-
able at low temperatures. The susceptibility com-
ponents are then x9**=x9»=(1/D)(1 - n)/(1+2n) and
X = (r/kT)n/(1+2n), where n=e2?/*T and r is a
matrix element, the other matrix elements are
put equal to 1 for simplicity.

The result is shown in Fig. 4. The second-order
phase lines are obtained from Egs. (8)-(10) and
are shown as bold, full lines. The thin full lines
in the ordered phase (the dilution lines) are the
second-order lines as they would appear if the
competing order did not give rise to any perturba-
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FIG. 4. Phase diagram for a singlet-singlet (left-hand
side), singlet-doublet (right-hand side) alloy with the
same crystal-field splitting D, and the exchange inter-
actions 98/D=% s 9‘02/D=% ,9%/D= -1371, and %= 4. The
full lines are the second-order phase separation lines,
the broken curve the first-order lines. The two ordered
phases are indicated by the arrow. Two types of bi-
critical points A and B are shown. The inserts show the
MCP in 10X10 times magnification. The dotted lines
show the calculated second-order phase lines with 95/D
=2. No MCP exist in this case. The details of the calcu-

lation are given in Appendix C.

tion. We distinguish two types of MCP. Point B
is genuinely due to the effect that the alloy ele-
ments have different order parameters, symbol-
ized by the vertical and horizontal arrows. Point
A is simply due to a change of the relative magni-
tude of the enhanced susceptibility components

for element 2—an effect which could also be ob-
tained with a nonmagnetic dilution. This case is
closely analogous to the antiferromagnet in a mag-
netic field. The first-order phase lines are de-
noted by a bold, broken curve. In general, both
types of MCP will not occur simultaneously, but
they may in principle also coincide and give rise
to a special MCP. For a different choice of the
interaction J,,, shown as the dotted phase line, no
MCP exists although system 2 may undergo a first
order transition at low temperatures. The first-
order lines were determined by an iterative nu-
merical calculation of the locus of equal mean-
field free energies in the ordered phase., At A we
notice that it breaks away from the second-order
line with a kink and joins it again with a sharp
bend.

This completes the example. The simplified
level schemes suffices for determining the para-
magnetic phase boundaries when the higher levels
are at so high energies that the population there

off is small at the transition temperature. The
simplified level scheme is on the other hand not
satisfactory to describe the ordered state since
the developed molecular field may significantly
mix all the states.

It is possible to physically predict whether one
can expect to find a tetracritical or a bicritical
point. The presence of order gives rise to a mean
field E, which we may in fact consider to be the
order parameter. If (a) this perturbs the low-lying
energy levels only very weakly, the alloy elements
will order (second-order transition) close to the
dilution lines and give rise to a net mean field h
that is a mixture of the two competing fields. That
is we have a tetracritical point. In the mean-field
alloy theory we assume this field to act equally on
any site in the crystal. However, different alloy
atoms, of types » and »:, in the crystal will re-
spond differently and produce the following local
moment:

ﬁn=&"(c, T)-H. (16)

Since the elemental susceptibility is anisotropic
the alloy moment, of type »n, will attempt to order
in the preferred direction for the pure element and
not follow the direction of the mean field. If (b)
the mean field h does perturb the low-lying energy
levels strongly, the mixed phase region shrinks
and results in a first-order transition between the
pure phases. That is, we have a bi-critical point.

The multicritical points are interesting from a
phase transition point of view for several reasons:

(i) A change in critical behavior (in the example,
from a one- to two-component order parameter
system or an Ising to an X-Y-model system) in
general from a p- to g-component order parameter
system. The critical behavior studied by the ¢-ex-
pansion technique is complicated by the presence
of several fixed points and even lines of fixed
points. In the latter case scaling does not hold.
A careful investigation of MCP may therefore pro-
vide a test ground for the limitations of scaling
ideas and the renormalization group technique. A
recent theoretical investigation of the behavior of
the bi- and tetracritical phase lines was done by
Fisher and Nelson'® using scaling arguments, and
by Bruce and Aharony® using €-expansion tech-
nique—both yielded the result that the phase lines
had a common tangent at the MCP. This is con-
trary to the simple mean-field prediction, which
in fact seems to be in accordance with existing ex-
periments. Aharony and Fishman'® have recently
argued that this is in fact the behavior to be ex-
pected for quenched random alloys with competing
anisotropies. However, further experimental study
of this is of importance.

(ii) Near a bicritical point it is possible to study
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first-order phase transitions that are very close
to being second-order transitions.

(iii) Study of these phenomena in anisotropic
magnetic alloys has the advantage of giving infor-
mation about simple and nontrivial model systems
which can be directly realized.

The rare-earth alloys (and also, for example,
mixed rare-earth pnictides, chalcogenides or Al,
compounds) are particularly favorable systems to
study experimentally. They are highly anisotropic
and the relative influence of the crystal field is
well described by the Stevens'” factors. The rela-
tive exchange interactions scale well with the de
Gennes factor.!® This considerably limits the num-
ber of parameters. The long-range nature of the
exchange interaction makes the simple molecular-
field theory valid for a large concentration range.
Thus the phase separation line for the Pr-Nd alloy
(Lebech et al.®) is perfectly described by the
above model for all measured concentrations,
3-100 at. % (Fig. 2). Finally the rare-earth ele-
ments form ideal mixtures at all concentrations
with no drastic changes in the lattice parameters.
The order parameter may be studied by neutron
scattering. The Tm-Tb alloy'® is an example of
the kind shown in Fig. 4, for which the two pure
elements spontaneously order in perpendicular
directions.

An investigation of the phase diagrams of the
Er-based binary rare-earth alloys has been
made by Millhouse and Koehler.® In this case the
magnetic order parameter not only changes direc-
tion, but also character—i.e., it goes from ferro-
magnetic to spiral or cone structure. We shall
treat this problem in Sec. IIIC.

C. Transitions between different types of magnetic order

In mixed magnetic insulators transitions are
often found between different types of magnetic
order (antiferromagnetic). Wegner* discussed the
case of a binar mixture of isotropic antiferromag-
nets such as (Mn,_ Fe )WO,. The Landau expan-
sion of the free energy reduces to that discussed
in Sec. III B and Appendix B. The multicritical-
point behavior is therefore identical.

A slightly more complicated situation arises in
rare-earth elements or mixtures with different
incommensurate magnetic structures. Here we
can distinguish two cases for a single element.

(i) The incommensurate structure imposed by the
exchange interaction is compatible with the crys-
tal symmetry—e.g., a spiral structure in an axial
crystal field, with the spiral vector 6— and we
may treat the case as discussed previously. (ii)
The most complicated case is when the exchange

structure is incompatible with the crystal field.
This situation arises if we add a hexagonal crys-
tal field to the previous example. For a general
magnitude of @ no sites will be equivalent. The
result is that a bunching of the moments along the
easy directions occurs together with a variation
in the magnitude. If the exchange interaction is
much stronger than the crystal field, the bunching
effect dominates and we may neglect the variation
in the magnitude. This case was considered by
Nagamiya,® using a number of simplifying assump-
tions. When the crystal field is strong it may be
reasonable to assume a commensurate structure
and treat the finite number of inequivalent sites,
which then occur, as different alloy elements and
calculate the structure and magnitude of the mo-
ments as indicated in Sec. II.

In order to elucidate the principle for an alloy
we shall restrict a detailed discussion to the sim-
ple case of an alloy of two elements with different
incommensurate exchange structures, described
by @, #@,, which are compatible with the crystal
field. The ordering and transition temperature
for the pure elements are determined by the ele-
mental enhanced susceptibilities 1/x,=1/x3— ¥y
=0, from which it is clear that @, is that wave
vector ¢, for which §7" is maximum. The ordering
temperature of the alloy is from (8) determined by
the vector which at the highest temperature gives
(1/x = cIQN1/X3 - (1= )5 =c(1 - e)IE). Qlc)
is in general different from @, and @, since it de-
pends on the wave-vector dependence of the prod-
uct of the enhanced inverse susceptibilities and
the wave-vector dependence of the interaction J3?,
see Fig. 5. However, at the transition from the
paramagnetic to the ordered phase Q(c) is most
likely to be close to the @,, @, say, forthe diluted
element with the highest transition temperature or
the largest J,. As the temperature is further
lowered the condition for a second-order transi-
tion (1/x,)/x, = (1 - ¢)(J¥)? may again be met at a
wave vector @ close to @, corresponding to the
other element. In this case elemental susceptibili-
ties are to be calculated in the presence of the
order characterized by @,. At lower temperatures
the structure is therefore in this case character-
ized by the two ordering wave vectors ~@, and
~@,. At a given concentration we may then have
a tetracritical point at which the paramagnetic
and three ordered phases exist with the wave
vectors ~@,, ~@, and a mixed phase with both wave
vectors. The situation is clearly analogous to the
case discussed in Sec. III B, where the competing
order parameters were different components of
the momentum vector. A bicritical point arises
under the analogous conditions. The combined
case is therefore a superposition of the possible
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FIG. 5. Schematic presentation of the condition
@/x1)/xp=c (- (:)(9102)2 for a second-order phase transi-
tion in an alloy with different elemental ordering wave
vectors @ and @, and with a wave-vector-dependent in-
teraction 9.

transitions involving both changes in directions
and wave vectors.

IV. APPLICATIONS

The theory will be applied to the following alloys
of the rare-earth metals for which experimental
data are available. The Tb-Er, Dy-Er, Tb-Ho,
and Dy-Ho alloys were measured by Millhouse
and Koehler® and the Tb-Tm alloys have recently
been investigated by Hansen and Lebech.'® Tb,
Dy, and Ho order with spiral ordering with the
moments in the basal hexagonal plane and Er and
Tm order with a c-axis modulated (CAM) structure
with the moments along the hexagonal ¢ axis. No
detailed analysis has yet been made of these data,

we shall therefore as a first calculation only in-
clude the dominant physical features in the basic
model. Let us describe the determination of the
parameters for the Tb based alloys—the procedure
is analogous for the other alloys. The Hamiltonian
is a Heisenberg exchange interaction plus a crys-
tal field, which is assumed for simplicity to con-
tain only the axial B,0J term and the hexagonal
By(03+ ZL0%). One exchange constant is obtained
from the experimental T; this is the interaction
between Tbh-Tb. The remaining exchange interac-
tions are obtained using the scaling by the

de Gennes factors? which relates J, :J,,:J,, as
1:[(g, - 1)/(g,-1)]:[(g, - 1)/(g - )], where g;
are the Landé faciors. B, is obtained from the
measured difference between the paramagnetic
Curie temperatures’ 6, — 6,. B; is for Tb obtained
from the spin-wave energy gap and B,(Tb). For
Er and Tm it is obtained by scaling the B,(Tb) by
the appropriate Steven’s factors.!” The parame-
ters are summarized in Table I. The calculation
is done self-consistently in the magnetization com-
ponents and using the complete level schemes,
The resulting, calculated phase diagrams are
shown in Figs. 6 and 7. A comparison between
Fig. 6 and the experimental results in Fig. 8 for
Tb-Er shows that the above simplified model de-
scribes the experiments quite well. A large region
of helical ordering is found and a small pocket
near the Er or Tm end with CAM structure, sep-
arated from the helical ordering by a mixed phase.
The critical point is in agreement with experiment
found to be a tetracritical point. The calculation
does not consider the other observed structure
changes such as for example to the ferromagnetic
order. In a more detailed analysis of the phase
diagrams it is clear that one has to include other
crystal-field terms as well as magnetostriction,
which is known’ to play an important role at the
ferromagnetic transition, The phase diagrams
therefore contain valuable additional information
about the interactions in the rare earth which has
not previously been fully utilized. In addition they
show examples of multicritical points. On the

TABLE I. Parameters, in units of K, used in the calculation of the phase diagrams for the
alloys. The exchange interaction between the different elements is according to the de Gennes
scaling Jy, = (J11902)1’2. The Nd(hex)-Nd(cub) interaction is chosen to be 0.05 K. For dhcp Nd
we do not make a distinction between the ordering wave vectors @, and ﬁc for the hexagonal

and cubic sites.

Tb Dy Er Tm Ho Nd(hex) Nd(cub)
B, 0.89 0.63 —0.39 -1.37 0.18 0.602 0.602
By*10° 0 0 0 0 0 0.364 0.364
Bgx10* 0.2 -0.2 -0.4 1.0 0.2 -2.4 -2.4
2J™ 15.4 7.7 3.0 2.0 5.3 4.32 2.50
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Tb CONCENTRATION Er
FIG. 6. Calculated phase diagram for the Tb-Er alloys
using the parameters in Table I. The heavy full lines
show the second-order phase transition lines. The thin
full lines show where the ordering would occur if the
system was not perturbed by the different order, al-
ready present.

Tb-Tm phase diagram we have indicated that a
tricritical point is possible in the ordered phase
in analogy with the antiferromagnetic in an exter-
nal magnetic field (Fig. 3).

T T T T T T T T T

TERBIUM-THULIUM ALLOYS

TEMPERATURE (K)

0 " I ! 1

0 05 1
CONCENTRATION
FIG. 7. Same as for Fig. 6. A possible tricritical
point is indicated in the ordered phase at which the

transition between the helical and mixed phase may be-
come of first order.

T I T T T I T I I

TERBIUM-ERBIUM ALLOYS
EXPERIMENTAL

200

100

TEMPERATURE (K)

0]
0.0 0.5 1.0

To CONCENTRATION Er

FIG. 8. Experimental data for the Tb-Er alloys from
Ref. 7.

After having obtained a good qualitative agree-
ment between the experiments and the simplified
rare-earth model it is of course tempting to im-
prove the fit by refining the model. Let us first
consider the crystal-field effects. For all the ex-
perimentally investigated materials the paramag-
netic transition takes place above 60 K. In the
present theory all temperature effects enter via
the elemental (noninteracting) susceptibilities
X3(T). By comparing with the experimentally mea-
sured (noninteracting) susceptibilities for the di-
luted rare-earth-Y alloys,*® shown on Fig. 9, it

8 — X3

7 ——e= X1
=6 —— Xiw
=
< St
<
©o 4Lt P
o ="
< 3 1
o Dy P et

2 - IT/—/ g 4

1 /’” /<,— == Er

’r -
10 20 30 40 50 60 70 80 90 100

Temperature (K)

FIG. 9. Typical inverse noninteracting susceptibilities
measured in diluted systems (Ref. 20).
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is evident that above 60 K, x(7) and x)(T) to a
good approximation approach straight lines with
the constant difference x(7) - x2(7) =& which is
proportional to B, only. We have chosen not to use
the susceptibilities, or crystal-field parameters,
determined for the dilute alloys® because (per-
haps due to difficulties with scaling) they do not
give the same B, as measured for the pure ele-
ments. The paramagnetic phase separation lines
are clearly not very sensitive to the higher-order
terms in the crystal field which gives rise to the
more dramatic Van Vleck deviations from the
Curie-Weiss susceptibility at low temperatures.
By diluting additionally with, for example, Y tran-
sitions in a lower temperature range could be
studied.

Next we consider the exchange interaction. It is
well known that the de Gennes scaling'® underesti-
mate the exchange interaction (or paramagnetic
transition temperature) in the weakly coupled sys-
tems®! (e.g., Er) or dilute alloys (e.g., Th-Y). We
find that perfect agreement with the phase separa-
tion lines can be obtained, shown on Fig. 10, by
increasing the interaction between different alloy
elements significantly: J,;=a(J,,Jz5)"/? with
a=1to 2; a should be equal to one for pure de
Gennes scaling. However, the predicted tetracrit-
ical point falls at too high concentration. Another
(or additional) possible effect is an anisotropic ex-
change interaction such that J*>J", i.e., a strong-
er interaction between the spin components in the
basal plane than between the components along the
axial direction. This could certainly shift the
tetracritical to lower concentrations. Against this
possibility speaks the fact that the Th-Tm?!° ob-
served elemental moments tend to behave as in the
pure elements in accordance with the isotropic
model and single-ion anisotropy, Eq. (6). Finally
the mean-field model may not be more reliable
than to predict the general qualitative behavior.
The best fit to the paramagnetic phase separation
lines using J,, as a fitting parameter is shown on
Fig. 10 for the available alloys. The ratio a is
given on the figures.

The pure double hep (dhep) Nd crystal may be
considered as a (50-50)% alloy of cubic- and hexag-
onal-site Nd. Information about the hexagonal
site Nd was obtained by considering the Nd-Pr
alloys.® We assume the crystal-field parameters
to be the same for the cubic and hexagonal sites,
which they would be in a point-charge model. The
observed magnetic structure on the hexagonal
sites is sinusoidally modulated with the moments in

basal-plane [1010] direction. In the dhcp structure
this ordering gives rise to a very small molecular
field on the cubic sites. The interaction between
the hexagonal and cubic sites is therefore expected

Tb-Er alloys Dy—vEr' crlloys

200 200t
N4 <

@ ~ b
s T g

=} /A 5 r
= [ 8 F
3 100 § 100
£ A e |
[ @t

a=1.47 | =146
T 05 Er Dy 05 Er

Concentration Concentration

" TbTm OliO);S 1 Ho-Er olloysv |

200

S

£
=
Temperature (K
3
H C'i/

Temperature (K)
=}
<3

| «=189 | a=1.25
T 05 “Tm -
Concentration H Concena'ahon Er
" Tb-Ho alloys Dy'-b-!'o'ol'lo'ys e
200 _200¢ 1
z [ £ |
@ L 2
3 2 b ¥
© <4
% 100, 2100
g €
] @
2
| a=100 j o=100
b 05 Ho Dy 05 . Ho

Concentration Concentration

FIG. 10. Calculated paramagnetic phase separation
lines compared with experiments. One fitting param-
eter o is used varying the strength of the inter-alloy
element exchange interaction gyy=a (g 999!/ % The
value of « is given on the figure.

to be small due to cancellation effects. However,
the interaction between the cubic sites is expected
to be of similar magnitude as that between the hex-
agonal sites. Table I shows the parameters used
in the calculation of the temperature dependence
of the magnetic moments on the hexagonal and
cubic sites shown in Fig. 11. The calculation
shows that the hexagonal sites induce a weak mag-
netic order on the cubic sites in the same [1010]
direction and with the same ordering vector @,. At
~8 K a second-order phase transition makes the cu-
bic sites order with the moments in essentially the
same direction. At lower temperatures a perpen-
dicular component develops, which turns the mo-
ments on the cubic sites to an angle of approxi-
mately 30° from the hexagonal sites (with an or-
dering vector @,, which may be different from @,).
This is in agreement with a preliminary analysis
of neutron scattering measurements on pure Nd
single crystals.?®
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Nd HEX and CUB
3k HEX [1070] X T

MOMENT (Hg/ION)

20

TEMPERATURE (K)

FIG. 11. Calculated temperature dependence of the
magnetization for dhcp Nd, using the parameters in
Table I. At 19.5 K the hexagonal sites order with the
moment in the [1010] ¥ direction. This causes a weak
polarization of the cubic sites along the same direction.
Owing to the interaction between the cubic sites a
second-order phase transition occurs at 9 K and at
lower temperatures a component along the [1210] y
direction develops, which causes the cubic moments to
turn to about 30° away from the hexagonal moment di-
rection. This is in accordance with a preliminary
analysis of Nd (Ref. 19).

V. CONCLUSION

A mean-field theory for random anisotropic mag-
netic multicomponent alloys is presented and it is
shown that several regions of magnetic order are
possible as a function of concentration and temper-

ature. The phase transition between these regions
J

gives rise to multicritical points (bi-, tri-, or
tetracritical points). These may be of interest to
explore with great accuracy from the point of view
of critical phenomena since the magnetic systems
are simple and direct model systems. It was
shown that the mean-field random alloy theory
taking into account isotropic exchange interaction
and a single-ion crystal field agrees qualitatively
with observations for the rare-earth alloys for all
measured concentrations. The reason for the
success of the simple theory is presumably (i) that
the two-ion interaction in the rare-earth metals

is of long range, and (ii) that the real order pa-
rameters in the theory are the mean fields which
to a much greater degree of accuracy are site in-
dependent than the individual moments. A quanti-
tative fit can be obtained by increasing the inter-
action between different alloy elements. Finally
the theory may also be applied to other anisotropic
mixtures, the statistics of which can be simulated
by a spin system. Using the expansion of the free
energy in terms of the two-ion interaction dis-
cussed in Appendix C, it is simple to include the
effects of fluctuations on the mean-field results.
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APPENDIX A: MAGNETIC SUSCEPTIBILITY

The magnetic susceptibility for noninteracting
ions with Stark split energy levels of energy E,
was first considered by Van Vleck® and later by
Wang and Cooper.?® Second-order perturbation
theory gives

(gh5)X|as= Sé%.;.?f( > (n|J, |m)m |JB|n)% e Bn/ kT _ 2 (n|J, [n)% e En/ kT E(m lJelm)%e'Em/kT)

n,m
Ep=E,,
(n|dy |m)m |y n)1
+2(gup)? o 8 Z g"E,/rT (A1)
B n,Zm E -E, VA ’
E #E,,

where the partition function is Z=2J, e"Ea/*T, The
first two terms are called the Curie-Weiss sus-
ceptibility and the last, off-diagonal term is called
the Van Vleck term.

APPENDIX B: SINGLET-SINGLET-SINGLET-DOUBLET
ALLOY SYSTEMS

We shall here give the details of the theory for
the simple model system discussed in Sec. III B.
The energy levels and matrix elements are given
in Figs. 1(a) and 1(b). The. Hamiltonian describing

r
this system is

=~ E 0,0y I (R1)C0C iS5
i
- Z ¥°852(Ry;)€5(S3,S5+ 53:535)
ij (Bl)
- Eg"cnuB'ﬁ,.-§i+ Vs
i,n

V== 3 ¢2D'S;; = 3 ¢;2D(S,)?,
i i
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where » and p denote the type of atom, 1 or 2, «,
and c,, denote the respective matrix elements and
concentrations (occupation probabilities), and g,
are the corresponding g factors. In the mean-
field-random-alloy approximation this Hamiltonian
is replaced by (since x and y are equivalent we
consider only the x, z plane)

=H,S{o+H,S5q+H S5+ V,, (B2)

where the mean fields H, acting on the Fourier
components of the effective spins are, denoting
c,=cand ¢,=(1-¢),

H,=2z"=- [311c(SfQ)+ 9,,(1 - C)<S§Q>]
+[gic+go(1=c)]ugh, ,

H,=2=[8,,c(57g)+ 81 - )(S20)] 9

+[gic+g5(1 - 0)uph,,
H =x=-3%(1 - c)(S5o)+8&x(1 - ) uph,,

in terms of the Fourier-transformed reduced ex-
change functions

9,,=aa 24, (R)eiQ-R ,
b p; p (B4)

9= 3 295(R)e T,
R

In order to simplify the notation we denote H,
by a. Equations (B2) and (B3) hold, in zero field
E, for any magnetic structure described by the
wave vector (5 (ferromagnetic, spiral, or cone-
structure, etc.), which is consistent with the axial
symmetry of the crystal field V.. For a finite
field hi and a nonferromagnetic structure, or for
complicated magnetic structures, a number of
unequivalent sites will exist. They may be re-
garded as different alloy elements. Here we re-
strict ourselves to equivalent sites and h=0. The
singlet-doublet model in a magnetic field has been
extensively discussed by Wang and Khajehpour.®
Let us regard the mean fields as the order pa-
rameters of the problem. The advantage of this
choice, rather than choosing the elemental mo-
ments, is that the mean fields are to a good ap-
proximation equal for all sites. As discussed in
Sec. III B this does not require the elemental mo-
ments to be equal in magnitude or in direction. On
the other hand, the fields vanish when the ordered
moments vanish at the ordering temperature. The
energy levels of the two systems for the Hamilto-
nian (B2) can be found analytically. Near the order-
ing temperature we may expand in the mean fields,
and obtain for the singlet-singlet system the ener-
gies including terms of forth order:

E, =-D'[1+3(z'/D")? - %(Z'/D’)ﬂ ,
E,=D'[1+3(z'/D'} - 5(2'/D')*], (B5)
and for the singlet-doublet system the energies
E,,=-D(1+R),
E, =D(1+3R-P), (B6)
E,,=D(1+3R+P),
where
R=%(x/D) - §(x/D)*+ 5(x/D)(2/D)?,
P*=(2/D)+ & (x/D)* - §(x/DY(2/DY’ .

The free energy is then obtained in terms of the
elemental internal energies and entropies as fol-
lows:

F=c(89— kTS, + (1= )8 - kTS,), (B8)

(BT

where the total internal energy is
8,=c8%+(1-c)&9
=3(9,,2"2 = 28,22 + 9,,28)/A+3x2/9%,, (B9)
A=9,9,,-9,,

and the entropies are obtained from
8,=InZ,=In Y e Fnp/*T, (B10)
»

Using (B5) and (B6) we find the free energy near
the transition point to be

F=a,2"+b,2°+ c,x°+ 2d,2"'2 + a2"*

+b,2%+ cxt+ 2d 6722 . (B11)

The coefficients depend on the temperature and
linearly on the concentration; they are given in
Table II. From the minimum condition 8F /ax
=3%/82z=9%/3z'=0 we can eliminate z by

z=-2"(a,+2a,2"%)/d,, (B12)
and two coupled equations result
z'(a+ bz +b'x%)=0,
(B13)

x(a’+b'z2"%+b"x%) =0,
where the coefficients are given in Table II. The
equation system (B13) is identical to the one dis-
cussed by Wegner* for the problem of an alloy of
two different antiferromagnetic substances. We
have therefore used the same notation. By the
Landau expansion we find the second-order phase
lines to be given by

a~(1/x%)/x% - 9%,c(1 - c)=0
and

a' ~[1/85 - x35(1- 0)]=0,
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TABLE II. Coefficients for the Landau expansion for a singlet-singlet (with concentration ¢)
and a singlet-doublet alloy. A=d;8,,~d%,, =1/kT,d’=pD’, and d=pD. X5%* and Z; are the

elemental susceptibilities and partition functions and z=e™.

4, The right-hand column gives the

coefficients expanded for small crystal-field splittings d’ and d. The last five terms are the

coefficient in the reduced Landau expansion (B13).

The information in the table can also be

used to discuss alloys of two singlet singlets or two singlet doublets.

Exact expressions

For small crystal fields

@y 'ngzz/A‘ Xite

by $3u/A-X5i(1-c)

cy 1/~ Xxp(l—c)

dy —1d,/A

ay (/a4 - B/ZY)

by (1-c)hpdan—1)/Z}

c,  (L—c)pr/ad[2xs—p(5+n)/Z})

dy  (1—c)(B2/dD)(xE— X5+ 3Bd/Z})

a (ay/d) X5E X511/ X5AXE - Jhe(1-0)1/A

a 6‘2
b 2(ay/dy) [b y(ay/dy) % +ay(by/d,))
b 2¢y

b' dyla,/d,)?

'leggz/A_ '}'[’(l - -Zld'z)c
19y/A-1p1-4d)1-c)
1/ @85,) - 41 +1a)1-c)
-19,,/A
HB1-4dYc

3
ip¥1-2d)(1-¢)
61 +d)(1-c)
£p(1-d)1-c)

in accordance with (8). In agreement with Wegner
we find that a mixed phase exists for b5”>b’2. The
phase separation lines and the order parameters
are given in Table III. Typical phase diagrams
are shown in Figs. 3 and 4. It is clear from (B3)
and (B11) that the effect of an external magnetic
field, which leaves the sites equivalent, is simple
to include since none of the coefficients in Table

II are altered. We also remark that Tables II and
III can be used to discuss a binary alloy of singlet
singlet or one of the singlet doublets. Sufficient
information is therefore available for additionally
discussing an anisotropic antiferromagnet in a
magnetic field which gives rise to two unequivalent
sites.

APPENDIX C: FLUCTUATION CORRECTION TO
THE SINGLE-ION FREE ENERGY

We wish to derive a simple procedure to include
the fluctuations in a system that is dominated by
single-ion interactions. The corrections to the
mean-field-crystal-field result are obtained by
expanding the free energy regarding the two-ion
interaction as a perturbation. Let the Hamilto-
nian be

H(\)=A+ 2B, (Cc1)

where the single-ion Hamiltonian is

A= Z v+ HYF. S,

TABLE III. Regions of stability for the ordered phase for an anisotropic magnetic alloy

on the basis of the Landau expansion (B13).

The result is identical to that found by Wegner

(1974) for antiferromagnetic mixtures. Regions with no, pure, and mixed order are possi-
ble in the ¢, T plane, depending on the coefficients given in Table II.

Magnetic order

Type 22 %2 Region

No 0 0 a>0 a >0
Pure —-a/b 0 a<g a’ >(b'/b)a
Pure 0 —-a’ /b” a>@®'/b"a’ a’ <0
Mixed (a’b'—ab”)/(bb"-—b’z) (ab'—a’b)/(bb"-—b’z) a<(b'/b”)(l/ a’<(b’/b)a

for bb” >b'?
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and the two-ion perturbation is

- E gaa(sa _ (S”‘))(Sa _ (Soe)) 3 < ° .>

i,

denotes the unperturbed average. We notice that
(B)=0. According to Tyablikov,? the standard
expansion of the free energy then gives the follow-
ing exact correction to second order:

F,=F,- p\* f fo (B(x)B(x'))dx dx’ , (C2)

which shows that F, is a better approximation to
the true free energy than the mean-field free en-
ergy since F, =<F,=<F,. Equation (C2) is an
exact expression that may be evaluated using the
definition for B. We can, however, express (C2)
approximately in terms of a well-known function
by use of the following inequality which holds for
Bg>0:

fagz(x)dx Z%( Bg(x) dx>2>0. (C3)

If we regard B in (C1) as the perturbation due to
an external field H, i.e., B=2J, H* (S¥ - (S?%)), the
correction term in (C2) is —32\3(H*)*(x$®). Using
the unperturbed susceptibility function x5* we find
the following simple fluctuation correction to the
mean-field free energy F:

Ftluct - kT Z (30“1)2 )4 (Xm 2 (C4)

which satisfies F, = F,=F, ,=F. The advan-
tage of using (C4) rather than the more correct
(C2) is that it is easy to estimate when fluctuation
corrections are of importance by considering the
usually well-known susceptibility function xJ¢.
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