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Spin dynamics near bicritical points in uniaxial antiferromagnets is investigated. When there is rotational

symmetry about the zero-field easy axis the transverse staggered susceptibilities and the longitudinal direct

susceptibility are characterized by a dynamic exponent z = P/v (-1.78 in three dimensions), where P is the
crossover exponent. The longitudinal staggered susceptibihty has a dynamic exponent z = 2. These results hold

to first order in 4—d, where d is the dimension, provided the transverse magnetization and the energy density

are omitted from the primary set of dynamical variables. The efFects of energy conservation and the dynamics

of the transverse fluctuations in the magnetization are discussed, and a comparison is made between the

dynamics in the bicritical region and the dynamics along the antiferromagnetic-paramagnetic and spin-flop-

paramagnetic phase boundaries.

I. INTRODUCTION

Recently, Fisher and Nelson pointed out the un-
usual thexmodynamic properties of antiferromag-
nets near the point of intersection of the antiferro-
magnetic, spin flop, and paramagnetic phase bound-
aries'(see Fig. l). The details of the behavior in
the neighborhood of this point, designated the "bi-
critical point" have been further explored by Nel-
son, Kosterlitz, and Fisher' and Fisher. "Con-
firmation of a number of predictions of the theo-
retical analysis has been reported by Rohrer in
experiments on GdAlo„" by King and Bohrer in
MQF2» Rnd by LGQdau Rnd Binder using Monte
C ax'lo techniques. '

In an earlier note we have outlined a "first-ap-
proximation" analysis of the dynamic behavior
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near a bicritical point. ' The purpose of this paper
is to develop in detail the arguments leading to
the conclusions xeported in Ref. 9. Our results
follow from the application of dynamic-scaling, '0

mode-coupling» ' RQd renormalization-gl oup
concepts and techniques to the bier'itical problem.
%6 will sl1ow that R qURlltRtlve characterization of
bicritical dynamics is possible in the paxamag-
Qetic phase, at least to first order in 4 —d, d being
the dimension. Blcl"ltlcRl dynamics ln the splD-
flop and antifex"romagnetic phases is mentioned but
not dlscUssed ln detail.

The remainder of the paper is divided into three
parts. In the first of these we consider the dynam-
ics near the antiferromagnetic -paramagnetic Rnd

splD-flop -paramagentic phase boUDdRx'les but away
from the bicritical point. In the second we show
how the dynamics is modified in the bicritical re-
gion. Finally, we discuss our findings with refer-
ence to potential experimental tests of the theory.
It should be emphasized that unless explicitly stated
otllerwlse oux' RQRlysls per tRlDs to spin systems
with Hamiltonians with rotational symmetry about
the zero-field easy axis, which we take to be the
z direction.

II. PHASE BOUNDARIES

A. Antiferromagnetic-paramagnetic

FIG. 1. Schematic phase diagram of a uniaxial anti-
ferromagnet in a uniform field along the easy axis. B
denotes the bicritical point. The antiferromagnetic-
spiv-flop transition is first order; the antiferromagnetic-
par amagnetic and spin-Aop —paramagnetic transitions
are second order. See Ref. 1.

In a recent paper one of us has outlined a quasi-
hydrodynamic theory for the spin dynamics of
easy-axis antiferromagnets in an external field
which was based on a linear model with purely
relaxational behavior. " IQ the model it was as-
sumed that there was (approximate) rotational
symmetry about the zero-field easy axis and that
the spin system was weakly coupled to a thermal
bath. The basic variables in the theory were the
longitudinal component of the magnetization M, (q),
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the longitudinal component of the staggered mag-
netization N, (Il), and the energy density E(j), in
each ease q denoting thy wave vector.

In the antiferromagnetic phase the dynamics
reflects R lineRr coupling among all three vari-
aMes, while in the paramagnetic phase N, is no
longer linearly coupled to M, and E. The extent
of the linear coupling between M, and E is deter-
mined by the effective dlmenslonless coupling coIl-
stant 1 —Xz/}tr, where Xz and }ir are the zz adia-
batic and isothex mal uniform-field susceptibil-
ities, respectively. It was suggested that the vari-
ous decay rates appearing in the relaxation equa-
tions, as first appxoximation, should have a tem-
perature dependence which is in accord with the
conventional picture of thermodynaxnic slowing

18
down.

In Ref. 3.3 Halperin, Hohenberg, and Ma studied
the cI'ltlcRl dynRmlcs of a class of models bRsed
on t e tinge-dependent Ginzburg-Landau equation.
Using renormRlizRtion-group techniques, they
showed that the conventional theory holds only in
the linear appx oximation. Nonlinear interactions
among the fluctuations lead to departures from
the conventional theory. The details of the de-
partures depend on the model considered. In par-
ticular, their model C with n= 1, 2= 3 (energy con-
served, one-component order parameter not con-
served, three dimensions) is the model corre-
sponding Inost closely to the zero-field limit of
the system studied in Ref. 1V. When n= 1 and d=3
it was found that the relaxation of the order pa-
rameter was characterized by a dynamic exponent
z "r"v=2+ n/v, where II is the specific-heat ex-
ponent and v is the exponent associated with the
correlation length. "

In contrast, the thermal conductivity for fixed
T & T„T,being the critical temperature, was
equal to the bal. e value determined by the short-
wavelength fluctuations. The value of z" is
thus slightly larger than the prediction of the con-
ventional theory z"F" P =2 -q, whereas the relaxa-
tion of the long-wavelength (hydrodynamic) fluctua-
tions in the energy density is in accord with the
conventional theory. In the absence of an external
field the nonlineax' coupling of M, to X, and E goes
to zero upon iteration of the renormalization-group
procedure so that M, also follows the conventional
theory. "

The behavior we have outlined is expected to
change to some extent when there is a uniform
field present. In the field there is a linear eou-
Pllng betweell Mg alld E slllce 1 —Xg/}fr 4 0. Flll'-
thermore, the direct susceptibility shows slngulRI"
behavior analogous to that of the specific heat. '0

Thus in the case where both M, (ll = 0) and E(ll = 0)
are constRnts of the motion we hRve R sltuRtlon

similar to model C except that the order param-
eter now has nonlineax interactions with the cou-
pled M, -E modes. Accordingly we do not an-
ticipate changes in z" " relative to the zero-
field value. Likewise in the hydrodynamic
region the decay of the magnetization-energy fluc-
tuations is predicted to be characterized by th~
bare transport coefficients with thermodynamic
slowing down characteristic of the specific heat.

It must be emphasized that these predictions ap-
ply to the paramagnetic phase. The behavior in
the antiferromagnetic phase may be complicated
by the linear coupling between the order parameter
and the other variables. " Since the nonlinear dy-
namics of model C below T, has not been worked
out we refrain from making predictions about Rn-
tiferromagnetie dynamics in a finite field.

B. SpkA-fIOp-pSFRIRgflt. *41C

Fox' an Rntiferromagnet with rotational symmetry
about the easy axis the dynamic behavior along the
spin-flop-paramagnetic line is distinctly different
fxom the behavior near the antiferromagnetic-
paramagnetic phase boundary. The difference re-
flects the fact that the ordering in the flop phase
is ehaxactexized by a broken continuous symmetry.
As a xesult there are propagating hydrodynamic
modes whose frequency is given by the equation"

where (N„(j=0) is the thermal average of the stag-
gex'ed magnetization, taken to be along the x axis,
g denotes the electronic g factor, and p~ is the
Bohr magneton. Also, }t,*,(ll) is the transverse
staggered susceptibility and X~, as before, is the
zz adiabatic direct susceptibility.

By making use of dynamic" and static" scaling
arguments we find a dynamic exponent z ~ ~ given
by

In obtaining this equation we have utilized the
Wheeler-Griffiths proof that the adiabatic dixect
susceptibility is finite along a line of antiferromag-
netic critical points.

It should be noted that there is an apparent in-
consistency in our value of zs ~ p. An analysis
of the mode-coupling equations or the dynamic
renormalization-gxoup equations to first order in
&=—4-d, without including the energy modes, leads
to the result

where Fx= n if n & 0 and 0 otherwise. Since
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current estimates of n for planar systems
range from' -0.02 to" 0.0 calculating z ~ with
or without the energy modes leads to identical
results.

On the other hand were z &0 we would associate
Eq. (2) with systems where energy was conserved
and Eq. (3) with systems without energy conserva-
tion. Such a conclusion is consistent with the ex-
pression obtained for the spin-wave frequency in
the absence of energy conservation

~, =g~ (H. (0))lIX,*,(q)xrl'" (4)

III. BICRITICAL REGION

The static susceptibilities near the bicritical
point of a system with rotational symmetry about
the zero-field easy axis have the same set of
critical indices as the isotropic Heisenberg anti-
ferromagnet in zero field with one important ex-
ception. ' ' There is a divergence in the direct
susceptibilities y (q=0), which is characterized
by an exponent y=0.40. Since the specific heat
at constant field C» is finite and y2 = y rC„/C„,
where C„ is the specific heat at constant magneti-

Because of the specific-heat-like singularity in

y r Eq. (4) leads directly to the result given in

Eq (3).
In the absence of energy conservation it is ex-

pected that Eq. (3) will characterize lt„*„(q,a&),

lt,*,(q, a&), and X„(q, a&). When energy is conserved
Eq. (2) is appropriate for }t&',(q, &o) and }t,*,(q, &u). Its
applicability to X„(q,&u) is less certain because of
the coupling between M, and E; however, heuristic
arguments suggest that it will apply for e ( 0.

zation, there is also a y singularity in X~."
Our approach to bicritical dynamics is based on

the dynamical equations of Refs. 12, 14, and 15
which are of the time-dependent Ginzburg-Landau
type augmented by appropriate streaming terms.
Initially we will omit the energy modes from our
analysis as is appropriate when E(q= 0) is not a
constant of the motion.

The change in the dynamics in the bicritical re-
gion relative to the behavior along the two second-
order lines reflects both the change in the ther-
modynamic properties and the enlargement of the
set of appropriate dynamical variables. In con-
nection with the latter we note that since both the
direct and staggered susceptibilities are divergent
it would appear at first sight that the primary set
of dynamical variables should be N„, N„N„M„
Q, and M, as in the case of the isotropic anti-
fe rromagnetic. "

However, although all three direct susceptibil-
ities are characterized by the exponent y the long-
wavelength fluctuations in M, will decay more
slowly than the fluctuations in M„and M„since
M, (q= 0) and M, (q= 0) are not constants of the mo-
tion. In order to see the implications of the lack
of rotational symmetry about the x and y axes we
will use the formalism of Refs. 14 and 15 to gener-
ate equations of motion for M„, M„, and M, .

In our analysis we adopt the mode coupling view-
point. " That is, we assume that the static prop-
erties of the system are known at the outset. As
pointed out in Ref. 12 this approach is equivalent
to choosing the fixed point a Priori. In accord with
this point of view we take the free-energy func-
tional to be of the form given in Ref. 2.

d "H (r„&r'„+
i
&a„i'+r,a", +

i
&a, i'+2ua )+ 2va,'+42aa'„o', +r,"m'„+r', m') .

2

Here 0 and 0, are proportional to the longitudinal and transverse components of N while m„and m, are
similarly related to the components of M. At the bicritical point we have u*= v*= so*= 4'4 & and r„=r, =

—,—', &, where & is proportional to 4 —d.
The equations of motion for m, „and m, „ take the form

&m,„oB eB eB oB eB
Om,„'Om, „

&m,„&B gB 5B 5H 5H
~t ' go ' 50,
"=A2a& -A, o» +A4mii -A,m„—L, , +f(t),

am

(6)

where the A, and L, are constants and f(t) is a
noise term. The first four terms in Eqs. (6) and

(7) are identified as streaming terms, whereas
the fifth term has the conventional Ginzburg-Lan-
dau form.

Following Kawasaki" we can determine the char-
acteristic frequencies associated with the various

I

terms in the equations of motion for m, by evalua-
ting the functional derviatives using the scaling
form for the free energy. According to Ref. 1, in
the bicritical region we have

F(t&g&H»H2&Hi) = t2 ™&t&(glt
&
H lt & H2lt &

Hilt )

(8)
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where H' is the ordering field, g and H, are the
nonordering fields, P and & are the crossover and

gap exponents, respectively, and t =
~

T —T,
~
/T„

T, being the bicritical temperature. The function-
al derivatives are most simply analyzed using the
Legendre transform of 4 with respect to the field
variables, which we write as 4 (m/f~, o/t~), where
P=2 —~ —Q and P=2 —n —&. We thus have

=f' ~4(m/f', a/f'), (9)

=f' ~4(m/f' a/t')
5m

(10)

The characteristic frequencies associated with
the first two terms in Eqs. (6) and (7) vary as
m 'a6H/6a that is to say as t+t~t2 ™8-f ~. The
frequencies associated with the third and fourth
terms vary a.s 6H/6m-I o. In contrast, the Ginz-
burg-Landau term has a characteristic frequency
m '6H/6m —f~t~-t~ ~. Because P&0 the Ginz-
burg-Landau terms will dominate in the limit
t-0 giving rise to a dynamic exponent z = (P —P)/
v = (2P —2+ n)/v Since. y = 2$ —2+ a ' the dynamic
exponent associated with m~, y/v, is the same
as that given by conventional theory of critical
slowing down where the relaxation rate is inverse-
ly proportional to the direct susceptibility. Be-
cause H is quadratic in m, the equation of motion
of m, without the streaming terms is of the stan-
dard linear Langevin form. " As a, consequence
we omit M„and M, from the primary set of dynam-
ical variables which we define to be those variables
whose dynamical properties are determined by
nonlinear kinetic equations. It should be empha-
sized that these arguments may not be completely
rigorous in that a similar analysis applied to mod-
el A of Ref. 13 would lead to the conclusion that
the corresponding dynamic exponent was that given
by the conventional theory, which is only true to
order &. However, the approach does give the cor-
rect dynamic exponents for the isotropic ferro-
magnet and the isotropic antiferromagnet.

The behavior of M, and M, is distinctly different
from the behavior of M, . Since M, (q=0) is a con-
stant of the motion, the Ginzburg-Landau term in
the equation for mn is of the form L

~~
V'6H/5m„.

As a consequence the characteristic frequency as-
sociated with this term varies as t~~"", whereas
the frequency associated with the streaming terms
varies as t~. Since 2v)P the streaming terms
will dominate as t-0 so that the dynamic exponent
is equal to P/v.

With M„and M omitted from the primary set
of dynamical variables we are left with dynamical
equations for 0, , v„and m, . In the dynamical
equations for 0„ in an isotropic antiferromagnet
the streaming terms a.re of the form m~ && (6H/

6a, ) and a, x (6H/6m, )." Since we are leaving
out m, the corresponding equation for o„ in the
bicritical problem is of the standard Ginzburg-
Landau type,

zi = @/v (12)

In view of the scaling relation dv=2 —z we can
rewrite (12) as

z~ = 2 (d+ p/v),

which agrees with the value inferred from Eq. (4).
In contrast the dynamic exponent characterizing
X,*,(q, u}, z«, is obtained from the characteristic
frequency associated with Eq. (11), which varies
as a '6H/6a -t+t' 8-t", using the scaling rela-
tion y+ 2P = 2 —n. As a consequence we have

y/v
II

2+ O(e').
(14}

Finally, from our previous analysis we have for
zsm, the dynamic exponent associated with X„(q, &u)

and X„(q, (u),

ziii = (2Q —2+ o)/v. (15)

with no streaming terms.
From Eq. (5) it is evident that a„couples to a~

only through the quartic term 4zoa'(~o,' in H. Since
the fixed-point value of zv is of order & it follows
that any contribution to the dynamic exponent as-
sociated with X,*,(q, w) which comes from this term
will be of order &'. A similar analysis can also be
made for o, and nv, which shows that the coupling
to 0, in the dynamical equations for these variables
comes also from the aforementioned quartic term.
As a consequence, to order & we can treat N, and

N„, N „M, as independent sets of dynamical vari-
ables.

By omitting the coupling between N, and the vari-
ables N „,N „M, we are in a situation where to
order & the dynamics of N„, N„and M, is similar
to the dynamics of these variables along the spin-
flop-paramagnetic line (with allowance made for
the y divergence in the direct susceptibility) where-
as the dynamics of N, in the bicritical region is
similar to the dynamics of N, along the antifer-
romagnetic -paramagnetic line.

An analysis of the equation of motion of 0~ shows
that the characteristic frequency associated with
the streaming term a 6H/6m varies as t o, that
associated with m 6H/6a as t"~, and the Ginzburg-
Landau frequency as f". Since" P (y (& & 0) the
a6H/6m terms dominate in the t-0 limit. As a
result )I„(q, ~), if„*,(q, ~), and g, (q, u) are all
characterized by a dynamic exponent z, given by
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e, = 2 ——„', » + 0(»')

= 1.82 (» = 1),

eiii = i'i »+ O(»')

=0.64 (»=1),

(18)

(19)

which are remarkably close to the previous re-
sults. From (14), (18), and (19}we see that as
e -0 z, and z„approach the value 2, the value
obtained in the conventional theory of critical slow-
ing down, whereas z„I goes to zero. The differ-
ence in the &-0 limit between zi~II on one hand and

z, and z, I on the other is consistent with our hav-
ing omitted M„and M from the primary set of
dynamical variables.

As noted we have also omitted the energy from
the primary set of dynamical variables. The fact
that y~ and y~ are both divergent with the same
exponent makes it plausible that Eq. (13) will apply
independent of whether energy is conserved, as
indicated by Eqs. (1) and (4). The effect of energy
conservation on z«and z»I is less certain. How-
ever, since ~ &0 at the bicritical point we expect
on the basis of the analysis of Ref. 13 that the ef-
fects of energy conservation will not influence the
dynamic exponents to order &.

%e can obtain this last result directly in the
mode-mode coupling approximation which, as
Kawasaki and Gunton" have shown, is essentially
equivalent to the renormalization group to 0(»).
%e start directly with the microscopic two-sub-
lattice (A and 8) antiferromagnetic Heisenberg
Hamiltonian with easy-axis anisotropy (only near-
est-neighbor interactions are implied)

Zi Zii (SiA SJB) g ij SiAS&B
C4j)

Hg(s;.„+s',,) H P(s;„s"„). (20)

From this one can explicitly obtain equations of
motion for N(q), M(q), and E(q). However,
the equations of motion are insufficient to establish
the dynamic exponents and we need expressions
for the linewidths of the various fluctuation pro-

It should be emphasized that zI and ~&~I are sub
ject to corrections of order &'.

Using the values' P = 1.25, + = -0.10, v= 0.70
we obtain the results

(16)

(I'7)

for d= 3.
It is of interest to compare Eqs. (16) and (17) with

with the corresponding values obtained from the
c expansion. " %e have

cesses. For these we utilize Mori's equation"

I AA

(A(q), A(-q))

e "(A(q, t},A(-q, 0)}dt, (21)
0

where (A(q), A(-q)) is just the static susceptibility
X„„(q)for the dynamical variables A (here N, M,
and E).

Under the further assumption of decoupling of
the four- and six-spin correlations into products
of pairings of two-spin correlations a lengthly
calculation'o shows that omitting M„,M„ from our
list of variables, we get the result stated above,
namely that when the specific heat does not di-
verge, the asymptotic time scales for our primary
set of dynamical variables are determined by the
same dynamic exponents as before. " Of course,
both from Kawasaki and Gunton's arguments and
the above assumptions on the behavior of M„and
M„our conclusions may not be valid beyond 0(»).

IV. MSCUSSION

In the preceding section we have analyzed the
spin dynamics near a bicritical point in a uniaxial
antiferromagnet with a spin Hamiltonian having
rotational symmetry about the zero-field easy
axis. It should be noted that the analysis applied
to the paramagnetic phase. Bicritical dynamics
in the spin-flop and antiferromagnetic phases may
be complicated by the presence of the first-order
antiferromagnetic -spin-flop boundary.

Even in the paramagnetic phase the analysis is
incomplete. One would like to have a quantitative
estimate of the &' corrections to z, and z» . In
particular it is important to know whether higher-
order terms can establish a common dynamic ex-
ponent. " A more quantitative assessment of the ef-

fectss

of energy conservation and the role played by the

transverse fluctuations in the magnetization is
needed as well. It is also important to investigate
"crossover" effects which may appear as the sys-
tem is moved into the bieritieal region.

Experimental tests of the theory require systems
like MnF, where the anisotropy in the XF plane
is small. The most useful probe is likely to be
inelastic neutron scattering, where it is possible
to measure the wave-vector- and frequency-depen-
dent susceptibilities directly. Measurements of
X„,(q, &d) would be an important test of the over-
all dynamical picture. The conclusions about the
temperature dependence of the characteristic
frequency associated with the transverse fluctua-
tions in the magnetization obtained in Sec. III are
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based on an approximate treatment of a particular
dynamical model. Other dynamical models can
lead to different results. Thus, for example, were
we to omit the Ginzburg-Landau terms in the equa-
tions of motion for M„and M, we would find that
all components of M and N would be characterized
by the dynamic exponent P/v.
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