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Tricritical exponents and crossover behavior of a next-nearest-neighbor Ising antiferromagnete
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Monte Carlo data for a simple cubic Ising antiferromagnet with nearest- and next-nearest-neighbor
interactions reveal asymptotic tricritical behavior of the order parameter which is mean-field-like modified by
logarithmic corrections and high-temperature susceptibiTities which are mean-field-hke without corrections, in
agreement with renormalization-group calculations. Crossover between tricritical and critical behavior is
observed in the temperature variation of the order parameter and high-temperature susceptibHity.

I. INTRODUCTION

Theoretical studies by Riedel and %egnerl'2
showed that the tricritical behavior of a three-
dimensional (d= 3) system with a. Gaussian fixed
point should be described by mean-field-like ex-
ponents modified in some cases by logarithmic
corrections. Although subsequent numerical
work on the d= 3 Blume-Capel model"' found
mean-field exponents (but was unable to decide
the question of logarithmic corrections), studies
on Ising antiferx'omagnets have yielded rather
eontradietory results. Early Monte Carlo' and
series-expansions investigations of a simple cubic
Ising antiferromagnet with nearest-neighbor (nn)
and next-nearest- neighbor (nnn) coupling suggested
that the tricritieal behavior was not mean-fiend-
like. However, similar studies on a simple cubi. e
metamagnet ' indicated that the exponents were
indeed, at least in part„mean-field- like. Nelson
and Fisher'- later showed, using renormalization-
group theory, that both of these latter antiferro-
magnetic models should have the same tricritical
behavior as the Biedel-%egner model.

The results of px'evious numerical work on the
nnn model were not really definitive fox' several
x'ea, soDS. The Monte Ca.x'10 studies wex'6 made oD

lattices of limited size RDddld not include Rn

RDRly818 of flnlte-size effects. Also, ODly high-
tempex'atux'6 Sex'168 expRnslons wex'6 RvRllRbl,
and although a very careful analysis was made,
the detexminations of both T, and the exponents
were not totally unambiguous. In fact, Mortis,
Ha, rbus, and Stanley' later showed that by shifting
T, to a, lower temperature and using a standard
ratio analysis, one could alter the high-tempera-
ture susceptibi1. ity exponents to make them com-
patible with mean-field values.

We have extended our investigation to larger
lattices with the identical interactions considered
by Harbus and Stanley in hopes of resolving the
controversy. %6 px'esent here results obtained

fox' a, system of 8 = q Ising splns Rl x'ayed oD
X&X x N simple cubic lattices with periodic
boundRx'y conditions Rnd

The determination of the location (H„T,) of the
tricritieal point is clearly crucial to the investi-
gation of the tricx'itical behavior of this model.
The temperature and field dependence of the mag-
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where o;, o, , oa= + I, J'„=+I (antiferromagnetic),
Z„,=- —,

' (ferromagnetic), and H is a uniform
magnetic field. Lattices with 6 &N & 20 were
studied so that finite size effects could be deter-
mined and aeeounted for in the analysis of the
eritieal Rnd triexitieal behavior. A minimum of
2000 Monte Carlo steps/spin was generated for
ea,ch data point Rnd each point was taken at least
t%'ice from dlffex'6Dt stal ting coDfigurations. Com-
plete details of the caleulational xnethod have a,l-
x eady been given elsewhere. "
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netiza. tion, internal energy, and specific heat can
all be used to locate the phase boundary quite
accurately. In addition, near the tricritical point
isothermal magnetization (nonordering density)
data were used to determine the changeover of the
transition from first order to second order as in-
dicated by the disappearance of hysteresis be-
tween the data taken at increasing and decreasing
field. " Data for several different temperatures
are shown in Fig. 1. Note the change in scale be-
tween Figs. 1(b) and 1(c). Using the results of all
the isothermal sweeps for N = 20 we find
kT, = 6.05 + 0.05. Data taken on lattices of differ-
ent sizes show that finite lattice size tends to
"smear out" the transition and eliminate hyster-
esis. This effect becomes more pronounced as
the lattice size decreases and the "effective" tri-
critical temperature (at which hysteresis first
occurs) is depressed. We estimate for an infinite
lattice kT, = 6.10+ 0.10 and h, = pH, /kTI
= 0.90+ 0.02. This value of T, is intermediate be-
tween the early series estimate' (kT, = 6.4~ 0.1)
and the early Monte Carlo value for N = 12

(kT, =6.0). This value is slightly above the esti-
mate (kT, = 5.88+ 0.02) suggested" by a reanalysis
of the series expansions in which T, was chosen
so that the asymptotic behavior of the ratios was
consistent with mean-field exponents. The phase
boundary (Fig. 2) shows no depression near T, as
found for the Blume-Capel model. ' The deviation
between the series estimates' and the Monte Carlo
values begins well above T, and increases with
decreasing temperature.

Data were taken near the second-order phase
boundary along paths of constant k =H/T (as in
the series expansion studies). The observed be-
havior of the order parameter (staggered mag
netization) is shown in Fig. 3 for a range of h be-
tween h=0 and h=h, . In zero field the critical
behavior is well described by the d= 3 nn-Ising-
model exponent f), =0.31. For small e= il —T/T, i

the effect of finite lattice size is quite important.
Below & = 5 & 10 ' even the values for N = 20 are
"rounded" so as to lie above the infinite lattice
value. In terms of the finite size scaling vari-
able" x= ~' ", the data for x ~ 0.3 are affected
by finite size rounding. Use of smaller lattice
data without correction would clearly lead to an
incorrect low estimate of the exponent. The crit-
ical region extends to relatively large & ~ 0.2,
because of the stabilizing effect of the ferromag-
netic nnn interaction. (A similar increase in the
size of the critical region was found for the nnn

square lattice).
As k increases (see Fig. 3), the asymptotic

critical exponent remains unchanged as predicted
by Universality) but the size of the critical region
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FIG. 3. Order-parameter data: N =6, 0; N=8, ~;¹10, ~; N = 14, +; and ¹20, O.

FIG. 2. Phase boundary near the tricritical point. The
dashed line gives the series expansion result and the
open circles are Monte Carlo data points. The shaded
regions give a semiquantitative indication of the cross-
over regions for T &T, as determined from the order-
parameter and high-temperature gsfg data.
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M„,zz.'(e inc)z ', (2)

shrinks. For h =0.6 this effect has become dra-
matic although the deviation from the critical
form is surprisingly gentle. For h=h, there is
no evidence of any critical region, but the data
are also not consistent with the mean field pre-
diction of P= &-. However, by including the multi-
plicative logarithmic correction suggested by
Wegner and Riedel' so that
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we can fit the data over the entire temperature
range! The curvature in Fig. 3(a) is sufficiently
small that over a limited range the behavior could
be mistaken for a simple power law with a. spur-
iously low exponent P =0.17. For h slightly below
h„seeFig. 3(b), the data for large e are well
described by the tricritical form in Eq. (2) and
separated from the asymptotic cubi Heal behavior
by a cxossoi:er region. For h ~ 0.6 the tricritical
region is quite narrow and is obscured by the
crossover.

Besides the changeover in exponent as k = h, ,
there is a. dramatic reduction in the finite size
"rounding. " Since rounding occurs when the
scaling variable x = ejV' " becomes small, this
suggests that v decreases as h =h, . This is con-
sistent with crossover to the mean field value
v, =

& which is less than v, = 0.64.
The high-temperature ordering (staggered) and

disordering (ferromagnetic) susceptibilities are
shown in Figs. 4 and 5 for paths of constant h.
For h = 0.4, the asymptotic critical behavior in

y„,is well described by the d = 3 Ising exponent
y= 1.25. Here too, finite size effects are pro-
nounced and even for X= 20, rounding occurs for
e.= 5 x 10 '. For larger /z [see Fig. 4(b)] the
crossover from tricritical behavior with y=1 at
large & to critical behavior with y=1.25 for small
& becomes clear. When h =h, , the ordering sus
ceptibility is well described over the entire range
by y, = 1.0I This indicates that the amplitude of
the additive logarithmic correction predicted by
Wegner and Riedel' is quite small.

The nonordering susceptibility diverges much
more slowly than does the ordering susceptibility
and the data analysis is consequently less precise.
Nonetheless one can say with some certainty that
for low h (see Fig. 5) the asymptotic critical be-
havior has the form y=C& with X= a = —,'. For
h=h„ the divergence is stronger and, except for
deviations for very small &, is well described by
the mean-field value X, = &. The finite size rounds
and broadens the susceptibility peak so that the
initial deviation from the infinite lattice curve is
in the opposite direction from that found for the
ordering susceptibility. Here too, it appears that
correction terms are small although the uncer-
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I IG. 5. High-temperature-nonordering susceptibility
data: data points are for N=6, Q; N=8, ~; N=10, 6;
N=14, +; and N =-20, '

FIG 4. Ekigh-temperature-ordering susceptibility data:
data points are for N =-6, 0; N =8, 0; N = 10, 6; N = 14,
~ ~ and N =20
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FIG. 6. Temperature dependence of the discontinuity
in the magnetization at the phase boundary as T, is ap-
proached froQl below: iV = 10' f'

s V = 12~ &'q % = 20~

tainty is much greatex than for the ordering sus-
ceptibility.

The results suggest that the region of & which
is dominated by some sort of critical phenomena
remains approximately constant along the phase
boundary although the path must come quite close
to the trieritical point to allow separation of tri-
critical from crossover behavior. Otherwise any
analysis i.s likely to lead to spurious exponents.
The difficulties connected with further series ex-
pansions due to crossover effects should not be
underestimated. If series are not sufficiently
long, they will p1'ovlde InforMatlon about the
crossover region but not the true asymptotic ex-
ponents. Examples are the series estimates""
for y and A. along h = 0.84: y = 1.1, X = 0.25. It is
possible that the 'eries wex'e just sufficiently long
to measure a y,«„„.„which lies between y, = 1.0
and y, =-1.25 and A.,«„t1„between1,=0.5 aod X„.
= 0.125. The analysis of the low-temperature
order-parameter series would be further compli-
cated by the logarithmic corrections which can
easily lead to a spurious exponent estimate. "

The exponents which we have just examined
describe the tricritical behavior as T, is ap-
proached along a path which is not tangent to the
critical field curve at (H„T,). In addition, we
have studied the behaviox of the ordering and non-
ordering densities along the first-order phase
boundary. The discontinuity in the critical mag-
netization 4M, (nonordering parameter) along the
critical field curve as T, is approached from be-
low should disappear as

where the mean-field value is &„=1. The Monte

FIG. 7. Temperature dependence of the discontinuity
in the order parameter at the phase boundary as T, is
approached from beloved: N =-10, L'~; %=12 && ~ X=20 Q.

Carlo data, plotted in Fig. 6, are clearly consis-
tent with the mean field estimate although the xe-
latively large error bars associated with the de-
termination of 4M' make any precise independent
estimate impossible. Similarly, the discontinuity
in the order parameter M;„(M„,= 0 in the para-
magnetic state) should vary as

where P„=-;.Here too, the data (see Fig. 7) sup-
port the mean field prediction. In both cases, t;he

data are too imprecise to allow us to pass judge-
ment on the possible existenc~ of logarithmic
cor I ect1ons.

III. SUMMARY AND CONCLUSION

In sun1mary, our da.ta provide "experimental"
verification that the simple cubic Ising antifexx'o-
magnet with nnn interactions does have mean-field
tricritical exponents (with logarithmic correc-
tions for P). The crossover between tricritieal
and critical behavior is observable along a con-
siderable length of. the phase boundary and for a
range of & which is readily accessible in experi-
mental studies of real systems. Together with
recent results on the fec Blume-Capel model, "'"
these results suggest that the Universality class
for statIC tx'1cl ltlcal behavior may be the same
as for static critical behavior.
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