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The eAect of defect or impurities on the static and dynamic response, near a displacive structural phase

transition, depends on the symmetry and dynamics of the defect cell. It is shown that a small concentration of
defect cells, in which the order parameter relaxes on a slow time scale between diA'erent equivalent

orientations, may account for the narrow "central peak" as well as for the temperature dependence of the
"soft-mode" frequency in the perovskites near structural phase transitions. The case of a frozen defect cell is

also discussed. Calculations are performed for the pure and impure systems using mean-field theory, and

corrections are discussed using the universality hypotheses and renormalization-group calculations for dynamic

crit1cal behav101.

I. INTRODUCTION

Accox'ding to the simplest Incan-field approxima-
tion, a second-order displacive phase transition is
always associated with a "soft phonon mode" of
appropriate symxnetry, i.e., a phonon whose fre-
quency goes to zero ~ (T —T,)'~', as the tempera-
tul e T appx'oaches the tlansltlon from above. A

slightly more sophisticated analysis, which takes
damping into account, would suggest that the pho-
non becomes overdamped for T slightly above T„
so that the spectrum revealed by inelastic neutron
or light scattering would show a single peak close
to T„whose width continues to decrease as T - T,.'
Experiments on a variety of materials are in
marked contrast to this picture, however, as they
show the existence of a very narrow central peak
in addition to the soft phonon Inodes. In SrTiO„
for example, a central peak has been observed' '
as far as 65 K above the transition temperature
T, = 100 K. As T -T„ the weight of the central
peak grows xelative to that of the phonon peaks,
so that for T —T, ~ 10 K the majority of the total
weight is in the central Inode. In fact, the weight
in the phonon peaks, as mell as the phonon fre-
quency, xemains finite as T-T„whereas the
central-peak weight diverges. Qualitatively sim-
ilar behavior has been observed in a number of
other perovskites, including LaAlO„' and KMnF, .'o
Central peaks observed in a variety of other ma-
terials, including KH, PO, (KDP)," and Nb, Sn,"
also resemble those in the perovskites.

One of the most important facts about the central
peak in SrTiO, (and other materials), that any
theory must explain, is its extreme narrowness.
Even at the highest temperature observed, the
width was unresolvable in the neutron measure-
ments. '"' Indirect measurements by Muller et
a/. ,

"via the EPR linewidth of a Fe" oxygen-
vacancy complex, suggested that the central peak

has a. finite linewidth corresponding to a relaxation
rate E' of order 0.6~ 108 sec ', at T,+2 K. Very
recently, dixect measurements using neutron scat-
tering mith very high resolution have been pub-
lished by Topler et al. ,

"m'hich give a somewhat
larger linewidth of 6&&10 ' eV (full width at half-
maximum), corresponding to a relaxation rate
4.5 & 10' sec ', at T,+4 K. This number is re-
portedly consistent with independent measure-
ments by Mezei and Hayter" using the technique
of spin-echo neutron scattering. However, mea-
surements by Darlington et al."of Mossbauer y
rays scattered by the central peak indicate that
the relaxation rate is smaller than 0.6&& 10' sec ',
for T ~ T„+6 K. We remark that the various esti-
mates of the central-peak width are three to four
orders of magnitude smaller than the width or the
energy of the soft phonon mode, measured by Axe
et al.'

Several theoretical calculations have been car-
ried out, which have predicted the simultaneous
existence of a central peak and soft phonon modes
in certain models. "" (See discussion in Sec.
VIIB below. ) However, none of these ca.lculations
has reproduced the observed characteristic that
the width of the central peak is very narrow com-
pared to the phonon widths, even at temperatures
well above T,„where the sleight in the central peak
is small compared to that in the phonon peak. '8 In-
deed, it seems to use to be very difficult to
imagine a model where this feature is reproduced,
unless some extrinsic mechanism is introduced to
give a frequency scale very small compared to the
intrinsic phonon frequencies. Consequently, one
is led to explore the possibility that the central
mode may be due to the presence of impurities
or other defects.

Impurities were considered by Axe, Shapiro,
Shirane, and piste, ""who pointed out that the
existence of an infinitely narrow central peak
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could be explained by scattering from the tem-
perature-dependent static strain field surrounding
an impurity, if the impurity is located in a posi-
tion whose symmetry allows it to couple linearly
to the soft mode. (See also comments in Ref. 23.)
It has often been assumed that an explanation de-
pendent on impurities or defects would be incon-
sistent with a finite linewidth for the central peak,
such as that indicated by the EPH measurements.
The purpose of the present paper is to point out
that one should also consider a model in which the
distortion in a defective unit cell may hop back
and forth between positions which break the sym-
metry in opposite senses, a situation which we de-
scribe as a relaxing defect cefl Th.is will lead to
a central peak whose width is determined by the
time scale of the hopping process, which might
be of the order of 10' sec"' if the barrier to be
surmounted is of the order of 10kaT, (=0.1 eV
in SrTiO, ). We have constructed a simple mean-
field-theory solution of such a model, which dem-
onstrates many of the features of experiments on
SrTiO, . Oux results are similar in form to those
of the phenomenological equations'"'" which are
most comxnonly used to parametrize observations
of central peaks. Furthermore, the concentration
of defects necessary to account for the observed
effects is estimated to be quite small —perhaps as
small as 10 '.

It is worthwhile to recall, at this point, the dif-
ference between a displaeive transition, which is
the primary concern of this paper, and the case
of an order-disorder transition, where the order
parameter involves the reorientation of a mole-
cule." The latter description is applicable, for
example, for the orientational transitions in the
ammonium halides. "

A mean-field theory of the order-disorder transi-
tion has been worked out by Yamada, Takatera,
and Huber. " When the molecular reorientations
occur at an intrinsic rate which is very slow com-
pared to the phonon frequencies, the theory nat-
urally predicts a central peak in the neutron scat-
tering, due to the orientational disorder. In con-
trast to the experimental observations in SrTiO„
however, the theory does not predict a marked
softening of any of the phonon frequencies in the
order-disorder case. Also, since the atomic dis-
placements involved in a molecular reorientation
are likely to be large compared to the thermal
motions in the phonon modes, one would expect
the integrated neutron scattering in the central
peak to be large compared to the weight in the
phonon modes, even at temperatures several times
the transition temperature. Again, this contrasts
with the neutron measurements in SrTiQ, . Ac-
cording to the theory presented below, however,

it will be seen that the presence of defects of the
appropriate type may give some of the charac-
teristics of a slow orientational transition, in the
vicinity of T„ to a system that would otherwise
show the displacive behavior.

The situation in crystals of the KDP type is
different from that of the ammonium-halide type,
since in KDP the quantum-mechanical tunneling
of the protons introduces an energy splitting com-
parable to (but less than) the dipole-dipole inter
actions that tend to order the proton. This situa-
tion is usually represented" by an Ising model in
a transverse field. In mean-field theory such a
model has only a soft mode and no central peak.
More realistic models" for KDP couple the tun-
neling motion to the other modes of vibration in
the crystal and obtain a central peak through
piezoelectric couplings. But as Cummins" has
emphasized, the observed central peak in KDP is
also much too narrow to be thus explained. Hence
defects are probably also necessary to explain the
observations in this case. The calculations we
present in Sec. II are probably relevant also to
KDP since a soft acoustic mode plays a crucial
role in the actual structural transition.

In Secs. 11 and III, we describe a simple model
for the relaxing defect cell and calculate the neu-
tron scattering line shape in a simple mean-field
approximation. These results are compared with
experiments on SrTiO, and related compounds in
Sec. IV. In Sec. V we investigate a model with
frozen defect cells, which is mathematically more
complicated, and rather less likely to be relevant
to experiments. A more complete classification of
different types of impurities is presented in Ap-
pendix A. In Sec. VI we x eturn to the "xelaxing"
ease and discuss the modifications of the previous
results when one attempts to go beyond the mean-
field theory. We also discuss the dynamics of the
pure system in that section, using the ideas of
universality and the renormalization-gxoup anal-
yses for dynamic critical phenomena. We argue
that a very narrow central peak is unlikely to oc-
cur in any sixnple model of a displacive transition
in a pure system.

II. MODEL FOR RELAXING DEFECT CELL

To illustrate our ideas, we shall consider here
a simplified model containing impurities or defects
of a type that we describe as relaxing defect cells.
(More particularly these are impurities of type
Blb, according to the classification of Appendix A
below. )

We consider a model in which the atomic dis-
placements responsible for the phase transition
are described by a single scalar quantity P, , for
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each unit cell i. We suppose that any unit cell
may contain a defect with probability c, or be
normal, with probability 1 —c. We consider the
following classical Hamiltonian:

I.et us define the local field on cell i as

H =k +gJ litt& . (2.9)

&h =Q ',—;h';&-,'h4 + —';') —hh, .
i

1—
2 +~1&4&kl &

(2.1)

For the normal cells, we shall assume an equa-
tion of motion of the form

(2.10)

where h, is an external field and ~n is an effective
mass. The parameter a; can take on two possible
values

a, =a„&0 if i is a normal cell,

a,. =a~&0 if i is defective .
(2.2)

For simplicity we assume that the mass ni and the
quartic coefficient b are the same for normal and
defective cells, and that the coupling J,-, , which
depends on r,. —r, , the difference in the positions
of cells z and j, does not depend on whether the
cells are normal or defective.

Let us define the Fourier transform

(I},.(t)I},.(t')) =22 T5(t- f') . (2.11)

For the defective cells, we shall be concerned
with the rate at which |I),. makes transitions between
the two wells at aC, . (Oscillations within R, given
well will occur at a high frequency and will be
relatively small in amplitude; such oscillations
need not concern us here. ) We write for the tran-
sition rate from q}, to —q~,.

where y is a phenomenological damping constant,
which is intended to describe the effects of the cou-
pling of $,. to other degrees of freedom of the lat-
tl.ee (tile tllel'111Rl I'eservoir), and I}, is the as-
sociated Langevin noise,

J(Q) ~z e&o & &-rl. )ij '

j
(2 3)

v=-v e0

H»$» /T (2.12)

(2.13)

Sllppose thR't 'tile 111Rxlnlu111 VRlue of &2(Q) oceul s Rt,

a wave vector Q =Q„and set

Jo =Z(QO) .

In. order for the pure material to have broken sym-
metry at T =0, we must have

where P,. =~C, and the attempt frequency v, is ex-
pected to be of the order of 10" sec-'. (Note that
the field H,. changes the barrier for hopping by the
amount H,.ltd;. )

III. MEAN-FIELD APPROXIMATION

a„-Jo& 0 .

%e shall further assume that

(2.5a} I,et us examine the linear response of our sys-
tem to a time-dependent applied field

[a„-Z„/(. a„, A, e i (Q ~ ri - oo t)
i (3.1)

(,. =~C, ==~(~a, I'll)'" . , (2.6)

In order for tt),. to pass from one well to the other,
it must surmount a. barrier

as is appropriate for transition in the "displacive
limit. *" We shall see below that the pure ma, —

terial has its phase transition at a temperature
To, of order a„(J,—a„)(3b.

If one neglects the coupling of a defect cell to
its neighbors, then the defect cell is characterized
by a double-mell potential, with minima at

We consider the ease T& T„so that (g,) is zero in
equilibrium. In the presence of h,- me may write

'(.}=4 e"o' 'i "" if i is normal,
(3 2)

(lI& ) =0 e"o ' '& ~" ii' i is defective,

where the angular brackets ( ~ ) imply an average
over thermal fluctuations at all sites and an aver-
age over the impurity distribution at sites other
tllan i. In the equations of motion (2.10) and (2.12},
we now make a mean-field approximation —we re-
place II,. by its expectation value

We shall choose ~/T, »1, so that the parameters
of the defect cell are in the range appropriate for
a slow orientational transition, rather than a dis-
placive transition. This condition will be fulfilled
lf

=Ill+[co, +(I c)I ]Z(q)fe"o "--"& .

a', »a„(J,—a„) . (2 .8)
Here the double brackets refer to an average over
the impurity distribution on all sites, including i
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and j. In (2.10}we linearize using a Gaussian ap-
proximation,

For defective sites, we have for the linear re-
sponse

a„$,+ bg'; -x„P;,
where

(3 4) xdv '(- i(u+ v)(P, ) = ((H, )),
xd = T/Cd « x„.

(3.7)

(3 8)

x„=a„+3b($';}= a„+3bo',

c = T/(a„+ 3bv) .

We therefore have for normal sites,

(—(u'm- iya)+x„)(P;) = ((ff, )} .

(3.5)

(3.6)
I

4'. =(x +x..}b,
+d (Xdn+Xdd}b r

where the 2 x 2 matrix X is defined by

(3.9a)

(3.9b)

By using (3.3) we may write the solution of Eqs.
(3.6) and (3.7) in the form

(- uPm —iny+x„—(1 —cP(q)
I:x(q, ~}) '=I

—(1 —c)J(q)

—cJ(q)
(3.10}

S(Q, &o) = (2T/)d) ImX(Q, v),
X(Q, &u)

=—(1 —c}X + (1 —c}Xx„d

(3.11)

In the approximations made above we have aver-
aged over the impurity configurations by intro-
ducing, in effect, a two-component displacement
field at each cell—one due to the normal cells and
the other due to the defective cells. These are
very similar to the approximations made by Walker
for the spin-wave spectrum of a mixed-crystal
antiferromagnet (RbMn, „Nig', ), where they
yielded excellent results. " The approximation
is qualitatively similar to the "average T-matrix
approximation" in the theory of random systems. "

Inelastic neutron scattering measures the dy-
namic structure factor

dT, x„(x„—xd)
dC XyX„

(3.17)

(3.19)

which is positive and large compared to T', .
For T near T„and Q near Q„we have

( )
(1 —c)x,+cx„

x,x„-cx„e(q) —(1- c)x,e(q)
-- 1/ [x„'(T—T,) +gq'J, (3.20)

tl

&AX„
I 3b (3.18)

dT
I z' 2J0 —a„

C

In view of the inequalities (2.5), (2.8), and (3.8) we
have

+ cXX~ + cA Xu~ (3.12) where

&)))) fr)r), )r=, =rx, (r)) (3.13)

The phase transition occurs when the static re-
sponse Xd(q, ) diverges, or

c/xd + (1 —c)/x„= I/J, , (3.14)

where J, :=J(Q,). For small concentrations c, this
gives

where X is the ratio of the neutron form factors
in the normal and defective cells. (We shall set
X=1 for simplicity. ) The form factor S(Q) mea-
sured by a quasielastic scattering experiment is
related to the static susceptibility Xd (Q) =-X(q, &u =0),
by

q=Q- Q. ,

~(Q) =~.-aq',
(3.21)

(3.22)

1 —)(.

m(o2 —iyu) +x(1 —c)J(q)
'

The right-hand side of (3.23) has poles at the
"damped phonon frequencies"

(3.23)

a)d = —i y/2m + (0', —y' /4m')' ~', -

where

(3.24)

and x„' is given by (3.18). This predicts that the
quasielastic neutron scattering diverges near T,
with the standard Ornstein- Zernike form

In the limit v -0, with (d finite, we have

TcT =T +c +''
dc

where

(3.15)
a~n', =x„- (1 —c)Z(q)

=gq'+ x'„(T —T, + cT'),
T'= x„Z,/x, x'„.

(3.25)

(3.26)

T', =J,(J, —a„)/3b, (3.16) Note that Q~ remains finite at T,. We may also
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gq'+ x'„(T —T,)
gq'+x„'(T —T, + cT') (3.28)

[Note that —ii'o and (()~ are the three roots found

by setting the determinant of (3.10) equal to zero. ]
For T —T, » cT', we may write the weight of the

central peak as

S(Q) —Sz(Q) = cc',[X,(Q)]'~ox„. (3.29)

The mean-field theory that we have carried out
for T&T, can easily be repeated below T,. The
principal change is that T —T, is everywhere re-
placed by 2 (T, —T) in formula, s (3.20), (3.25), and
(3.28). Equation (3.27) applies as is. Thus we
have also below T, a narrow central peak whose
intensity diverges as T -T„Q-Qp, and a damped
phonon contribution to S(Q, (()) whose intensity and
width remain finite. In addition, there will be an
elastic Bragg peak, which only exists at Q Qp,
and elastic Rayleigh scattering, at finite values
of q=Q —Q, . This last effect arises from varia-
tions in ((()) due to loca, l variations in the density
of impurities. For a random distribution of im-
purities, the Rayleigh scattering is given, for
small q, by the formula

note that T' is approximately equal to dT, /dc,
given by (3.17), so that T, —cT' is close to the
transition temperature T, of the pure system.
It is easy to check that the phonon contribution
to S(Q, v), obtained by insertion of (3.23) in (3.11),
has total weight

S (Q) = T )( (Q) = T(1 —c)/m Qz, (3.27)

which remains finite at T, If t. he damping y/2m is
small compared to Q~, the phonon contribution is
found to consist of two Lorentzian peaks, centered
at (() = s Q~, with half-widths equal to y/2m. If
Q~ ~ y/2m the phonons are overda. mped; a single
phonon peak is then seen which nonetheless retains
a finite width at T, .

The difference between (3.27) and (3.13) is made
up by a narrow Lorentzian central peak, whose
half-width I' is given by

below T, may be comparable to or even larger than
T X~ for the parameters appropriate to SrTiO, .

In the following comparison with experiment,
however, we shall concentrate on T & T, .

A schematic plot of [S(Q)] ' and [S~(Q)] ', for
a system with relaxing defect cells, is shown in
Fig. 1.

IV. FIT TO EXPERIMENTS IN PEROVSKITES

(4 2)

These equations lead to a narrow central peak, if
v is sufficiently small. In fact, these equations
coincide with our mean-field results if we identify
v with the hopping rate (2.13), and

(doz=zzz '[gq'+x„'(T —T,)],
r, = ~&-'&,

(4.3)

(4 4)

We have already seen from the previous discus-
sions that our simple model reproduces the qual-
itative features of SrTiO, . We shall now examine
this somewhat more closely. In particular, we
shall see that the neutron data in SrTiO, can be
fit by our model with a reasonable choice of the
model parameters, and we can estimate the con-
centration of defects necessary to explain the cen-
tral peak.

Experimental results in SrTiO, and other ma-
terials have been rather well parametrized by the
phenomenological equations' "'"

S(Q, v) (z: (I/&o) Im[(()', —&o' —ia&I'(e)] ', (4.1)

where

)
c dT, 3x„

Xs Q T, dc 2x (3.30)

This scattering is in addition to the phonon scat-
tering and the central peak described above, whose
combined weight remains equal to Ty~(Q). Al-
though Ss/TX~ is proportional to the concentration
of impurities, the remaining factors are quite
large, and we estimate that the Rayleigh scattering

I

To
C

FIG. 1. Schematic plot of the inverse of the total
form factor S(QO) and of the finite-frequency "phonon"
contribution S& (Qo), for a system with "relaxing defect
cells, " of type lb. The contributions of the Bragg peak
and of the elastic Rayleigh scattering below T, have
been omitted from S(QO). The dashed curve indicates
[S(QO)] for the pure system. Deviations from straight-
line behavior arise from corrections to mean-field theory.
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and

5' = cx„Jo/mx„. (4.5)

4L

4L

IL

FIG. 2. Atomic positions in a (100) plane of SrTi03
containing Ti (filled circles) and 0 atoms (open circles),
for T & T, . Strontium atoms and additional oxygens lie
between these planes and are not shown. Arrows indicate
displcement of oxygens for one of the six possible orien-
tations of the low-temperature phase. [Other possible
orientations are the reverse of the indicated displace-
ments and corresponding displacements, and the cor-
responding displacements in the (010) or (001) planes. ]
An interstial impurity at site V or V' would either favor
the indicated distortion or its reverse. An interstitial
at site U, however, would not couple linearly to any of
the possible distortions.

We shall next fit the parameters entering the
mean-field theory to measurements on SrTiO, .
For this purpose we shall describe the displace-
ments in cell i by a single scalar order parameter
P;, which represents a cooperative displacement
of two oxygen atoms per unit cell, in the direc-
tions indicated in Fig. 2. We shall neglect the
competing fluctuations in the other two planes,
as well as the other vibrational degrees of free-
dom of the system.

We first need to evaluate the three parameters
a„, 5, and J,—a„ that enter the description of the
pure system. We use experimental values for
T, = 110 K, for d(Q~)/dT = 20 K, in the mean-field
region above T„' ' and for the zero-temperature
rotation" of the TiO, octahedra = 2, together with
the theoretical relations (3.16), (3.25), and

(4.6)

[In deriving (4.6), we have simply minimized (2.1),
neglecting the zero-point fluctuations of P, .) We
shall measure the displacement g in radians, so
that rn has dimensions of a moment of inertia. We
take the inertial mass associated with the soft

mode to be equal to that of two oxygen atoms, and
we use the Ti-0 distance of 1.95 A. Our results
are a„=2.7 x10' K/rad', b=4.6 x 10' K/rad', and

J, —a = 5.5 x10' K/rad'. With these values we find

6' =3.2 x 10'cn (T,/T)

x[1+2 x10 2[(T —T,)/T, ]) K3, (4.7)

where n is the ratio of C~, the displacement in the
defect cells, to the normal zero-temperature dis-
placement of 2'.

The value 5 = 10 K, for SrTiO, has been ex-
tracted by Axe, Shapiro, Shirane, and Bistes~
from their results on the temperature dependence
of the intensity of the central peak and also from
the temperature dependence of the soft-mode fre-
quency. Thus we get agreement with experiment
if co~=3.1 x10 '. Comparing (2.6), (2.7), and
(4.6), we find that in order to get a barrier & of
0.1 eV between alternate positions of the order
parameters in the defect cells, which would lead
to a central-peak width of order 10' sec ', we
need n = 5.1. We are thus led to estimate the
defect concentration in SrTiO, as

c=1.2x10~ . (4 8)

Naturally, in view of the oversimplified model we
have used, this should only be regarded as an
order-of-magnitude estimate.

A mean-field estimate of the effects of impuri-
ties presupposes that the distance between defects
is equal to or smaller than a few times the value
of the correlation length for the pure system, at
the transition temperature of the impure system.
Using numbers of Ref. 8, we estimate this cor-
relation length as (g/m6')'~'=30 A. The mean
distance between defects implied by (5.10) is
=200 A, however, which suggests that the nec-
essary concentration of defects may be rather
higher than 10-'.

Equation (4.7) predicts a slow temperature de-
pendence for 5', e.g. , a decrease of 33% in the
value of 5' as one varies T from T,+10 K to T,
+ 65 K. This variation has not been seen experi-
mentally. We feel that this discrepancy is probably
not too significant, however, in view of the many
approximations we have made.

In LaA10„5' is observed to be temperature in-
dependent within experimental error and has a
magnitude' =10 (K)'. The other parameters
are"" T, = 490 K, zero-temperature distortion
= 6', and dQ~ /dT = 8.5 for T & T, . We obtain 6'
= 1.88 x 10' cn', so that for cn' = 5 && 10 ' we get
the observed 5'.

In order to establish whether defects are indeed
responsible for the narrow central peak in the
perovskites, it is important to search for specific
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defects which strongly tend to stabilize domains
of the low-temperature phase, and which con-
sequently tend to raise T,. The authors are not
aware of any impurities or defects identified to
date as having the necessary properties.

V. "FROZEN" IMPURITIES

We now turn to the situations in which the im-
purity-cell displacements cannot relax on any ex-
perimental time scale. (This is a defect in class
2 of Appendix A, below. ) A frozen defect cell may
be realized within the model of Secs. II-IV if we
choose the barrier & in the defect cell to be
~ 50k~T„so that v ' is longer than 1 year. Al-
ternatively, a frozen defect cell may occur if
there is a frozen interstitial defect, in a site of
sufficiently low symmetry.

When frozen defect cells are present, we may
write the displacement field in any unit cell i, at
a particular instant of time, as the sum of two
terms

(I);(f) = 0;+ 5(I;(f), (5.1)

S~(Q, u&) =(2T j(()) Imp~(Q, (()) . (5.2)

A quasielastic scattering experiment wiH measure
a structure factor S(Q) which is the sum of two
terms )

S(Q) =S.(Q)+ S,(Q), (5.4)

&,(0) =j&,((),~) 2, = 7 i,(Q),

X,(Q)= firn X&(Q, ~) .

(5.5)

(5.6)

A. Elastic scattering

We first consider a case where the impurities
are sufficiently fa,r apart so that they can be
treated as isolated. Suppose that a.n impurity

where P,. is independent of time, while 5P, has
mean zero, and fluctuates about this mean value
on a time scale of the order of the soft phonon
frequencies. The neutron scattering structure
factor S(Q, e) is then the sum of the two contribu-
tions:

S(Q, (0) =2v5(a))S.(Q)+S,(Q, a)) .

The elastic scattering structure factor S,(Q),
which gives rise to a central peak of zero width,
is the Fourier transform of the time-independent
expectation value (((I),.)]),)), whereas S&(Q, &()) is the
Fourier transform of the time-dependent correla-
tion function ((&$,(t)6$~(t'))). The inelastic scat-
tering is related to the dynamic linear response
function X~(Q, (0) in the usual way,

sits at a lattice site i, with its displacement
frozen in one of the two values (]), =sC, . The im-
purity exerts a direct field on other cells in its
vicinity, given by

(5 'f)

In a linear approximation, this will induce a dis-
placement in the nearby unit cells, whose Fourier
transform is

+f- ~(Q)x (Q)
1 —]'~(Q)Xs(Q)[d'Q/(2&)'] '

where X~(Q) is the static linear response of the
pure system. To this must be added the contribu-
tion of the impurity cell itself,

4.(Q) =~c,e ""' . (5.9

For Q close to Q„and T close to T„ the quan-
tity Z(Q)1~(Q) is large compared to 1. Nonethe-
less, the integral over the Brillouin zone in the
denominator of (5.8) is not expected to be large,
and within the spirit of mean-field theory it is
proper to neglect it entirely. [Note that fJ(Q) d'Q
must vanish, since 4;;=0.] Adding up the con-
tributions of the independent impurities, we find
an elastic scattering

s,(Q) =(ls(@l')=~[& ~(Q)x (Q)]' (510)

This expression is equivalent to the formulas for
impurity scattering given in Befs. 8 and 23.

Note that E(l. (5.10) coincides with E(1. (3.29),
derived for the mobile-impurity case, when T
—T,» eT'„provided we make the approximation
Z(Q) =J,=x„. This is to be expected. Far from
T„or in the dilute limit, the interaction between
the impurities can be neglected. Hence the central
peak is the incoherent sum of the scattering from
the field about each impurity, in the relaxing case
as well as in the frozen case.

8. Effect on T

Close to the phase transition, it becomes of
great importance whether or not the defect cells
can relax. In the former case, the defect cells in
a given region will tend to order themselves in
such a way as to favor the same orientation of the
order parameter. This leads to a stabilization of
the low-temperature phase, and the enhancement
of T, that we have noted previously. In the ca,se
of frozen impurities, however, this cooperative
effect is absent; the impurities serve to increase
fluctuations, and therefore to decrease T„as the
effective stiffness constant a„+Sb(g', ) is increased.
We may note, in fact, that the contribution to (P )
computed from the linear approximation (5.10)
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diverges strongly as T T:

(5.11)

Thus me expect frozen defect cells to have a rather
drastic effect on the critical behavior of the sys-
tem.

The static critical behavior of a system with
these types of impurity has been considered re-
cently in a renormalization-group analysis by
Imry and Ma, ." (In the usual terminology, this
is a system with "quenched impurities" coupling
linearly to the order parameter. ) Imry and Ma
find deviations from the critical behavior of a
pure system for any spatial dimensionality d less
than 6. Although they have calculated critical
exponents to lowest order in & = 6 —d, these cal-
culations are not very helpful for d =3. Further-
more, Imry and Ma point out that in a model where
the order parameter has continuous symmetry,
such as the Heisenberg model, the quenched im-
purities mill destroy long-range order at any tem-
perature, no matter how low, for any d& 4. This
may in fact be occurring in '"nontransforming"

samples of V,Si.~ This argument does not apply
to the Ising model, or to a Heisenberg model with
cubic anisotropy. Nonetheless, me may expect
that frozen impurities will have a strong tendency
to depress T, belom the value for the pure sys-
tem. The dependence of the total scattering cross
section S(Q) on T —T, may also be very different
from the pure system, close to T, .

C. Effect on phonon response

In addition to the temperature dependence of the
elastic scattering cross section, we would like to
investigate the questions of the effect of impurities
on the phonon frequencies and on the total meight
of the inelastic phonon scattering.

Again it is clear that when the impurities are
far enough apart, and T is mell above T„ the ef-
fect of a frozen impurity must be the same as that
of a relaxing defect cell whose hopping time is
very slow compared to the phonon frequencies.
In the spirit of the mean-field theory of the pre-
vious sections, we mould estimate the effects of
the frozen impurities by simply assuming that 5P,
is constrained to be zero on the impurity sites,
and assume that the dynamic effective field on any
other site is therefore reduced by the factor 1 —c.
This will shift the phonon frequencies upwards,
and decrease the response function X~ by a small
amount, proportional to the concentration c, which
is the same as we have computed in Sec. ID.
Examination of the calculations of Sec. III will
show, homever, that this stiffening is a relatively

small effect compared with the raising of T, by
the defects in the relaxing case. In fact, me found
that the temperature T, —cT', at which [X~(Q,)] '
extrapolates to zero, is only slightly below the
transition temperature T', of the pure system,
while T', mas much further below the actual tran-
sition temperature (i.e. , T' = dT, /dc) In t.he
frozen case, however, the actual transition tem-
perature of the impure system mill be heloise To.
Therefore, if temperature is measured relative
to the actual transition temperature in each case,
we expect that y &' for the frozen defect cells
mill be below the values in the relaxing case.
(Compare Figs. 1 and 3.) If the two cases are
plotted on the same absolute temperature scales,
so that the curves match far from T„ then X&'
mill be higher for the frozen case in the vicinity
of T,. At the present time it is not entirely clear
whether X~' will remain finite at T„ for the frozen
case, as in a first-order transition, or whether

X ~' will approach zero as some power of T,. It
is also unclear how the ratio S~(Q)/S, (Q) will
behave.

It is interesting to speculate on the frequency
dependence of S~(Q, &0) for the frozen-impurity
case. For temperatures some distance below
T'„but still above the actual transition tempera-
ture, it seems reasonable to picture the material
as a series of domains, with the orientation of
the order parameter in any region determined by
the orientation of the nearest impurity, or per-
haps by a small cluster of impurities. (Recall
that we are discussing a situation in which there
is a small density of impurities, each of which is
strongly coupled to the local order parameter. )
It seems plausible that below T', , the domain walls

yo
C

PIG. 3. Schematic plot of the inverse of the total form
factor S(Q()), and of the inelastic contribution S&(QO), for
a system with "frozen defect cells" of type 2. The dashed
curve indicates IS(QO)] ' for the pure system. Dashed
curve indicates possible temperature dependence of the
squared phonon frequency v& . Curves in the region T
& T~ should be regarded as highly speculative.
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may become sharp on the scale of the domain size,
and that mithin a domain, the magnitude of the
order parameter may be roughly equal to its value
in the pure system. If this is the case, we would

expect to see a phonon spectrum characteristic
of the pure material, which means that the phonon
frequencies mill rise and the corresponding neu-
tron scattering intensity decxease, as the tempera-
ture is lowered further. There mould be an addi-
tional inelastic scattering, however, from motion
of the boundaries betmeen domains. This might
mell be an activated process whose frequency
mould decrease as T decreases. The structure
factor S(k, &o) would then consist of three parts:
an elastic scattering peak, of zero width, mhose
amplitude diverges as T, is approached from
above (assuming a second order transition); a
pair of phonon peaks mhose frequency at first
decreases with decreasing temperature, but then
begins to increase before T, is reached; and a
second central peak that separates from the phonon
peaks and continues to from narrower as T, is
approached. It is also possible that in some cases
the phonon peaks will be overdamped, which would

complicate the identification of this situation.
The authors are not aware of any experimental

results which suggest that frozen defect cells,
rather than relaxing defect cells, are responsible
for a central peak in any material. Nonetheless,
this possibility should be borne in mind, and fur-
ther theoretical and experimental investigation of
this possibility mould be worthwhile.

VI. BEYOND THE MEAN-FIELD APPROXIMATION

In order to obtain the results of Sec. III, me
mere forced to make a number of drastic simplify-
ing assumptions. Our simple mean-field theory is
incorrect on tmo counts. First, we have not cor-
rectly treated the nonlinear interactions between
thermal fluctuations, so that we do not obtain the
proper critical behavior even for the pure sub-
stance. Second, me have not correctly treated the
multiple scattering of phonons by the impurities,
and we would not obtain a precisely correct phonon
spectrum even for a model in which anharmonic
forces could be neglected. In the present section
we will discuss the degree to which we may have
confidence in the qualitative features predicted by
the mean-field solution.

A. Dynamics of the pure system

Our first concern is the extent to which the
mean-field solution for the pure system is qualita-
tively correct. %e shall argue that the mean-field
solution is quite similar to what one would expect
for this system based on renormalization-group

considerations and the universality hypotheses for
dynamic critical phenomena, and the ref ore it
seems very unlikely to us that an exact solution
of the model without defects could reproduce the
qualitative features of the central peak in SrTi03.

Universality hypotheses state that the asymp-
totic critical behavior of a system is independent
of most details of the Hamiltonian, and is deter-
mined by certain overall properties, such as
spatial dimensionality and order-parameter sym-
metry, 42 and {for dynamic properties) conservation
laws and Poisson-bracket relations among the
order-parameter and conserved quantities. 4' Al-
though the universality hypotheses are by no means
rigorously proved, they tend to be supported by
numerous pieces of evidence, including the sta-
bility of the renormalization-group results to
small perturbations, results of high-temperature
series expansions for models on various kinds of
lattices, and experimentally observed similarities
in the critical behavior of systems which are sup-
posed to fall in a given "universality class. "

Renormalization-group calculations, which have
now been carried out for a large variety of dy-
namic systems, have been based for the most part
on an expansion in the variable & =4 —d, where d
is the spatial dimensionality. In addition, the
calculations are carried out for continuum mod-
els, with weak quartic interactions. The predic-
tions of these calculations are reinforced, how-

ever, by their good agreement with Monte Carlo
calculations and high-temperature series expan-
sions for the two-dimensional kinetic Ising mod-
el.~~'4' %e may note that an Ising model is the
extreme anharmonic limit of the phonon model
of Sec. II, and is, in a sense, further from the
models studied by the renormabzation group than
the displacive system. It also seems unlikely that
the renormalization- group calculations should
work at d = 2 and near d =4 —&, and yet be radical-
ly w'rong at d=3.

According to the universality hypotheses for dy-
namic critical phenomena, 4' we expect the asymp-
totic critical behavior of the pure system to be
the same as that of a purely relaxational continuum
model (time-dependent Ginzburg-Landau model)
with energy conservation, such as has been studied
by Halperin, Hohenberg, and Ma. ' They find a
relaxation rate for critical fluctuations which we
may write in the form

where ys is the static linear response function,
qo is a constant, and the exponent x is slightly
greater than 1. The line shape for critical scat-
tering is I orentzian for d-4, but me expect to
find deviations from I orentzian behavior at d =3,
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i~ (Q, ) =0 7Drx', . (6.4)

where D~ is the thermal diffusion constant at the
temperature in question, and ~ is the reciprocal
of the correlation length. Using the notation of
Sec. III, we may estimate the thermal diffusion
constant outside the critical region. Since a typi-
cal phonon velocity is given by v = (g/m)' ', and
a typical phonon relaxation rate r '=r/m, we
estimate"

D, = 3c'r='3g/r

In the mean-field region, we also have

(6.5)

(6.6)

so that comparing (6.4)-(6.6) with (6.1), we would
again estimate that q, should have the order of
magnitude of y '.

We emphasize that the relaxation rate for the
pure system predicted by (6.1) with q, =r ', is not
sma, ll compared to the soft phonon frequency ex-
cept very close to T,. For example, the predicted
width would be of order 1 meV for SrTiO, at
T —T, = 10 K. This relaxation rate clearly has
nothing to do with the observed central peaks,
which are much narrower.

It is interesting to note that molecular-dynamics
calculations" for a (pure) two-dimensional model
of a system near a displacive transition are in
substantial agreement with this picture. Although
the phonon spectrum was found to have a number

with increased weight in the wings of the line.
The mean-field-theory predictions for the pure

system may be obtained by setting the impurity
concentration c equal to zero in the results of Sec.
III. We see that the phonon peaks become over-
damped for T sufficiently close to T, and Q close
to Qo. There is then a single central peak whose
width is given by

(6.2)

This can be fit neatly onto the asymptotic critical
behavior (6.1) if

(6.3)

[More accurately, we should have q, = r 'Xo ',
where X, is the value of the Xz(Qo) at a temperature
where deviations from mean-field exponents first
become important. ] This behavior is also in
agreement with renormalization-group calculations
of a damped phonon model by Murata. 4'

For an Ising-like transition (n = 1), where the
specific heat diverges, an alternate estimate of
the constant g, is suggested by the renormaliza-
tion-group analysis of Ref. 46. In the asymptotic
critical region, the relaxation rate i+~(Qo) is ap-
proximately given by"'"

of interesting features worthy of further study,
the dominant scattering for Q =Qo, and T slightly
above T„may be described as a single over-
damped mode. Since the published results'~ do
not give the temperature dependence of the central-
peak width in the displacive case, we could not
make a detailed comparison with (6.1) and (6.3).
The magnitude of the relaxation rate seems to be
in qualitative agreement with this estimate how-
ever.

We also feel that the results of Aubry, of Krum-
hansl and Schrieffer, "a,nd of Varma" for a one-
dimensional system lend support to our picture of
relaxation in a pure system. The width of the
central peak at low temperatures in their model
may be written in the form

Fg ~VK, (6.7)

where v is a typical velocity of motion of a domain
wall. The fact that F, becomes extremely small
at low temperatures is simply due to the fact that
the correlation length w

' grows exponentially with
1/T, in one dimension. (The velocity v is a much
slower function of temperature. ) The occurrence
of the velocity v in (6.7) is a consequence of the
peculiarity of these one-dimensional models, in

which one of the solutions of the resulting non-
linear equations of motion has a stationary solu-
tion in the frame traveling with velocity v. In two
and three dimensions such solutions are not ob-
tained (except possibly for very specia. l kinds of
nonlinearities). In three dimensions we might ex-
pect a diffusive motion of "domain walls, " just
above T,. This would lead to relaxation rate of
the form Dv' for T & T„where D is a diffusion
rate for a domain boundary, and we choose the
domain size to be of the order of the correlation
length ~ '. In the pure system, where there are
no defects to pin the domains, we might expect
that the thermal diffusion constant D~ appearing
in (6.4) is not a bad estimate for D. On the other
hand, we may note that even if (6.6) is used, then

F~ will not be pa, rticularly small compared to the
soft phonon frequency, if i) is comparable to the
sound velocity. Molecular- dynamics calculations
on one-dimensional systems" are in general
agreement with the analyses of Refs. 26 and 27.

A number of authors" "have performed ap-
proximate microscopic calculations of one kind or
another for three-dimensional (defect-free) mod-
els, in the hope of explaining the observed central
peaks at structural transitions. We shall not dis-
cuss the merits of these various calculations here,
but shall simply reiterate that to the best of our
knowledge, none of these calculations have yielded
a central peak that is sufficiently narrow to ex-
plain the observations in SrTiO, .
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8. System with defects C. Static properties

It seems clear that certain qualitative features
of the mean-field solution for our model with re-
laxing defect cells are independent of our approxi-
mation —e.g. , the simultaneous existence of a nar-
row central peak in S(Q, ~}whose frequency scale
is set by the hopping rate v, and a "high-frequen-
cy" part, whose frequency scale is set by the
phonon frequencies. Some important quantitative
features which will not be correct, however, are
the precise behavior of the total weight X~(Q) for
T - T, and Q —Q, ; the precise behavior of the
central-peak width as T- T„ the exact shape and
overall width of the phonon part; the precise
amount of weight left in the phonon part [i.e. , the
quasistatic susceptibility ii, (q)].

These questions might be answered in part by a
more realistic treatment of the phonon system.
(For example, a self-consistent phonon approxi-
mation, " taking proper account of the root-mean-
square fluctuations from all the phonon modes
throughout the Brillouin zone, might give consid-
erable improvement over the approximations of
Sec. III, for the transition in the pure system. )
Similarly, the scattering of the phonons by the
defects might be better treated by a more sophis-
ticated approximation, such as the coherent-po-
tential approximation. " Alternatively, we may
also gain some insight into these problems by
comparing with renormalization- group calcula-
tions, which should describe the asymptotic be-
havior sufficiently close to T,.

We shall review here some of the relevant re-
sults of renormalization-group calculations, for a
system with defects of type 1 or 3 according to the
classifications of Appendix A. The case of a sys-
tem with "frozen defect cells" (type 2) was dis-
cussed in Sec. V, and will not be included here.

The first of the questions posed above, the be-
havior of y~(Q), has been studied rather extensive-
ly in the recent past, using renormalization-group
techniques. Here it is necessary to distinguish
the "completely mobile" cases (types la and Sb)
from the "trapped" cases (Ib and Sb). (See Table
I. According to the terminology current in the
renormalization-group papers the trapped cases
would be classified as "quenched impurities, with
a quadratic coupling to the order parameter ''5x 5'~

It should make no difference for the ultimate
critical behavior of Xs whether the defect unit cells
are weakly perturbed (Sa, Sb) or strongly per-
turbed, as in the relaxing cases (Ia, Ib).

The completely mobile case is relatively simple.
The impurities cause a shift in T„but no change
in the asymptotic critical behavior of }i&(Q) rela-
tive to that of the pure system, provided that
T- T, is corrected to refer to measurements at
constant chemical potential rather than constant
impurity concentration. Thus, for a system with
a scalar order parameter, we expect Ising-like
behavior" [e.g. , }t,(Q,) ~(T —T,) "']. In SrTiO„
the order parameter has six possible orientations,
which would be classified as a Heisenberg-like
system (n =3}with strong cubic anisotropy [i.e. ,

terms of the form+„, P' and+, , (q P )']. Ul-
timately this should lead to Heisenberg behavior
[e.g. , }i&(Q,}~(T- T,) "']; however, the cubic
anisotropy is only weakly "irrelevant, " and devia-
tions from Heisenberg behavior would not be sur-
prising in any accessible temperature range. "

The presence of "quenched" impurities (cases
Ib or Sb) is expected to modify the asymptotic
critical behavior, in the case of a scalar order
parameter. The renormalization-group leads to a
fixed point whose exponents differ from the ordi-

TABLE I. Classes of defect cells.

Class Description

1a
1b

"Relaxing defect cells"—asymmetry is strongly favored
but equilibrium is maintained via slow hopping between
the various orientations

"Mobile"—defect may hope from cell to cell
"Locally relaxing" —defect trapped in given unit cell

"Frozen" defect cell—asymmetry is frozen in
Weakly perturbed defect cell—symmetry is maintained

via rapid vibration between possible orientations
"Mobile"—defect hops from cell to cell
"Quenched defect"—defect trapped in a given unit cell
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nary Ising values. "" However, the "crossover
exponent" is given by the specific-heat exponent
o. , which is small (o. = —,'). Thus the system would

probably always be fairly close to the pure-Ising
fixed point, over any accessible temperature
range, if the impurity concentration is small.

In the Heisenberg or cubic case, the asymptotic
behavior depends on the symmetry of the site, or
group of sites, at which a given impurity is trap-
ped. If the impurity site has the fuLL cubic sym-
metry, the crossover exponent is again n, which
is now negative, so that the impurities are ir-
relevant. If the impurity introduces a local "uni-
axial" anisotropy, e.g. , a perturbation of the form

+ ()2 —2 (I),', the cros s over exponent is positive,
and the asymptotic critical behavior is changed by
the presence of the defects. It has been suggested"
that some form of "smeared" transition will re-
sult in this case.

It may be noted that lines of defects, or other
strong spatial correlations among defects, may
also enhance the importance of defects, and wiLL

also lead to smearing of the transition.

D. Dynamic properties

Grinstein, Ma, and Mazenko53 have given a re-
normalization-group treatment of the critical
dynamics of a model with quenched impurities,
which couple quadratieally to the order param-
eter and do not break the symmetry of the high-
temperature phase. They have developed recur-
sion relations analogous to those employed in Ref.
46 to obtain results correct to lowest order in
4 —d for systems without impurities. They find a
relaxation rate for the order parameter of the
same form as (6.1), with an exponent x which is
again close to 1. The precise value of x may differ
somewhat from that in the pure case, as was ob-
served for the static critical exponents.

Invoking the universality hypothesis, we would
like to apply these results to our cases 15 and 3b,
where trapped defects are present. For the case
of weakly perturbed defect cells, 35, we would
estimate q, = y ', as in the pure case. For the
strongly coupled case of trapped relaxing defect
cells, 1b, we could apply the results of Grinstein
et al. to the width of the central peak. By matching
onto the mean-field results of Sec. III, we esti-
mate

(6.9)

(6.10)

Unfortunately, these results do not provide
answers to some of the most, interesting questions

in the strongly coupled case (1b)—the questions of
the weight and shape of the (nondiverging) phonon
contribution to S(Q, z). At this point we can only
offer a guess as to the best way to extend the re-
sults of Sec. III. The simplest estimate for the
phonon contribution to the susceptibility is

where cT' must be fit experimentally, if neither
c nor T' is known precisely. Further, we propose
that the characteristic phonon frequency may be
approximated by the form (3.24) with

nzA = Xp'. (6.12)

The critical dynamics of a system with mobile
defects (la and 3a) may also be discussed using
the renormalization group. From the point of view
of the universality class expected for the ultimate
critical behavior, in the limit T -T„ these cases
should be described by the model used for the Pure
system, model C of Ref. 46. The relevant con-
served field is now the local concentration of
impurities, rather than the energy density. Inso-
far as the diffusion rate for impurities is very
slow compared to the relaxation rate for the order
parameter, we are forced to consider the case
where the parameter p,, of Ref. 46 is equal to
zero. In this limit one encounters difficulties in

applying the renormalization group —the usual
recursion relations are probably not correct to
lowest order in 4 —d. (These problems are dis-
cussed more fully in Ref. 48.} The overall be-
havior of the system seems to be quite similar
qualitatively to the quenched-impurity case, and

we would propose that the same approximations
be used to estimate the results; i.e. , we would
use Eqs, (6.7}-(6.11}to describe the case 1a, of
mobile relaxing defect cells, while the weakly
perturbed case 3a would be described by (6.1) and

(6.3).
When the spatial correlations or symmetry-

breaking properties of trapped defects are such
as to lead to a "smeared transition, " as discussed
above, there will be some temperature region
above the "average" T, in which relatively large
regions of the system are frozen into the low-
temperature phase. We would expect to see a very
narrow central peak in this temperature range
even if the impurities tend to lower the average

C

Note added in proof: Recent EPB results on
Cr" substituted for As in KD,AsO„ indicate that
the ion undergoes a spontaneous displacement,
together with a tilt in orientation of the paramag-
netic d-orbital, in a direction which couples lin-
early to the order parameter of the ferroelectric
transition (T, =140 K). The hopping time between
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different configurations is found to be slower than
10 ' sec for temperatures up to 300 K. [K. A.
Muller and W. Berlinger (unpublished), and private
communication].
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APPENDIX: CLASSIFICATION OF DEFECTS

The manner in which an impurity or defect is
coupled to the order parameter of a phase transi-
tion will depend on the site it occupies. At first
sight, we may divide the impurity sites into two

types:
A: If the impurity sits at a site which properly

breaks the symmetry of the high-temperature
phase, it will couple linearly to the order param-
eter. There will then be an induced nonzero value
of the order parameter in the neighborhood of the

impurity, even above T„which will give rise to
an elastic scattering peak whose magnitude in-
creases as T- T„ for wave vectors near the

superlattice vector of the ordered phase.
B: If the impurity sits in a site which has a, high

symmetry, then there will be no linear coupling to
the order parameter, and the order parameter
will not normally have a static expectation value
above T, in the vicinity of the impurity.

It may be noted that in SrTiO, any substitutional
impurity or vacancy will fall into class B (see Fig.
2). An interstitial impurity will also not couple
linearly to the order parameter if it sits in a high-

symmetry site, such as U in Fig. 2. However, if
the impurity sits at the interstitial sites V or V',
then there will be a linear coupling to the order
parameter as indicated. '~

The distinction between the two types of impurity
sites may not be as clear cut as it seems, however.
For example, an impurity at a symmetry site
(type B) may so change the spring constants in
its cell that the high-temperature phase is un-
stable, and the low-temperature phase is strongly
favored. In that case there will be a spontaneous
displacement of the atoms in the vicinity of the
impurity into one or another of the possible con-
figurations of the low-temperature phase, which
may be quite stable even above T,—i.e. , the con-
figurations may be separated from the other pos-
sible positions by an energy barrier a large
compared to kT. Furthermore, any impurity
(type A) which likes to sit at the symmetry-break-
ing site V of Fig. 2 can equally well sit at the
physically equivalent site V'. If the barrier ~ for
hopping from site V to site V' is not too large

(4~ 40kaT), then the impurity will spend an equal
amount of time on each of the possible sites, and
the time-averaged value of the order parameter
will be zero. (Note that barrier 6 may be con-
siderably smaller than the barrier preventing an
impurity from diffusing from one unit cell to the
next. )

It is clear that once one takes into account the
possibility of impurity hopping, or spontaneous
symmetry breaking within the defect cell," the
distinction between type-A impurities and type-B
impurities is not in itself important. More impor-
tant are the time-dependent properties of the de-
fect cell as a whole. A more complete description
would be as follows:

A1: The impurity goes into a symmetry-break-
ing site but can hop to a site of the opposite sym-
metry within a time short compared to the dura-
tion of the experiment,

B1: The impurity goes a prior into a symmetric
position but changes the local spring constants so
that spontaneous symmetry breaking takes place
locally, with an energy barrier 6 that is large
compared to T„but small enough so that hopping
between various configurations can take place dur-
ing the course of the experiment. Note that in this
case it is not necessary for the impurity itself to
hop.

We shall group type A1 and B1 impurities to-
gether into the class of "relaxing defect cells"
(class 1).

Continuing with our description of impurity cells,
we list:

A2: The impurity is "frozen" in a symmetry-
breaking position and cannot move to another site
during the course of an experiment, for tempera-
tures of the order of T,.

B2: Although the impurity occupies a symmetric
site, it favors the low-temperature phase so
strongly that the local spontaneous symmetry
breaking is frozen for temperatures of the order
of T„and cannot readjust during the course of
the experiment.

We shall group together type-A2 and -B2 impur-
ities into the class of "frozen defect cells" (class
2).

Finally we may consider defects such as follows:
B3: The impurity occupies a symmetric site and

either favors the high-temperature phase, or
favors the low-temperature phase only weakly.
The local symmetry, above T„ is broken only by
fluctuations with the frequency scale of the pho-
nons, as in the pure system, and there will be no
quasistatic expectation value of the order param-
eter in the vicinity of the impurity.

We shall classify this kind of defect cell as
"weakly perturbed" (class 3).
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We may further subdivide the relaxing and

weakly perturbed defect cells (classes 1 and 3)
into a "mobile" situation (denoted 1a and 3a), in

which the impurity is able to diffuse freely from
one unit cell to another during the course of an
experiment, and a "trapped" situation (denoted
1b and 35), in which diffusion from cell to cell ma, y
be neglected. The distinction between mobile and
trapped is unimportant in our mean-field-theory
approximation; however, the two situations are
expected to lead to differences in the precise form
of the correlation functions very close to T„

where renormalization-group techniques must be
used.

A summary of our classification scheme is given
in Table I. We have seen in the text that a narrow
central peak is produced in both the relaxing case
(class 1) and the frozen case (class 3). The be-
havior near the transition is rather different in

the two cases, however, and we have therefore
discussed these situations separately. A narrow
central peak would not be obtained for the weakly
perturbed case (class 3), at least within the mean-
field approximation.
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