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Internal energy versus moment for ferromagnets and pyroelectrics
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Since the internal energy E is a monotonically increasing function of the temperature T, the moment M(T)
can be expressed as a function of internal energy E. The corresponding form of E(M) is focused on in this

paper. For ferromagnets, the two-dimensional Ising model is used to obtain the exact form of E(M) and this
is discussed both near T = 0 and near the critical temperature T, . In three dimensions, we are only able to
discuss the forms of E(M) near T = 0 and T = T, . For low temperatures, spin-wave theory readily yields the
result that, for insulating ferromagnets, hE = E —E(0) is proportional to (hN)'~ with hM = M(0) —M(T)
while for the metallic case hE ~ (hM)"'. Though the theory is much less complete than for ferromagnets,
some results are very briefly discussed for pyroelectrics.

I. INTRODUCTION

The present paper is concerned with exploring
the relationship between the internal energy E(T)
and the moment M in systems such as ferromag-
nets and pyroelectrics. Because the first-princi-
ples theory of pyroelectricity is still lacking the
emphasis is predominantly on ferromagnets, with
some brief comments on pyroelectrics.

The reason for such a relationship between E(T)
and the moment M can be simply stated as follows:
E(T) is accessible by experiment, say via the
specific heat c„. Since c„ is positive, F is a mono-
tonically increasing function of T. Consequently,
we can formally express T uniquely as T(E) Then.
we can rewrite the moment M(T) as a function of
the internal energy F.. It is such a discussion in
the (E, M) plane that is the focal point of this paper.

Though naturally we are concerned basically
with three-dimensional systems, we shall make
the above considerations precise by starting with
the two-dimensional Ising model, for which we
have the exact Onsager solution.

II. INTERNAL ENERGY VERSUS MOMENT FOR
FERROMAGNETS

first kind.

Also, the magnetization & is given in terms of
its zero-temperature value M(0) by

M(T) =
M(0)(1 —csch~2K)'/8, T & T,

(2.3)

Here m is given in terms of 0 by

~ =2(1 cs) / /[(1 cs)~/2+1] (2.5)

Evidently then Eqs. (2.4) and (2.5) give precise
expressions to the philosophy outlined above. The
form of the relation for F. as a function of 6 = 1-g
is plotted in Fig. 1.

It will be convenient at first to work with the re-
duced magnetization o =M(T)/M(0). In the present
case it is simplest to eliminate T in favor of F.' by
using Eq. (2.3) in (2.1).

Then we find straightforwardly that

E(M) = E(c)

g[1 + (1 c8)1/2]1/2

x(1+ (2/v) (2[1+(I- o')' '] ' —I)K,(m)).
(2.4)

A. Two-dimensional Ising model

The exact results of the two-dimensional Ising
model can be summarized as follows': If J mea-
sures the strength of the exchange interaction, the
internal energy E(T) is given by

E(T) = -J coth 2K[1 + (2/v)(2 tanh' 2K —1)K,(m)],

(2. i)

B. Behavior near T,

While we have in Eqs. (2.4) and (2.5) the behavior
of E for all 0 between 0 and 1, it is of interest in
what follows to discuss the form of E(v) around T„
when M(T), and therefore c, tends to zero. We
can either develop the above equations for this
case, or we can note the well-established results
for (a) the logarithmic singularity in c„, i.e. ,

where

m =2 sinh2K/cosh'2K, K =J/ksT (2.2)

c„-ln(T, —T),
and (b) the behavior of c,

(2.6)

and K, (rpg) is the complete elliptic integral of the o ~(T, —T)"' (2.7)
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4E = E(T) —E(0)

=const T' '+(higher-order terms) . (3.2)

The magnetization follows the Bloch T' ' law, and
consequently we ean write the reduced magnetiza-
tion as

o =1-M(T)/M(0)

= const T'~' +(higher-order terms) . (3.3)

From Eq. (3.2), at sufficiently low temperatures,
T(E) ~(aE)'~'. This together with Eq. (3.3) gives

AE =const (AM)' '+(higher-order terms in hM),

(3.4)

where hM =M(0) —M(T). This is the desired re-
sult for insulating ferromagnets.

FIG. 1. Plot of internal energy F./J vs 1 —0 =-E,
where 0 is the reduced magnetization. This is the exact
result of the two-dimensional Ising model. Note the
slope of this curve is finite at &=0 (Ref. 2).

Now

(2.8)

The above results depend solely on collective
magnetic exeitations, We now consider the case
of the metallic ferromagnet where other excita-
tions are involved. In these materials at suffi-
ciently low temperatures the specific heat is domi-
nated not by the contribution from the spin-wave
excitations but by that from the conduction elec-
trons. This contribution is proportional to T and
hence the internal energy EF. is given by

and since BE,~sT is given by (2.6) it is straightfor-
ward to verify that

hE ~ T' + (higher-order terms) . (3.5)

III. THREE-DIMENSIONAL FERROMAGNETS

A. Ferromagoets

J. Insulating ferromugnets

In this case at low temperatures the we11-estab-
lished spin-wave theory gives us the results we
desire. Since the spin-wave energy is proportional
to 4', at long wavelengths, in contrast to the lin-
ear 4 dependence of the energy of the acoustic pho-
nons, the specific heat in an insulating ferromag-
net is dominated by the spin-wave excitations.
Thus we can write

c ~T'~' ~ (higher-order terms). (3.1)

Hence the departure of the internal energy from
E(0), its zero-temperature value, is given by

E(T) —E(T,) - 8a' Ino —cr'.

In Fig. 1, we actually have plotted E(M) as a func-
tion of 6 =1-0.

All these results are exact for the two-dimen-
sional Ising model. Naturally, in three dimen-
sions, we have no exact solutions, but for the
limiting cases of low temperatures and of T near
T, we ean again make precise statements for
ferromagnets.

B. Critica1 behavior of ferromagnets

In terms of the usual critical indices, we can
write the specific heat c as

c~(T, —T) "

a.nd the magnetization as

(3.7)

(3.8)

sufficiently near the critical temperature. Thus
the approach of E to its value E(T,) at the critical
point is given by

E —E(T.) ~(T, —T)'

and hence

The magnetization, however, is still. given by the
Bioch T'~' law, ' and therefore, since from (3.5) it
follows that T(E) ~(AE)'~', we get from (3.1) a re-
sul. t different from that of the insulating ferromag-
net, that at low temperatures (small AM)

sE =const~(LM)' '+(higher-order terms in bM).

(3 8)
We note that in the (E,M) plane both for insulating
and for metallic ferromagnets the internal energy
approaches its zero-temperature limit with zero
slope.



E-E(7 ) -Qx-a)/8 (3.10)

IV. COMMENTS RELATED TO PYROELECTRICS

Though the first-principles theory is much less
well developed than for ferromagnets, we feel it

While in molecular-field theory we have n =0,
p = —,', p in practice seems near —,', while o. -0.1 or
0.2. Therefore E approaches its value E(T,) at T,
with zero slope, as also is the case in molecular-
field theory.

Though the exponents ~ and P may turn out to be
different for insulating ferromagnets on the one
hand, with shor t- r ange exchange inter actions, and
for metallic ferromagnets on the other, with
longer-range Rudermann-Kittel- Kasuya- Yosida
exchange forces, the arguments of this section
make it quite clear that in three-dimensional ferro-
magnets the internal energy E as a function of mo-
ment M approaches its values E(T,) and E(0) with
zero slope. This is the most important qualitative
conclusion we reach here for ferromagnets, wheth-
er insulators or metals.

Thus the assumption of rigid ions leads to a cusp
at b, M =0. From the above conclusions for ferro-
magnets we anticipate that a proper treatment of
the electronic deformability as the ions move will
remove this cusp and lead to zero slope. The argu-
ments of the present paper strongly suggest that in
pyroelectrics

hF ~(AM)"'', with n&0. (4.2)

Thermodynamic inequalities yield z ~ 1. With c„
~T' at low temperatures, the pyroelectric coeffi-
cient d(nM)/dT ~T'~~"" '. If n&0, the primary
pyroelectric coefficient always dominates the sec-
ondary one, which is proportional to T', at suffi-
ciently low temperatures.

is of some interest to comment finally on the rele-
vance of the above approach to pyroelectrics. For
these materials a satisfactory phenomenological
argument exists for the rigid-ion model. This
yields

(4.1)

'See, for example, J. Cal. laway, Quantum Theory of the
Solid State (Academic, New York, 1974), Pt. A, p. 132.

Dr. J. Stephenson has drawn our attention to the fact
that for any Ising lattice the low-temperature expansions
of azf=Z(r) -E(0)] and a[=I(0) -M(V)] lead to aE~S,
for small A. See, Phase Transitions and Cmtica/ Phe-

nomena, edited by G. Domb and M. 8. Green (Academic,
New York, 1974), Chap. 6.

30f course, Stoner excitations contribute a higher-order
term proportional to T2.
P. J. Grout, N. H. March, and T. I.. Thorp, J. Phys.
C 8, 2167 (1975).


