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Effect of potential scattering on the low-temperature spin-fluctuation resistivity
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%e have evolved a spectral density function for the distribution of spin fluctuations, A(q, o)), which is
expected to be valid for all values of q and ao for an exchange-enhanced system containingrandomly
distributed scattering centers. Using this function we have calculated the eAect of the potential scattering on
the magnitude of the coefficient of the T' term which occurs in the electrical resistivity of both uniformly and
locally exchange-enhanced systems. Contrary to what might have been presumed, we find that potential
scattering increases the T' term. In most cases this increase is a small fraction of the original T' term. For
example, we calculate that the increase in the T' term in the spin-fluctuation resistivity of Pd»kh5 will be
only —2% as a result of the potential scattering. Also, the increase in the additional T' contribution which
results from the introduction of Ni into this alloy will also be only —2% as a result of the potential scattering
in the Pd95Rhg host.

I. INTRODUCTION

The application of many-body techniques to ex-
plain the electronic properties of the nearly ferro-
magnetic metals Hh, Pd, a,nd Pt and their alloys
has greatly increased our understanding of these
materials. Many of their electronic properties
(e.g. , magnetic susceptibility, specific heat, and
electrical resistivity) can be accounted for by a.

model which explicitly includes a strong intra-
atomic Coulomb interaction between the d-band
electrons of opposite spin. For example, early
theoretical work predicted that the intra-atomic
Coulomb interaction would enhance the spin fluctua-
tions in the d-band of these materials and that an
enhanced T' term in the electrical resistivity at
low temperatures would result' ' from conduction
electrons scattering from these exchange-enhanced
spin fluctuations. The good quantitative a,greement
between theory' and the experimental work' on the
PdNi system seemed to confirm the validity of the
model. However, the model also predicted that the
addition of Rh to the PdNi system would lead to
a further enhancement of the T' term, but recent
experimental mork' ' showed that this wa.s not the
case. One possible reason for the discrepancy be-
tween the prediction of the model and the results
of the experiment is that the model has neglected
the effect of the increased potential scattering that
occurs as a result of the Rh addition. It is the ef-
fect of this potential scattering on the T' term in
the spin-fluctuation resistivity that we discuss in
this paper.

The strength of the exchange enhancement in
these nearly ferromagnetic materials is reflected
by the Stoner enhancement factor, which is defined
as S= Xiy„where y is the experimentally de-
termined static paramagnetic susceptibility and X,

is the "bare-band" susceptibility determined from
the density of states. In the random-phase approxi-
mation the Stoner enhancement factor is given by'
8= 1/[l —UX(Er)] where Uis a parameter which
is a measure of the strength of the intra-atomic
Coulomb interaction between the d-band electrons
of opposite spin and N(gz) is the density of states
at the Fermi level (E~) per spin state per atom.

Gf the nearly ferromagnetic metals Pd, Pt, and
Rh and their alloys with each other, the alloy
Pd„Hh, has the highest magnetic suscepti-
bility. The increase in the susceptibility of this
alloy over that of pure Pd is thought' to be the re-
sult of the combination of two features: an increase
in the density of states at the Fermi level, and a
local enhancement of the susceptibility a.ssociated
with the Rh sites. Thus, the alloy is expected to
have a higher Stoner enhancement factor than Pd,
since both the average interaction parameter g
and the density of states are greater for the alloy.
As a result of the increased enhancement,
Pd958h5 might very we 11 be expected to act as a
superenhaneed Pd, exhibiting strong spin-fluctua-
tion effects. For example, the low-temperature
T term of the electrical resistivity of this a.lloy
would be expected to be greater than that of Pd.
Also, the addition of a dilute amount of Ni to a
Pd„Bh, alloy mould be expected to yield even
larger local enhancement effects than were found'
for the addition of Ni to Pd. However, the experi-
mentally determined T' coefficient of Pd»Hh,
is not larger than that of Pd; it is in fact nega-
tive. Also, the addition of Ni to this alloy does not
produce a larger increase in the T' term than does
the addition of Ni to Pd; it produces only a, com-
parable increase. ' '

It has been suggested' that one possible reason
for a reduced T' term in the Pd-Rh system may be
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that the large amount of potential scattering that
comes from the Rh atoms dampens the spin fluctua-
tions and thereby reduces the magnitude of the T'
contribution from spin fluctuations. However,
there appears to have been no previous calculation
of the effect that potential scattering mill have on
the T term of a unifoxmly exchange-enhanced sys-
tem.

In Sec. II me present such a calculation. First, we
we use the model of Mills and Lederex' to obtain an
expx ession for the T ' tex m that appears in the low-
temperature xesistivity when conduction electrons
scatter from spin fluctuations. In this Inodel, a-
bend conduction electrons scatter from spin

fluctua-

tionss in the d bRnd viR tI16 8-d exchange lnterRc-
tion, and the coefficient of the T' term depends
directly upon the energy-momentum distribution
of the spin fluctuations. The effect of potential
scattex'ing on this T' coefficient is then calculated
by using a distribution function which reflects the
effect of potential scattering. For most phenomena,
one could use the dynamic susceptibility result of
Fulde and Luther" to obtain a satisfactory distri-
bution function. However, since the calculation of
the coefficient of the T' term in the electrical re-
sistivity involves a strong weighting of the high-mo-
mentum end of the distribution function, and since
theix result is valid only when the value of the mo-
mentum q is much less than the Fermi momentum
of the d band, qz, it seems unlikely that Fulde and
Luther's result mould give a realistic T' coeffi-
cient. %6 have therefore determined a more
realistic distribution function which interpolates
between (i) Fulde and Luther's distribution func-
tion (vRlld 1I1 ihe pl'esellce of potell'tlRl scRi'teI'lllg
when q«q~) and (ii) the random-phase-approxi-
mation distribution function" (valid for all q in the
limit of no potential scattering). Using this in-
tel'polRied dlstrlbutlon fuIlctloII (expec'ted 'to tie vRl-
id for all ranges of q in the presence of potential
scattering), we calculate the effect of potential
scattering upon'the T' tex'm in the spin-fluctuation
resistivity for a uniformly exchange-enhanced sys-
teIQ.

Finally, we eonsidex a system consisting of a
locally enhanced impuxity in an exchange-enhanced
host. Using the above-determined distribution
function for the host along with the local-enhance-
ment m.odel of Lederer and Mills, ' we calculate
the effect of potential scattering in the host upon
the Rddltlonal T' contrlbutlon which x'esults from
the locally enhanced impurities.

II. METHOD AND RESULTS
A. General

To calculate the effect of potential scattering on
the spin-fluctuation resistivity at low tempera-

tures, we start with Mills Rnd Lederex's' expres-
sion for the contribution to the resistivity that oc-
curs when the conduction electrons scatter from
spin fluctuations in the d band. This resistivity
can be written in the following form":

p= '
j d~ «»f(&»)[i-f«»+~)ls(~)

k@T O 0

] 2Ap

dqq'&(q, )IF(q)l',
k+ o

whex'6 g& is the enex'gy of the conduction electx'ons;

q and & axe, respectively, the momentum and en-
ergy change (the units have been chosen such that
)I =1) that occurs when the conduction electrons are
scattered via the 8-d exchange interaction from the
spin fluctuation; A(q, I»&) is the spectral density
function giving the momentum a,nd energy distribu-
tion of the spin fluctuations; n(~) is the Bose fac-
tox' and is a measure of the excitation level of the
fluctuation; f(g») is the Fermi-Dirac function;
F(q) is the form factor' associated with the Wannier
functions for the d band; kz is the Fermi wave
vector of the conduction electrons; k~ is the Boltz-
mann constant; and po is a parameter" which con-
tains the density of states of the conduction elec-
trons and the stx'ength of the s-d interaction.

The temperature dependence at low temperatures
is obtained by noting that as & becomes larger than
the thermal energy k~T, the Bose factox' goes to
zero exponentially. As a result, the spectral den-
sity function need be considered only for values of
4} which Rle % k&T. IQ this region the spect'rRl deQ-

slty functloD divided by ~ ls lndependeQt of Qp, so
the (0 integration cRD be performed without Rny
further knomledge of the functional form of the
spectral density function. After integrating over
w and g~, one finds the lorn-temperature resistivi-
ty is gi.ven by

Note that the high-q end of the spectx'Rl density
function is strongly weighted because of the q' fac-
tor in the integral.

For the case of R homogeneous system, the spec-
tral density function is obtained directly from the
imaginary part of the dynamic susceptibility g(q, ~)
by using the x'elation

A(q, &o) =2 lmX(q, (o).

ID the following me will consider the spectral den-
sity function for both a uniformly exchange-en-
hanced system and a locally exchange-enhanced
systeIQ.
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8. Uniformly enhanced systems

To find the effect of potential scattering on the
magnitude of the coefficient of the T' term which
occurs in the spin-fluctuation resistivity of a uni-
formly exchange-enhanced system, one finds a
dynamic susceptibility appropriate for the system
and uses E(IS. (1) and (2) to evaluate the T' coeffi-
cient. A dynamic susceptibility fox' R Uniformly
exchRQge-6QhRnc6d systeIQ hRs been del lv6d by
Fulde Rnd Luther 1Q their cRlculRtloD of the effect
of potential scattering on the specific heat. They
calculated It(q, (()) in the presence of randomly dis-
tributed scattering centers each having a spherically
symmetric potential. Their result is given by

( )
Xo(q~(()}

1 —I/Xo(q, ~}

x.(q ~}

1+ —,'(u+ iu, ) ln[(u+ iu, —1)/(u+ iu, + 1)]
1+—,'iu, ln[(u+ iu, —1)/(u + iu, + 1)]

zero when the argument is negative. By noting that

lto(q, (()} given in Eq. (5) is valid for all q Rnd (() for
systems in which potential scattering can be ne-
glected and by noting that E(I. (4) is valid for small
q and (d for systems in which potential scattering
cannot be neglected, we evolved the following in-
terpolating expression for the dynamic susceptibili-
ty:

V(,((, ) )((z )()~=)u, ) .)
(- g(u, u(), v) + g(u) u() )

—v)

I —iu, ln[(u + iu, —1)/(u+ iu, + 1)]

(6)

g(u, uo, v) = Reh (u, u„v)

+ i8(Imh(u, u„v)) Imh(u, u„v),

1 —(u+ iuo —v) u+ luo —v —1h(uu„v = " ln
Bg) Q+ 2QO —8+ I

where u= (()()/Ez)/(2q/qz)) uo= I/qf) and I is the
mean fx'ee path of the d-band electrons. Their
result is valid for all values of I and for (q/q~)'
«u«q/qz. Fulde and Luther's dynamic suscepti-
bility cannot be used directly to calculate the T'
coefficient in the spin -fluctuation resistivity be-
cause the q weighting of the spectral density func-
tion in E(I. (1) (which did not occur in the specific-
lleR't cRlclllRtloll) will Rllllost cel'tRlllly guRI'Rlltee

R substantial contribution from the region beyond
which their result is valid.

In order to circumvent this problem, we have
evolved an expression for the dynamic susceptibili-
ty which is expected to be valid for the entire range
of q for a system with potential scattering. %'6 did
this by comparing Fulde and Luther's expression
[Eq. (4)] with the well-known expression" for the
dynamic susceptibility of an unenhanced system in
which there is no potential scattering:

1 1 —(u —v)' u —v —1
Rey, (q, (()) = N(Ez) —+ ln

)* + —)
)

Owe ln
8g 8+5+ I

1 —(u —v)'
1mx, (q, ~) = vie(E, ) e(1 —(u- v)')

1 —(u+ v)' 8(l —(u + v)')
8v

where v=-q/2qz and 8(x) is the step function, which
is equal to unity when the argument is positive and

Our confidence in E(I. (6) as a reasonable ex-
pression for It, (q, (v) for a system with potential
scattering ls bRsed OQ foux' Rsp6cts of its behRV101:

(i) It reduces to Eq. (4) in the range for which Eq.
(4) is valid (4v'«u«2v and all values of I). (ii)
It reduces to Eq. (5) in the range for which E(I. (5)
is valid (all values of v and u and in the limit I-~).
(iii) It varies smoothly between the regions of
VRlldl'ty of Eqs. (4) Rnd (5}. (iv) It is 111 good
agreement with a result that was derived by
deGennes. " His derivation of the dynamic sus-
ceptibll1ty %RS fox' Rn UQeQhRDced system with po-
tential scattering but was for the special case of
(d =0. In comparing our interpolation for the ease
of & = 0 with the results of deGennes we find that
even for the case of a large amount of potential
scattering (Eqz 5) the maximum dif—-ference is -2%
and, as the potential scatter'ing is decreased, this
difference becomes smaller and the two results
both approach the static limit of Eq. (5).

%6 can now use the model to evaluate the effect
of potential scattering on the spectral density func-
tion of a uniformly exchange-enhanced system
[Eqs. (2), (3), and (6)]. In Fig. 1 we show 4(q, (o)/.V(Ez) (the spectral density function divided by the
density of states at the Fermi level) for a range of

q —=q jqz, for a fixed energy ratio of g = 0.001
(2= &o/Ez), and for Stoner enhancement factor of
10.

The two solid curves which peak on the left show
this spectral density function for two extreme
cRses: (i) ihel'e ls llo potentlRl scattering (I = ao)

and (ii) the potential scattering is solarge (/qz ——5)
that the mean free path is close to an inter-
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Spectral densit
function Ag, g) scaled b e
e»ity o«tates X~Z ~ is

p otted as a function of thl
is

at'o & of spin-«ctuation
momentum to the 'Fermi m
mentum for an energy ratio
~ fixed at 0.001, and for a
Stoner enhancement factor 8
of 10. The two solid curves
which peak on the left show
the spectral density function
for the case of an mfinit
mean free path (l=~) and for
the case of an extremely
1arge amount of potential
scattering (/qz ——5). The two
solid curves which peak near
the center show the weighted
spectral density function for
the same two cases. The
form factor I'(q) has been ap-
proximated by using the Pd
form factor of Ref. 14. The
coefficient of the T~ term in
the spin-fluctuation resistiv-
ity is proportional to the in-
tegral over q of the weighted
spectral density function.

atomic spacing. As can be seen, the main effect
of the otential
the ak

p scRttex'lng ls to broaden R d hlft
peRk of the spin-fluctuRtlon dlstI'lbutloD to R

higher momentum.
The effect of potential scattering on the T' coeff'-

cient in the s in-fp' —luctuation resistivity is found b
insex'ting our s cpectral density function into E . (l).

un y

Beca,use of the ' wq weighting of the spectral dens't
q-

function*, the main contribution to the T' term
ensl y

comes from the tail of the se spectral density function.
This may be seen (in Fig. l) by comparin the

'g pectral density function "F' '"
CON(I.

"
j~( ~'„with the unweighted spectral densit

* . ' e e coefficient is directly prop
e integral over q of the wei hted s

'tl'Rl dens lt fUricy unction, the effect of potential scat-
tering is found by eva, luating this integral for
ous va, lUes of R

Ol VRX'1-

l and comparing the results. We re-
sent these x esults in terms o'

U s. e pI e-
erms of the fra, ctiona. l change

ln e T coefficient, which is defined by

&C, C, (&) —C,( )

C~ Cp(~)

where C„(l) is the T' coefficient of the uniformly
exchange-enhanced system. In th
h

m. D ls cRlculRtloQ we

takin
ave followed the work of S h

'o c riempf ef g). by
a ilig kr =tg~/2 and by ilsiiig for F(q) 'the appi'oxi-

rnation given by them for Pd. H

tha, t th
owever, we note

a,
'

g y insensitive to the choicese result ls lar el
or F(q and kz. [For example, if F is n

lowed to fall ff f
shown will d

o rom unity at hi h tg q, he results
wl decl eRse by less thRQ 6j. If 0' 18

doubled the re
O. ~ 18

If 4 «alar suits will decrease by l th 8ess Rn o.

CRD OCCux'
q~, a arge increase over the re lt

ccur, but in this case C~(l) will be orders of
magnitude smaller and t f . Qurno o much interest. Our
results are shown b then y e lower curve in Fig. 2
where ac !Ch ~. U is plotted as a function of the rnean-
free-path pa. rameter /qz.

The result of the model c
that in most c

e calculation is to predict
at in most cases the increase in the T' coeffi-

cient from the effect of potential scattering 'll b
only R smaB fraction of th 7'
alloy such as Pd Bh

e coefficient. ForFor an

95 5 %here the mean free
path parameter $ is es '

and 200), the T' ter
qz is estimated to be between 100
erm is increased by only -2%.
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sity function for such a system is given in the mod-
el of Lederer and Mills' as

~)=mr xIe )+& 5~& (
x'(q, ~)

1 —
FAUX &u

where q is the impurity concentration; 5U is the
increase in the intra-atomic exchange interaction
in the impurity cell; and X(m) is the average over
q of the host susceptibility X(q, &u),

r Qg

x(~) =— dqq'x(q ~)
g &O

where g, is the radius of the Brillouin-zone bound-
ary (assumed spherical). The first term is just
the spectral density function of the exchange-en-
hanced host, A~(q„u). The second term is then
the contribution to the spectral density function
from the localized spin fluctuations at the impurity
sites, and we therefore write the spectral density
function as

A (q, (u) = A ~(q, (u) + w, (q, ~).
For a large local enhancement and small & the sec-
ond term can be approximated' as

0. 1 ENT 4, (q, ~) = 2c(5Uo)'[ReX(q~ 0)] 1m[X(&u)]~

I57 i0
i

25 50 ]00 250 500
i
qF

FIG. 2. Semilog plot of the fractional increase of the
T coefficient of the electrical resistivity as a function
of the mean. free path E of the d-band electrons. The
lowe'r curve shows this increase for a uniformly en-
hanced system with a Stoner enhancement factor of 10.
In locally enhanced systems there is an additional 72

term that results from the local enhancement. The

upper curve shows the fractional increase in this T~

coefficient as a function of the mean free path. For
the case shown, the locally enhanced system is assumed
to have a uniform background with a Stoner enhancement
fae'tor of 10.

where n = [1 —6UReX(0)] ' is the local-enhancement
factor.

To find the T' coefficient for the locally enhanced
system we proceed as in the uniform-enhancement
case and evaluate Eq. (1). In this case, however,
the spectral density function has the additional con-
tribution Az(q. &u), which will result in an addition-
al contribution Cz(l) to the T' coefficient. The de-
pendence of Cz(l) upon the mean free path of the
host is a direct result of the fact that Az(q, &u) is a
function of the dynamic susceptibility of the host,
which as we have seen is a function of $. We use
the previously given results [Eqs. (3) and (6)] for
X(q, |d) of the host and calculate the fractional in-
crease of the impurity contribution to the 7' coef-
flc lent

~

C. Locally enhanced system

An analogous calculation can be made for a lo-
cally exchange-enhanced system. An example of
such a system is an exchange-enhanced host con-
taining an impurity which locally enhances the sus-
ceptibility around the impurity site, although not
sufficiently to form a local moment. The local
enhancement increases the spin fluctuations around
the impurity site and, as a consequence of the con-
duction electrons scattering from these local spin
fluctuations, an additional contribution to the 7
term in the resistivity results. The spectral den-

~c, c,(I) —c,( )

c, c(i)

The results of this calculation are shown by the
upper curve in Fig. 2, where Ag~/Cl is plotted as
a function of the mean-free-path parameter Lq„.

In this calculation we have assumed the entire
change in the spectral density function from po-
tential scattering is the result of the change in
ImX(&u). This assumption will not be valid if the
local-enhancement factor n is large, i.e. ,
5UReX(0)- l. In this case, the small change that
occurs in Rex(0) as a result of potential scattering
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mill significantly increase Q. . For this reason the
upper curve of Fig. 2 should be viewed as a lower
bound for the model.

Also, in this calculation we have taken Q, = 2qz,
the Stoner enhancement factor 5 = 10, and have
again used the form factor for Pd." However, the
results are la, rgely insensitive to these choices.
For example. Q, =qz increa. ses the result by less
than I%%uo, S= 20 increases the result by less than
25%%u~, and F(q) = 1 decreases the result by less than
25%.

III. CONCLUSIONS

It %as pointed out in the Introduction that although

the Pd»Rh, system might be expected to act as a,

superenhanced Pd, measurements' ' of the T'
term in the spin-fluctuation resistivity of the
(Pd»Rh, ), ,Ni system did not show an enhance-
ment over that of the Pd, „Ni„system. Since one
of the major differences between the two systems
is the large increase in potential scattering that
xesults upon the addition of the Rh, it has generally
been speculated that this scattering was affecting
the spin fluctuations and causing a decrease in the
spin-fluctuation resistivity at lorn temperatures.
While potential scattering does indeed reduce the

peak of the distribution of the spin fluctuations,
the main effect of the potential scattering is to
shift the distribution toward the high-q spin fluctua™
tions. Since the increase in the high-q spin fluc-
tuations has a. stronger effect on the spin-fluctua-
tion resistivity than the decrease in the low-q spin
fluctuations, the net effect of the potential scatter-
ing on the spin-fluctuation distribution is, there-
fore, to increase the T' coefficients in both the
un&fox'm- and local-enhancement models. Our cal-
culation predicts that the increase in the 7' term
xn the spin-fluctuation reslstlvlty of the Pd95Rh~
host mill be -2/~ a.s a, result of the potential scat-
tering and that the increase in the additional T'
contribution which results from the addition of Ni
to this host will also be -2%%u, as a. result of the po-
tential scattering in the host. Thus, the explana-
tion of the unexpected values of the T' coefficients
observed' ' in the (Pd»Rh, ), „Ni, system must re-
side ln other mechanisms,
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