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We have evolved a spectral density function for the distribution of spin fluctuations, A(q,w), which is
expected to be valid for all values of g and w for an exchange-enhanced system containing randomly
distributed scattering centers. Using this function we have calculated the effect of the potential scattering on
the magnitude of the coefficient of the T? term which occurs in the electrical resistivity of both uniformly and
locally exchange-enhanced systems. Contrary to what might have been presumed, we find that potential
scattering increases the T2 term. In most cases this increase is a small fraction of the original T? term. For
example, we calculate that the increase in the T? term in the spin-fluctuation resistivity of PdysRhs will be
only ~2% as a result of the potential scattering. Also, the increase in the additional T contribution which
results from the introduction of Ni into this alloy will also be only ~ 2% as a result of the potential scattering

in the PdysRh; host.

I. INTRODUCTION

The application of many-body techniques to ex-
plain the electronic properties of the nearly ferro-
magnetic metals Rh, Pd, and Pt and their alloys
has greatly increased our understanding of these
materials. Many of their electronic properties
(e.g., magnetic susceptibility, specific heat, and
electrical resistivity) can be accounted for by a
model which explicitly includes a strong intra-
atomic Coulomb interaction between the d-band
electrons of opposite spin. For example, early
theoretical work predicted that the intra-atomic
Coulomb interaction would enhance the spin fluctua-
tions in the d-band of these materials and that an
enhanced 7'? term in the electrical resistivity at
low temperatures would result'~® from conduction
electrons scattering from these exchange-enhanced
spin fluctuations. The good quantitative agreement
between theory® and the experimental work?® on the
PdNi system seemed to confirm the validity of the
model. However, the model also predicted that the
addition of Rh to the PdNi system would lead to
a further enhancement of the 7 term, but recent
experimental work?~® showed that this was not the
case. One possible reason for the discrepancy be-
tween the prediction of the model and the results
of the experiment is that the model has neglected
the effect of the increased potential scattering that
occurs as a result of the Rh addition. It is the ef-
fect of this potential scattering on the T? term in
the spin-fluctuation resistivity that we discuss in
this paper.

The strength of the exchange enhancement in
these nearly ferromagnetic materials is reflected
by the Stoner enhancement factor, which is defined
as S=yx/x,, Where y is the experimentally de-
termined static paramagnetic susceptibility and y,
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is the “bare-band” susceptibility determined from
the density of states. In the random-phase approxi-
mation the Stoner enhancement factor is given by’
S=1/[1-UN(E;)] where U is a parameter which

is a measure of the strength of the intra-atomic
Coulomb interaction between the d-band electrons
of opposite spin and N(Ej) is the density of states
at the Fermi level (E,) per spin state per atom.

Of the nearly ferromagnetic metals Pd, Pt, and
Rh and their alloys with each other, the alloy
Pd,,Rh; has the highest magnetic suscepti-
bility. The increase in the susceptibility of this
alloy over that of pure Pd is thought® to be the re-
sult of the combination of two features: an increase
in the density of states at the Fermi level, and a
local enhancement of the susceptibility associated
with the Rh sites. Thus, the alloy is expected to
have a higher Stoner enhancement factor than Pd,
since both the average interaction parameter U
and the density of states are greater for the alloy.
As a result of the increased enhancement,

Pdy,Rhy; might very well be expected to act as a
superenhanced Pd, exhibiting strong spin-fluctua-
tion effects. For example, the low-temperature
T? term of the electrical resistivity of this alloy
would be expected to be greater than that of Pd.
Also, the addition of a dilute amount of Ni to a
Pd,,Rh; alloy would be expected to yield even
larger local enhancement effects than were found®
for the addition of Ni to Pd. However, the experi-
mentally determined T2 coefficient of Pd,,Rh

is not larger than that of Pd; it is in fact nega-
tive.® Also, the addition of Ni to this alloy does not
produce a larger increase in the T7'° term than does
the addition of Ni to Pd; it produces only a com-
parable increase.*~®

It has been suggested® that one possible reason
for a reduced 7?2 term in the Pd-Rh system may be
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that the large amount of potential scattering that
comes from the Rh atoms dampens the spin fluctua-
tions and thereby reduces the magnitude of the 72
contribution from spin fluctuations. However,
there appears to have been no previous calculation
of the effect that potential scattering will have on
the T° term of a uniformly exchange-enhanced sys-
tem.

In Sec. II we present such a calculation. First, we
we use the model of Mills and Lederer' to obtain an
expression for the T2 term that appears in the low-
temperature resistivity when conduction electrons
scatter from spin fluctuations. In this model, s-
band conduction electrons scatter from spin fluctu-
ations in the d band via the s-d exchange interac-
tion, and the coefficient of the T2 term depends
directly upon the energy-momentum distribution
of the spin fluctuations. The effect of potential
scattering on this T2 coefficient is then calculated
by using a distribution function which reflects the
effect of potential scattering. For most phenomena
one could use the dynamic susceptibility result of
Fulde and Luther™ to obtain a satisfactory distri-
bution function. However, since the calculation of
the coefficient of the 772 term in the electrical re-
sistivity involves a strong weighting of the high-mo-
mentum end of the distribution function, and since
their result is valid only when the value of the mo-
mentum ¢ is much less than the Fermi momentum
of the d band, ¢, it seems unlikely that Fulde and
Luther’s result would give a realistic 72 coeffi-
cient. We have therefore determined a more
realistic distribution function which interpolates
between (i) Fulde and Luther’s distribution func-
tion (valid in the presence of potential scattering
when g «< ¢ ) and (ii) the random-phase-approxi-
mation distribution function'! (valid for all g4 in the
limit of no potential scattering). Using this in-
terpolated distribution function (expected to be val-
id for all ranges of ¢ in the presence of potential
scattering), we calculate the effect of potential
scattering uponthe T2 term in the spin-fluctuation
resistivity for a uniformly exchange-enhanced sys-
tem.

Finally, we consider a system consisting of a
locally enhanced impurity in an exchange-enhanced
host. Using the above-determined distribution
function for the host along with the local-enhance-
ment model of Lederer and Mills,® we calculate
the effect of potential scattering in the host upon
the additional 7% contribution which results from
the locally enhanced impurities.

II. METHOD AND RESULTS
A. General
To calculate the effect of potential scattering on
the spin-fluctuation resistivity at low tempera-

tures, we start with Mills and Lederer’s' expres-
sion for the contribution to the resistivity that oc-
curs when the conduction electrons scatter from
spin fluctuations in the d band. This resistivity
can be written in the following form™:

ot [, 2 [ asure) 16, b
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where §, is the energy of the conduction electrons;
g and w are, respectively, the momentum and en-
ergy change (the units have been chosen such that
7=1) that occurs when the conduction electrons are
scattered via the s-d exchange interaction from the
spin fluctuation; A(g,w) is the spectral density
function giving the momentum and energy distribu-
tion of the spin fluctuations; n(w) is the Bose fac-
tor and is a measure of the excitation level of the
fluctuation; f£(§,) is the Fermi-Dirac function;
F(q) is the form factor” associated with the Wannier
functions for the d band; kj is the Fermi wave
vector of the conduction electrons; &, is the Boltz-
mann constant; and p, is a parameter'? which con-
tains the density of states of the conduction elec-
trons and the strength of the s-d interaction.

The temperature dependence at low temperatures
is obtained by noting that as w becomes larger than
the thermal energy 2,7, the Bose factor goes to
zero exponentially. As a result, the spectral den-
sity function need be considered only for values of
w which are SkgT. In this region the spectral den-
sity function divided by w is independent of w, so
the w integration can be performed without any
further knowledge of the functional form of the
spectral density function. After integrating over
w and §,, one finds the low-temperature resistivi-
ty is given by

2 2 2R
p =("§ po% f ququ—(q;’i) lF(q)P) T?, T-0.
F 0

(1)

Note that the high-g end of the spectral density
function is strongly weighted because of the ¢° fac-
tor in the integral.

For the case of a homogeneous system, the spec-
tral density function is obtained directly from the
imaginary part of the dynamic susceptibility (g, w)
by using the relation

Alg,w)=2Imy(g,w). (2)

In the following we will consider the spectral den-
sity function for both a uniformly exchange-en-
hanced system and a locally exchange-enhanced
system.



B. Uniformly enhanced systems

To find the effect of potential scattering on the
magnitude of the coefficient of the 72 term which
occurs in the spin-fluctuation resistivity of a uni-
formly exchange-enhanced system, one finds a
dynamic susceptibility appropriate for the system
and uses Egs. (1) and (2) to evaluate the T coeffi-
cient. A dynamic susceptibility for a uniformly
exchange-enhanced system has been derived by
Fulde and Luther® in their calculation of the effect
of potential scattering on the specific heat. They
calculated y(g, w) in the presence of randomly dis-
tributed scattering centerseachhavinga spherically
symmetric potential. Their result is given by

_ X ({ ,w)
X, )= T @
Xolg, w)
- 1+ 5(u+dug) Inf(u +duy = 1)/ (u +duy + 1)]
=N(ER) < 1+ 3wy In[ (u + iu, — 1)/ (u +iuo+ol)] >,

(4)
where u=(w/E;)/(2q/qg), u,=1/ql, and [ is the
mean free path of the d-band electrons. Their
result is valid for all values of [ and for (q/q )
«u<«q/qp. Fulde and Luther’s dynamic suscepti-
bility cannot be used directly to calculate the T2
coefficient in the spin-fluctuation resistivity be-
cause the q3 weighting of the spectral density func-
tion in Eq. (1) (which did not occur in the specific-
heat calculation) will almost certainly guarantee
a substantial contribution from the region beyond
which their result is valid.

In order to circumvent this problem, we have
evolved an expression for the dynamic susceptibili-
ty which is expected to be valid for the entire range
of ¢ for a system with potential scattering. We did
this by comparing Fulde and Luther’s expression
[Eq. (4)] with the well-known expression'! for the
dynamic susceptibility of an unenhanced system in
which there is no potential scattering:

1 - (u-0)?

1 u-v-1
Rexo(q,w)=N(EF)<‘Z" + 82 In

u—-v+1

1-(u+0)? u+v-1 >
- 8v u+v+1 ’
(5)
Imy,(g, w) =7N(E ) (}—:%}:—q)— o1 - (u—0)?)
1-(u+v)?

e 60— ),

where v=g/2qand ©(x) is the step function, which
is equal to unity when the argument is positive and

14 EFFECT OF POTENTIAL SCATTERING ON THE LOW-... 4023

zero when the argument is negative. By noting that
Xolg,w) given in Eq. (5) is valid for all g and w for
systems in which potential scattering can be ne-
glected and by noting that Eq. (4) is valid for small
g and w for systems in which potential scattering
cannot be neglected, we evolved the following in-
terpolating expression for the dynamic susceptibili-
ty:

3
Xolg,w) =N(E) (1*’2“01_:_}1;6')

X[ %fg(u7u0’v)+g(u7uo’ —U) ]
1 —gug In[(u +du, - 1)/ (W +iuy + 1)] 1’

(6)

where
g(u, uy, v)=Reh(u, u,,v)

+10(Imh(u, u,, v)) Imh (u, u,, v),
and

1- P )2 by —
h(u, u,v) = (w+ 1y — v) ln<u+m° v 1).

8v u+ing—v+1

Our confidence in Eq. (6) as a reasonable ex-
pression for x,(g,w) for a system with potential
scattering is based on four aspects of its behavior:
(i) It reduces to Eq. (4) in the range for which Eq.
(4) is valid (40° < u <« 2v and all values of ). (ii)

It reduces to Eq. (5) in the range for which Eq. (5)
is valid (all values of v and « and in the limit [~ ).
(iii) It varies smoothly between the regions of
validity of Eqs. (4) and (5). (iv) It is in good
agreement with a result that was derived by
deGennes.'® His derivation of the dynamic sus-
ceptibility was for an unenhanced system with po-
tential scattering but was for the special case of
w=0. In comparing our interpolation for the case
of w =0 with the results of deGennes we find that
even for the case of a large amount of potential
scattering (Iq,=5) the maximum difference is ~2%
and, as the potential scattering is decreased, this
difference becomes smaller and the two results
both approach the static limit of Eq. (5).

We can now use the model to evaluate the effect
of potential scattering on the spectral density func-
tion of a uniformly exchange-enhanced system
[Egs. (2), (3), and (6)]. In Fig. 1 we show A(7,®)/
N(Ep) (the spectral density function divided by the
density of states at the Fermi level) for a range of
G=q/qp, for a fixed energy ratio of @ =0.001
(®=w/Ey), and for Stoner enhancement factor of
10.

The two solid curves which peak on the left show
this spectral density function for two extreme
cases: (i) there is no potential scattering (I=)
and (ii) the potential scatteringissolarge (Igz=5)
that the mean free path is close to an inter-
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FIG. 1. Spectral density
function A(G, &) scaled by the
density of states N(Ep) is
plotted as a function of the
ratio ¢ of spin-fluctuation
momentum to the Fermi mo-
mentum, for an energy ratio
& fixed at 0.001, and for a
Stoner enhancement factor S
of 10. The two solid curves
which peak on the left show
the spectral density function
for the case of an infinite
mean free path (=«) and for
the case of an extremely
large amount of potential
scattering ((gr=5). The two
solid curves which peak near
the center show the weighted
spectral density function for
the same two cases. The
form factor F(g) has been ap-
proximated by using the Pd
form factor of Ref. 14. The
coefficient of the 7% term in
the spin-fluctuation resistiv-
ity is proportional to the in-
tegral over § of the weighted
spectral density function.
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atomic spacing. As can be seen, the main effect
of the potential scattering is to broaden and shift
the peak of the spin-fluctuation distribution to a
higher momentum.

The effect of potential scattering on the T2 coeffi-
cient in the spin-fluctuation resistivity is found by
inserting our spectral density function into Eq. (1).
Because of the ¢°® weighting of the spectral density
function, the main contribution to the 72 term

comes from the tail of the spectral density function.

This may be seen (in Fig. 1) by comparing the
weighted spectral density function, 7*|F(§)|?A(g,®)/
®N(E ), with the unweighted spectral density func-
tion. Since the T2 coefficient is directly propor-
tional to the integral over g of the weighted spec-
tral density function, the effect of potential scat-
tering is found by evaluating this integral for vari-
ous values of [ and comparing the results. We pre-
sent these results in terms of the fractional change
in the T2 coefficient, which is defined by

ACy _Cyll) = Cy(=)
Cy CU(°°) ’

where Cy(l) is the T2 coefficient of the uniformly
exchange-enhanced system. In this calculation we
have followed the work of Schriempf et al.'* by
taking k. =g /2 and by using for F(g) the approxi-
mation given by them for Pd. However, we note
that the result is largely insensitive to the choices
for F(g) and kg. [For example, if F(g) is not al-
lowed to fall off from unity at high ¢, the results
shown will decrease by less than 6%. If k. is
doubled, the results will decrease by less than 8%.
If ko«<gp, 2 large increase over the results shown
can occur, but in this case Cy(I) will be orders of
magnitude smaller and not of much interest.] Our
results are shown by the lower curve in Fig. 2,
where ACy,/Cy is plotted as a function of the mean-
free-path parameter lg.

The result of the model calculation is to predict
that in most cases the increase in the 72 coeffi-
cient from the effect of potential scattering will be
only a small fraction of the T2 coefficient. For an
alloy such as Pd,,Rh, (where the mean-free-
path parameter /g is estimated to be between 100
and 200), the 7% term is increased by only ~2%.
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FIG. 2. Semilog plot of the fractional increase of the
T? coefficient of the electrical resistivity as a function
of the mean free path I of the d-band electrons. The
lower curve shows this increase for a uniformly en-
hanced system with a Stoner enhancement factor of 10.
In locally enhanced systems there is an additional T2
term that results from the local enhancement. The
upper curve shows the fractional increase in this T?
coefficient as a function of the mean free path. For
the case shown, the locally enhanced system is assumed
to have a uniform background with a Stoner enhancement
factor of 10.

C. Locally enhanced system

An analogous calculation can be made for a lo-
cally exchange-enhanced system. An example of
such a system is an exchange-enhanced host con-
taining an impurity which locally enhances the sus-
ceptibility around the impurity site, although not
sufficiently to form a local moment. The local
enhancement increases the spin fluctuations around
the impurity site and, as a consequence of the con-
duction electrons scattering from these local spin
fluctuations, an additional contribution to the 72
term in the resistivity results. The spectral den-
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sity function for such a system is given in the mod-

el of Lederer and Mills® as
2

A('I’“’)ﬂlmx(mwh%bum(ﬁ%) ’

where ¢ is the impurity concentration; 46U is the

increase in the intra-atomic exchange interaction
in the impurity cell; and ¥(w) is the average over
g of the host susceptibility x(g,w),

— 3 Q 2
x(w)=Q—3fo dq 4°x(q, w),

where 9, is the radius of the Brillouin-zone bound-
ary (assumed spherical). The first term is just
the spectral density function of the exchange-en-
hanced host, A,(g,w). The second term is then
the contribution to the spectral density function
from the localized spin fluctuations at the impurity
sites, and we therefore write the spectral density
function as

Alg,w)=Aylg,w) +A4,(q,w).

For a large local enhancement and small w the sec-
ond term can be approximated® as

A (g, w)=2c(6Ua)’[Rex(g, 0)]° Im[}(w)],

where o =[1-6URex(0)]™" is the local-enhancement
factor.

To find the T2 coefficient for the locally enhanced
system we proceed as in the uniform-enhancement
case and evaluate Eq. (1). In this case, however,
the spectral density function has the additional con-
tribution A,(g,w), which will result in an addition-
al contribution C,(I) to the T* coefficient. The de-
pendence of C,(I) upon the mean free path of the
host is a direct result of the fact that A,(q,w) is a
function of the dynamic susceptibility of the host,
which as we have seen is a function of I. We use
the previously given results [Eqs. (3) and (6)] for
x(q, w) of the host and calculate the fractional in-
crease of the impurity contribution to the 7% coef-
ficient;

AC _Cy(D) = Cyl=)

¢, c, (D)

The results of this calculation are shown by the
upper curve in Fig. 2, where AC,/C, is plotted as
a function of the mean-free-path parameter lq ;.
In this calculation we have assumed the entire
change in the spectral density function from po-
tential scattering is the result of the change in
Imy(w). This assumption will not be valid if the
local-enhancement factor « is large, i.e.,
5URex(0)~1. In this case, the small change that
occurs in Rey(0) as a result of potential scattering
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will significantly increase a. For this reason the
upper curve of Fig. 2 should be viewed as a lower
bound for the model.

Also, in this calculation we have taken @, = 2gp,
the Stoner enhancement factor S =10, and have
again used the form factor for Pd.'* However, the
results are largely insensitive to these choices.
For example, @,=q increases the result by less
than 7%, S=20increases the result by less than
25%, and F(gq) =1 decreases the result by less than
25%.

II. CONCLUSIONS

It was pointed out in the Introduction that although
the Pdy;Rh; system might be expected to act as a
superenhanced Pd, measurements®~® of the 7'*
term in the spin-fluctuation resistivity of the
(Pdy;Rhy), _ Ni, system did not show an enhance-
ment over that of the Pd,__Ni_ system. Since one
of the major differences between the two systems
is the large increase in potential scattering that
results upon the addition of the Rh, it has generally
been speculated that this scattering was affecting
the spin fluctuations and causing a decrease in the
spin-fluctuation resistivity at low temperatures.
While potential scattering does indeed reduce the

peak of the distribution of the spin fluctuations,
the main effect of the potential scattering is to
shift the distribution toward the high-g spin fluctua-
tions. Since the increase in the high-¢ spin fluc-
tuations has a stronger effect on the spin-fluctua-
tion resistivity than the decrease in the low-¢ spin
fluctuations, the net effect of the potential scatter-
ing on the spin-fluctuation distribution is, there-
fore, to increase the T* coefficients in both the
uniform- and local-enhancement models. Our cal-
culation predicts that the increase in the 7% term
in the spin-fluctuation resistivity of the Pd, ;Rh,
host will be ~2% as a result of the potential scat-
tering and that the increase in the additional 72
contribution which results from the addition of Ni
to this host will also be ~2% as a result of the po-
tential scattering in the host. Thus, the explana-
tion of the unexpected values of the T? coefficients
observed*~° in the (Pd,Rh,),_ Ni, system must re-
side in other mechanisms.
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