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Previous calculations of the effect of a critical point on the thermopower of metallic ferromagnets are

cxtcndcd to include inelastic scattering processes. Denoting thc (temperature-dependent) localized spin-spin

correlation function by ~(co), where k is the momentum transfer, and m the frequency transfer, the

thermopower is shown to be proportional to frequency integrals of g2„„(co) and frequency and wave-vector

integrals of k~(co). Only if the spin-spin correlation function exhibits critical "slowing down" for all

frequencies at all k's |'an unlikely prospect) does our result reduce to those found previously.

I. INTRODUCTION

The critical scattering of conduction electrons
by localized moments undergoing a txansition fxom
the paramagnetic to the ferromagnetic or antiferx o-
magnetic state was first examined by de Gennes
and Friedel. ' They computed the impact of eriti-
cRl fluctuations oD the electrical reslstlvlty p~

using an Ornstein-Zernike form for the localized
spin-spin correlation function g„(f=0), where k is
the momentum txansfer. The conduction electxons
a.re assumed to interact with the localized spins
via isotropic exchange. Subsequently, Fisher and
Langer' corrected their treatment for ferromag-
nets by using a more accurate form for gk(f =0) at
large momentum transfer. They found p, (T& T, )
to vary as f' [f = (T —T,)/T, ], in general,
smoothly vRlylng Rt Tc. A DuIIlber of Ruthol8
have treated antiferromagnetic metals with simi-
lRx' x'esults.

More recently, Thomas et al.' and Zorie et cL.'
considered the behavior of the thermoelectrie pow-
er in the vicinity of T~. They predicted that'

pQ/T Ap„+Bp, +CI"(3k~, T),

wllex'6 p 18 the I'eslstlvlty, Q ls tile thermopower
(which we designate by 5), p„ is the normal re-
sistivity, f'(k, T) is the (localized) spin-spin cor-
relation function [which we designate by g„(t =0)],
withe, 8, and C constants. These authors used
an expression for 8 (e.g. , Mott and Jones') which
ls RpproprlRte only to 61Rstlc scRttex'lng. BecRuse

~ (t = 0) =J g„((())d((), this would require g), ((())

=~(0)5((d) for all k at the critical point. We do
not think there are many (if any) examples of sys-
tems where this limiting condition is applicable,
and have therefox'e extended their calculation to
include lnelRstlc scattering processes. %6 hRve
utilized the effective relaxation rate approach of

Kubo, Y'Okota, and Nakajima. ' Although this meth-
od is approximate, e the form of the solution sug-
gests that it is sufficiently accurate for this level
of investigation into the thexmopower problem. In
sum, the method of Ref. 7 generates an expxes-
sion for S of the form

$~y = dt 4A, Q„J~ (+i@A,
&pt T 0 0

where cr» is the p, v component of the conductivity
tensor; P =1/ksT; Q„and J„are the v and g com-
ponent of the heat and electrical currents, respec-
tively; and (~ ~ ~ ) denotes thermal average. We
find the double integral 1n (2) to be proportional to

(0 7')')."J d (()K)(s '"-()

3(ph(())x & (,„(w)+ &,„8).')g, ( )). (3)
g '& gw'k ~0

Only if g(;((()) =gg(0) 5((()), does (3) reduce to (l).
This amounts to a requirement that all frequencies
are critically "slowed down" in the vicinity of the
crltlcRl point- Tllls approximation ss made ln the
original Letter by Fisher and Langer, ' but with
the proviso, "Owing to the 'thermodynamic slowing
down' of critical fluctuations this ls plausible fol
low wave numbers k, but it may bear further in-
vestigation for higher values of k which we claim
are also important. " While it is true that little
information 18 available concex'DlIlg the behRvlol
of g), ((()) for large momentum transfers, and all
of this stems from expeximent, ' what little there
is does not point to such a limiting condition. In-
deed, it appears that the large-momentum-trans-
fer "characteristic frequencies" are little affected
as one pa, sses through E,.' We are therefore not
in agreement with the thrust of Refs. 4 and 5 that
thermopower measurements of metallic ferro-
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magnets near T, can yield information concerning
the static correlation function g~ (cu =0).

Inserting (3) into (2), and including "background"
contributions to both the thermopower S and the
resistivity, we find

we are able to simplify (3) as

S = dt dA. (-—. + (F.-, E~-)
+ppT 0 0 & q, Q

x q „a z ~ a -
~ d

&
(t + t h A.) .

s —= s„(1- ~„/s, ). (4)

Here, 8„ is the thermopower arising from non-
critical scattering related processes (e.g. , the
phonon drag contribution to S), 7„ the "effective
lifetime" for background processes which one
would use in (2) (see Sec. II), and 7, the effective
lifetime to be used in (2), proportional to the in-
verse of (3). For spherical Fermi surfaces, we
find 7„=6m, where the conductivity 0 =&Ve'7/rn.

With these identifications, our expression (4) cor-
rectly reduces to (1) if we force g), (&u) =g), (0) ()(u).

According to Refs. 4 and 5, the measured thermo-
power does reasonable "track'* 7 (including, of
course, the critical scattering contributions to P)
as T passes through 7", . This may imply, there-
fore, that the frequency integrals in (3) vary
smoothly through T, . While we do agree with Refs.
4 and 5 that the departure of S from the behavior
of r through T, gives information about g„(u), this
occurs only through the integral rela, tionship (3).
The detailed behavior of gT, {&u) may therefore be
rather more difficult to extract from measurements
of S than suggested in Refs. 4 and 5.

We evaluated (2) in Sec. II using the approxima-
tion scheme of Kubo et al. ' adapted to the critical.
scattering problem. Our results are discussed in
Sec. III.

This formal treatment is exact. To proceed fur-
ther7 we approximate the correlation function in

(6). We follow Ref. 7, and set

S~pgpp T= dA, Qp J„ ik'A. dI, Q„,(t,
0 0

(10)

)o„.)o))- f s~&)).z„)t ');~))
0

4„„)0)=f da(Q„Z&[i)|'1 )). (12)

Here, Q~ follows from {8) upon replacing g-„by
The integral in (11) is evaluated in second

order in the perturbing Hamiltonian

1 ~ t t gH ~= ——~ Ig [(aqua)aq) —gq~(aq))sq

+a gy a)S r +a qi)a &)Sq ~i],

(&3)
where I~ „ is the Fourier transform of the usual.
J, ~ exchange coupling integral. The coefficient
)p»(0) contributes to zeroth order in {13). We use
as the zeroth-order Hamiltonian B,=H, +II~, where

II. CALCULATION OF THE THERMOPOWER

According to Mott and Jones, ' Wilson, "and
Z iman, "the the rmopowe r 8 is given by

q ~ 0 (
a'* q

*

)
S-„= e'~'R S, .

(14)

S,„=—8„„/e = ( p„,gt2~, +F.,-/e)/&, (5

where e is the electronic charge, and g„2~ is a
transport integral. A convenient form for g~&'~ is
given by Kubo et aI,.'

Q p p
— N d+ Q p J~ t + ERA.

0 0

where the symbols are defined after (2). In the
same notation,

ao 8

dt dX{Z,d„(t +MA.)).
p pp

0

Setting,

gK g~
, 0

-eh ~
Jp Q pQ q Q 0 qQ 7Pl

q

Here, B, is the conduction electron Hamiltonian,
and p - and a- are, respec tively„ the creation
and annihilation operators of conduction electrons
with wave vector q and spin 0, H~ is the Heisen-
berg Hamiltonian for the localized spins Sk with
wave vector k. Using (8) and (14) in (12), the di-
agonal element of $„„(0),averaged over t), , v, can
be evaluated

T))(0) =
3 Q „4„)( )0= ', k~(ksT)',

where V, is the volume of the unit cell, and X the
number of electrons.

We now pursue the main thrust of this paper. We
need to evaluate (ll) to second order in (13). To
accomplish this end, we adopt the method of Kubo
et al. ' and calculate )I)„,(t) to second order. We
can then write



y.„(f)= y„„(0)+Jl df, J df, j,„(f,)

A relaxatlon-time approxlmat1on sets

independent of t, . Then

0,.(f) = 0,.(0) 1-
Ji

r'dt,

= e..(0)(I —f/r)

(0)e Ilt-

Illsertlng (18) 1I1'to (10) coIIlple'tes 0111' calculation.
Clearly, many approximations and limiting pro-

cedures are involved in this process. These are dis-
cussed in Ref. 7 and extensively examined in Ref. 8.
A detailed review of the arguments would be beyond
the scope of this work. Our results are to some ex-
tent a justification of the method, for we find that
they reduced to the conventional~ ' elastic scatter-
ing result when only zexo energy txansfers are al-
lowed.

We cRlclllR'te Q~„(f) according to tllls pl'ocedul'e
in Appendix A. Inserting into (17), we find

~2 Q I&-„-g, I'(q2. -q,.)[ql.(&~, -~~)-n ( I, — ~)]f;,(I -f(,)

where we have introduced the subscript c to denote critical scattering. After some simplification,

E~ —E- —S(d
d(() g~ ~ ((d)5 +g~ &

(-(())6
JQ 2

The inelasticity of the scattex ing process is clearly exhibited. The fix'st term in the large square brackets de-
scribes the process of absorption of energy @(d by the localized spin system from the conduction electxons,
while the second corresponds to emission to the conduction electrons. Only when g& & (~) ~5(~) will elas-

2 I
tic scattering alone contribute to (20) [and thence result in (1)].

After considerable algebra, taking Iffy g
I' independent of molnentumtransfer, (20) can be simplified to

dv(()l(v)(s —() ' ),'g„(w)+2 )' dh)(„(w)).

We now clearly see the contribution of gI((d) Rt
I
k

I

= 2k~, as well as an integral of g-„(&o) over all k, to I/7, .
The coefficient of the second term vanishes as u&-0, and the first yields (1) directly in the limit that the
frequencies for which g» (&u) is finite approach zero. Therefore, the elasticity condition is "applied" di-
rectly by g-„((d), and requires that af/ frequencies "slow down" for all k for T- 7,. We find such a require-
ment difficult to accept. It will be discussed in the next section.

Simplifying (21), and using (15), we find as our principal result,

d~(P@~)(e'" —1) '
gs,,(~)+ -2 2 (Pff(d)'sr'NS' Bm k~

@PE

d), ),((,( )).

The diagonal element of the thermopower tensor,
averaged over il, v, is given by [see Eq. (10)],

so that (23) becomes

S =[4(0)/To][1/~. I/~, ]-'

The effective scattering time T in the presence of
background scattering is given by

= Py(0)/To] I„(1—r„/I;)



The result (25) for the thermopower of a ferro-
magnetic metal reduces to that of Refs. 4 and 5 if,
Rs stRted 6R1'liel', 0116 tRkes g&(u) =gg(0) 5(uP).

Then, (25) becomes

S =S„-S„(4V,ma, /Xa ')rf 'g„(~= 0). (26)

When we identify Ref. 4's K, =3m/{kk~)', and take

V, '= kz/2v', Eq, {26) reduces to Eq. (5} of Ref. 4.
%6 therefore have reason to believe that the dif-
ference between our principal result, (22), and

that of Refs. 4 and 5, lies in the assumption of
elasticity implicit in the latter.

The physical situation is not clear. Dynarnie
scaling is valid only in the small momentum trans-
fer limit. " Beyond that regime, one cannot say
anything about the correlation function g k(&u)

xigorously. Experimentally, 9 it does not appear
that Rnythlng hRppens to the flnlte k IQodes ln the
vicinity of T„so thai we do not believe there is
any significant slowing down of the characteristic
fx equeneies associated with these modes. %6
would then argue that inelastic processes contrib-
ute significantly to S, and involve the entire range
of frequencies excited for temperatures around T, .
For R strictly three-dimensional situation, this
means that frequencies up to the localized spin-
spin exchange frequency will be important.

IQ such a situation, the first two terxns in
the integrand of (22) will be essentially constant
over the 1Rnge of lntegx'Rtlon. The fix'st terIQ ln
the large parentheses then integrates to g~ (f =0),
the equal-time spin-spin correlation function for
momentum transfer 2k+. The temporal character
of this result has been cogently argued for by
Parks, " The second term in the large parentheses
integrates over frequency to dg- (11t) /d'f[, „with a
subsequent integration over momentum transfer k.
It is difficult to say any more about this term, ex-
cept that we expect all momentum transfers to
contribute, there being no reason why the small
momentum transfers should dominate. The sum
and substance of the foxm of both terms is that
there is nothing that dynamic scaling theory ean
say about them. The momentum transfer is large,
and we know of no argument concerning the be-
havior of the characteristic fx'equencies for such a
momentum 1 eglxne.

For a system exhibiting three-dimensional ordex-
ing at T„but composed of weakly interacting two-
ox one-dimensional layers or chains, the fluctua-
tions of the localized spin system may have a con-
siderably g cate ange tha k T, ." It is th on-
ceivable that the wave vectors appearing in (22) at
T, may be small, the fraction of excitations limit-

ed by AT, /k&d, „, where 1L1,„ is the exchange fre-
quency. It may then be the case that, for all prac-
tical purposes, the scattering can be regarded Rs
static (critical slowing down of the long-wave-
length modes), and the result of Refs. 4 and 5 will
be I'elevant. It would be of interest to explore
such types of magnetic metals.

In summary, we have formulated the problem of
the thermoelectric powex S of a ferromagnetic
metal. %6 hRve exRIQlned the seRttex'lng of the
conduction electrons in the vicinity of the critical
temperature T„RQd have shown how the lnelRstlc
processes contribute to S. %6 have derived a re-
sult for S which should be valid for any tempera-
ture. %6 have compared our result with the pre-
vious elastic-scattering-only calculation for these
systems, and shown how ours goes over to that
limit under the appropriate conditions. Finally,
xnagnetlc dlnlensloQRllty 6ffects hRve been shown
to affect the thermopowex, and to affect the char-
acter of energy transfer between the electronic
and magnetic systems.
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We CRlclllRte Q~„(f) lI1 tllls RppeIldix. By coll-
struction,

dX (q„[H, [H, Z„{f+fe,)]])

u ([0,g„][If,Z, (f+ If'.)]& .

This expression will be calculated to second order
in 8, „. Each of the commutators will be fix'st
order in H, „, so that the thermal average need
only be taken with respect to H„given by (14). It
is easy to show that $„„(f)= P„„(f)so that P(f)
is real. One then can wx'ite
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(~,.()) = q~&&(]» () I[». & ((.+ (@)I+I&,&,]I» ().(-) ()0 )1)

)() f d~ I I(',-', l*(s*. -e .)]& .N;, -~,) -e. (~;, E)]f; (-( f( )-
tl~s02

x (s;; s;; ()+ 'IB)}exp v() ~ 'In)(z; z; ))

so that j„„(t)=j„„(-t)
Defining"

g-„, ;,(t) = &s;, ;, ~ s;, ;,(t)&,

(A2) reduces to

+ (S;; 8;; (-t+ thX))exp —(-t+t&)(E; E; -)

(AS)

&-«) = — '„~ P Il«, «, I'(4..-q,.)la, (z;, -E.) -e. (E;, -E )]
CI. %2

&& g«, «, (t) exp —(Z; -Z; )t [2f«(1-f, )].

%e need to evaluate

2 d4 ~tv@ @tao
1

according to (17). Introducing the Fourier transform of (AS), the time integra. l generates

sinI'(E« -Z; h(u)t, /h-]

(E- -E -h(())/5

This is to be integrated over t„according to (18), from zero to t&7. Unless the energy difference E; -E~
-hu is sufficiently small (on a scale of h/7'), the integrand in (18) oscillates so wildly that the integral over
t vanishes. If, however, the energy difference vanishes, then (A4) in (A5) is independent of t„and we may
let t, -~, resulting in

sin[(z«E02 tf(())tl/Z]
Q((z E h )/to(E-„-E~ —he) )/'h

1

Inserting (A4) into (I t), and using this result, we find

'
q~ -q q E- -E -q E- -E I—

~ (e

(t (()g««((d )8

where we have used the subscript c to denote critical scattering. This result is reproduced as (19) in the
text.
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