
PHYSICAL REVIEW B VOLUME 14, NUMBER 9 1 NOVEMBER 1976

Series analysis of corrections to scaling for the spin-pair correlations of the spin-s Ising model:
Confluent singularities, universality, and hyperscaling

William J. Camp~
Sandia Laboratories, Albuquerque, New Mexico 87115

D. M. Saul~

Rack Engineering Corporation, Connellsville, Pennsylvania 15425

J. P. Van Dyke~
Sandia Laboratories, Albuquerque, ¹wMexico 87115

Michael Wortis
Physics Department, University of Illinois, Urbana, Illinois 61801

(Received 12 April 1976)

We report a detailed study of twelve-term, high-temperature series for the second moment of spin-pair
correlations p,,(t) and the specific heat cia(t) of the nearest-neighbor spin-s Ising model in zero magnetic field
on the fcc lattice. Near criticality we find p,,( t) = A,(s) t(s) +'" [1 + B,(s) t(s) ' + -],
I t(s) = tr„T—T,(s)]/TI, showing a confluent correction to the dominant scaling singularity. To within

uncertainties the exponents have the universal (i.e., spin-independent) values v = 0.638+
Q QQ, (with

y = 1.250+ QQQ7) and 5, = 0.6 + 0.1. The confluent exponent 5, is in reasonable agreement with the correction-to-
scaling index derived from earlier analysis of the susceptibility, as predicted by renormalization-group
arguments. A similar analysis of the specific heat cH for the same model finds no detectable confluent
singularities in rather noisy, high-temperature series and gives a = 0.125 ~ 0.020 in general confirmation of
earlier s = 1/2 estimates. With v as quoted above the hyperscaling relation dv = 2 —a at d = 3 requires
a = 0.086+QQ'Q6, so the validity of hyperscaling remains problematical.

I. INTRODUCTION

In earlier work' on the spin-s nearest neighbor
fcc Ising model we have studied corrections to the
dominant scaling behavior of the zero-field (h = 0)
susceptibility at temperatures near to but greater
than the critical temperature T,(s). On the basis
of 12-term high-temperature expansions, we found
compelling evidence for confluent singularities'
of the form,

corrections which appear characterized by the
same exponent A, which appeared in (I)? And

finally, (c) are the universal values of v and a
consistent with the hyperscaling relation' dp =2

7

Our work is based on previously derived ser-
ies"' for the h =0 spin-pair correlations,

I'( R, t) —= s ' [(S( r) S( r + II)) —(S)' ]

=R ' "D(Rt ) (2)

1((t) =A, (s) t(s) &[I +B,(s) t(s)~~+ ~ ~ ],
with spin-dependent amplitudes [B,(—,') =0], but
exponents, y = 1.2 50+ ~«'„6,= 0.50~ 0.08, which
were spin independent4 (universal) to within un-
certainties. Renormalization-group arguments"
suggest that the same correction-to-scaling index
A, should in general appear in all other thermo-
dynamic and correlation functions. In this paper
we extend our previous analysis to the second mo-
ment of spin-pair correlations tL2(t) and the speci-
fic heat per spin c„(t).The high-temperature
critical behavior of these quantities defines the
exponents v (correlation length') and o (specific
heat). We are primarily motivated by three ques-
tions: (a) Are these exponents properly spin in-
dependent (universal) in an analysis which allows
for confluent singularities'? (b) Are the confluent

The final member of (2) describes the expected
dominant scaling behavior' near T,(s), where I'(R)
develops spherical symmetry. ' The index g de-
scribes the decay of correlations at T = T, (s) (t = 0).
At fixed t ~0 it is known' that for large enough R,
I'(R, t)cce -'a/R ' ', defining the true cor-
relation' length ((t). This is built into (2) via
](t) = $, t ' and the large-x dependence of the scal-
ing function InD(x)--x/(0+( —,

' d —
~ +q) lnx +const

as x-~. The spherical moments of I'(Il, t) are
defined by

g„(t)—= Q R"I'(R, t)= A„(s)t(s)

The leading critical scaling form shown in (3) fol-
lows from the scaling form of correlations (2) via
g„(t)cc $2 "+". The susceptibility sum rule identi-
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[D(Rt') =D(Rt", {x«=0})]. For small t the leading
corrections come from the least negative A~ and

carry a factor t ~«with n, , = v ~ A«~ for the minimum

The substitution of (6) into the definition (3)
leads to

t«„(t)=A„(s)t ~'"'[1+B„(s)t «+ ~ ~ ], (6)

of which (1) is a special case. A parallel analysis
of the free energy" leads to a similar form for
the specific heat. Note that the same exponent
h, governs the leading corrections to scaling for
all quantities. " ~, has been calculated by renor-
malization group-techniques and observed experi-
mentally; Refs. 1 and 2 contain numerous cita-
tions.

The remaining content of this paper is divided
into three parts. In Sec. III we briefly introduce
necessary series terminology. Sections III and IV
describe our analysis of second-moment and
specific-heat series, respectively. The analysis
relies mainly on two methods which have been
described elsewhere, the Baker-Hunter trans-
fprmatipn ' and the methpd pf g fits

In our analysis of p, , (Sec. III) we find clear
evidence of confluent singularities of the form (6)
for s&-'. . For s = —,

' (only) it appears that B,(-'.)=0,
and our data are consistent with the interpretation
that the leading correction to scaling is just the
analytic correction, in which the square bracket
in (6) is replaced by [ ] =1+constt+ ~ ~ . Our
analysis of the dominant exponent (y+2v) shows
a very weak spin dependence. If w'e assume
y = 1.250 for all spins, then we might conclude
v(s = —,') =0.638, v(s =~) =0.633 with intermediate
spins between these values. We are inclined,

fies p, ,(t) as the (reduced) susceptibility (1), from
which follows the well-known scaling law" y = v(2
-q).

Wegner' was the first to consider the corrections
to dominant critical scaling within the framework
of the renormalization group. The upshot of this
analysis"" is inclusion of additional "irrelevant
scaling fields" {h«} into a generalized scaling
function [cf. (2)],

r(5, t, {a, })=R "+ "S(Rt', {h t ~ «~}), (4)

valid near criticality. The eigenvalues" X„as-
sociated with the irrelevant scaling fields are all
less than zero. " Near T, (s) the h«'s are finite,
t-0, and the generalized scaling function can be
expanded about x„=h~t'1~~~ =0 for all k,

I"(0, t{h„})=R+ «D(Rt")

however, to attribute this spread to the subtle
effects of corrections of higher order than t~& and
conclude that the d = 3 Ising-correlation-length
index has a universal value p 0 638+0 Oo8 ln agree-
ment with earlier s =-,' fcc work, "but with some-
what wider uncertainties. This estimate reflects
our bias in favor of the s =-,' series, which show
very rapid apparent convergence. " The correc-
tion exponent is somewhat less well determined.
We conclude 6, =0.6+0.1 independent of s. This
is within uncertainties of (but somewhat higher
than") earlier estimates'«based on the suscepti-
bility and may be regarded as consistent with s =-'.

data of Tarko and Fisher' for the critical isotherm
behavior of the sc and bcc lattices.

A similar analysis of the spin-s fcc specific-
heat series (Sec. IV) is far less satisfactory. Un-
like those for X and p,

„

these series are quite ir-
regular in the low orders available. Their ratio
plots do not show smooth curvature of a type that
can be well fitted' by confluent corrections anal-
ogous to (1) or (6). It is, thus, not surprising
that the introduction of the possibility of confluent
corrections does not noticeably improve or modify
the results of conventional analysis. " One might
anticipate difficulty in the specific-heat analysis
because of the weakness (o. =-,') of the expected
singularity relative to background terms,

c„(t)/ks= Cot "(1+C, t ~+ ~ ~ ~ )+Ro+R, t+ ~ ~ ~,
( I)

where R„R„etc., represent analytic correc-
tions. " Note that, since A, &o., the first correction
to scaling (easily visible in the usual analysis" )
is actually the constant term Ro. One must search
"under" R, for the "normal" correction varying
as t~~. We have attempted to circumvent such
difficulties both by inserting critical temperatures
T, (s) derived from the better-converged series X

and t«2 and by studying series for ace(t)/st in which
the first correction is expected to be normal. No

method of analysis we have tried gives any evi-
dence for the existence of t~j. corrections. We
emphasize that this failure is not to be interpreted
as strong evidence agmnst such singularities. In-
deed, if the confluent amplitude C, were weak
enough, it is quite plausible that normal confluent
corrections might be hidden in the intrinsic noisi-
ness of the specific-heat series. Corrections not
withstanding, standard analysis leads to the spin-
independent estimate n = 0«125~0.020. There are
no noticeable trends with spin. The quoted un-
certainties are, we feel, reasonable.

It is reassuring that y, v, and n appear uni-
versal with respect to spin; however, the status of
hyperscaling is problematical. If a = 0.125+0.020,
then dv =2 —z implies p =0.625~0.007, which is
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just barely compatible with our direct estimate
p = 0.638+~+008 Tw'o further considerations make
this marginal compatibility even less tenable:
(a) If we give full credence to spin universality,
then we are entitled to evaluate both p and e from
that single spin (s =-,') which appears to determine
them most precisely. Based on s =-,' alone we are
inclined to quote o. =0.125+0.010, which trans-
lates (under hyperscaling) into v =0.625+0.003,
quite incompatible with the best s =-,' estimate"

0.636+o OO2 Furthermore, (b) if we accept the
wider uncertainties and compromise on p =0.631,
~ =0.107, we must still reconcile this with thermo-
dynamic scaling relations like a+2P+ y =2, which
are generally regarded as solid. Taking y = 1.250,
this would require P = 0.322, uncomfortably higher
than the most recent s =

~ series estimates (P
=0.312+0.005). It remains conceivable that some
such "compromise" set'~ of d = 3 Ising exponents
will ultimately prevail. At present and until we
have a firmer understanding of those corrections
affecting the series estimates of p and ~, the ap-
parent failure of hyperscaling seems perilously
close to the borderline of unambiguous resolva-
bility.

where" v=—(s+ l)K/3s. The fcc coefficients m„(s)
and" c„(s),1~n &12, are tabulated in Tables I
and II for spins s =-,', 1, » 2, » and ~. Data
are also available for other spins and lattices. '0

Series for the specific heat are easily derived
from (ll),

de(t)

f7= »

%e analyze these series in Secs. III and IV.

(12)

III. ANALYSIS OF SECOND-MOMENT SERIES

The analysis of moment series presented herein
follows closely our previous analyses'" of the
sUsceptibility series. Our task is somewhat sim-
plified in that we have available very accurate es-
timates for the critical point v, (s) as a function
of s from our susceptibility studies. In addition
to analyses based on now standard ratio and Pade
methods" we have employed two more sophisti-
cated methods of series analysis —both of which
allow explicitly for confluent singularities.

The first method involves the use of a nonlinear
series transformation introduced by Baker and
Hunter. " These authors recognized that the series

II. DERIVATION OF HIGH-TEMPERATURE SERIES

The Hamiltonian of the nearest-neighbor spin-s
Ising model is

TABLE I. Spin-s second-moment coefficients, m„(8)
(1—N —12), to ten-place accuracy for s= &», 1, 23, 2, ~5,

and ~.

(tt)1=
3 Q m„(s)v" (10)

8+1
e(t) =-qJ

6 Qc„(s)v",
n=l

-36/ksZ'=, QQS(r) S(r+6)+ —QS(r),
r r

(6)

wl1el'e S( 1') = —s» 1 —s». . . » s —1» s. Tile vec'tol' 6
runs over nearest neighbors, g is a reduced mag-
netic field, and K = +/ksT (J is the exchange en-
ergy). High-temperature I1 = 0 series through or-
der K' for the spin-pair correlation function have
previously been derived for a variety of lattices
including the fcc.""'" Summation of the spin-pair
correlations according to (3) gives" p, ,(t). The en-
ergy density is related to the nearest-neighbor
correlations,

e(t)=E/fq =--,'qZr(6, t)

(q = 12 is the coordination number for the fcc lat-
tice). Equations (3) and (9) lead to series of the
form

S=—»
2

12
288
4904
71 904
968 209.6
12 336 076.8
151 187 110.6
1 800 280 955.5
20 965 809 027
239 886483 889
2 705 501 680 746
30 150 818448 085

12
288
5000.18
75 658.8
1059139.482
14 097 870.47
181115982.5
2 266 301 187
27 786 214 668
335 187 249 762
3 990 137 885 682
46 978 318 506 593

12
288
4972.5
74 574
1 032 530.006
13 573 559.93
172 041 937.S
2 122 240 592
25 635 764 908
304 536 941 557
3 568 714 268 794
41 348 367 601 860

12
288
5004.544 261
75 830.141 39
1063 367.465
14 181831.05
182 581 839.7
2 289 791 053
28 140 252 835
340 283 302 888
4 060 909 182 631
47 933 357 150 937

S=—3
2

12
288
4991.8592
75 332.352
1 051103.047
13 938 772 ~ 08
178 347 928.8
2 222 108 207
27 122 693 077
325 674 029 676
3 858 552 259 544
45 209 800 563 297

12
288
5014.08
76 204.8
1 072 636.263
14 366 514.79
185 818480.5
2 341 867 895
28 928 482 461
351 67S 571 269
4 219 862 830 858
50 088 042 687 788
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TABI.E II. Spin-s energy density coefficients, f=„(s)
(1—n —12), to ten-place accuracy for s=~, 1, 2, 2, ~,
and ~.

S=y1 S=1 S=—3
2

1.000 000 000
4.000 000 000
21.666 666 67
133~ 333 333 3
886.133333 3
6288.177 777
46 930.746 03
363 098.4127
2 885 527.334
23 418 295.41
193335 209.7
1 618 886 140

s=2

1.000 000 000
4.000 000 000
27.375 000 00
187.500 000 0
1360.792 188
10 386.993 75
82 247.341 32
670 875.9314
5 604 565 ~ 731
47 740 012.91
413 249 018.3
3 625 849 863

S=—5
2

1.000 000 000
4.000 000 000
28.988 266 67
202.965 333 3
1516.134 997
11852.648 39
95 833.954 00
796 679.8085
6 773 008.730
58 651 670.48
515770 867.2
4 594 900 964

1.000 000 000
4.000 000 000
29.681 666 67
209.633 333 3
1585.808 521
12 525.646 19
102 225.9888'
857 134.8465
7 345 101.537
64 084 459.16
567 595 543.1
5 091 639467

1.000 000 000
4.000 000 000
30.045 355 10
213.135673 5
1623.053 424
12 889.093 58
105 617.6776
890 473.8058
7 663 389.171
67 131347.07
596 874 386.8
5 374 187 891

1.000 000 000
4.000 000 000
30.840 000 00
220.800 000 0
1706.115265
13 708.443 43
113683.1609
967 384.7822
8 404 961.797
74 294 913.48
666 290 478.9
6 049 312 572

f(x) =+A, (1 —yx) n,
1=1

could be greatly simplified by noting that the first
N coefficients of the expansion of f (x) in powers
of x determine the first N coefficients in powers
of g =ln(1 —yx) of the related function

~(C) =g [A, /(1 -y, r)] .
f=l

This latter function is a sequence of simple poles,
and is ideally suited for analysis by direct Pade
approximants.

The second method, four fits, has been de-
scribed in detail elsewhere, ' '" and we only
briefly outline it herein. From Eq. (6) the second
moment is expected to behave as (A, =A, /K)

K 'u, (t)=A, (s) t &'+" [1+B,(s) t &+ ~ ~ ~ ] (13)

in the critical region. Were p, 2 exactly of this
form it would be completely described by the five
parameters A2(s), B2(s), (y+2v), A» and v, (s).
In the method of four fits we obtain a sequence of
estimates for A2(s), B,(s), A„and v, (s) (or y+2v)

analysis for a function f(x) composed solely of con-
fluent branch-cut singularities, as in

by specifying y+2v [or v, (s)] and assuming the
neglected terms in Eq. (13) to vanish. Then the
above four parameters are determined from the
series coefficients m„„,m~„m„,and m„,. Of
course, if p, 2 were exactly given by a pair of con-
fluent singularities, the sequence of estimates
would be independent of n. In practice the apparent
convergence of the sequence of estimates is de-
termined by (i) the accuracy of the estimate for
y+2v or v, (s) used, and (ii) the magnitude of the
neglected terms in Eq. (13).3'

The values of the critical exponent v estimated
from naive ratio and Pade analyses of the second-
moment series depend upon spin in very much the
same manner that similar estimates for the sus-
ceptibility exponents y were previously found to
depend on spin. "' That is, the spin- —,

' series
produces ratio plots with very little curvature and

yields estimates for v in the range v =0.638-0.639.
As the spin value increases, the ratio plots be-
come increasingly curved and apparently extra-
polate to considerably lower values, e.g. , for
s =~, v=0.625+0.005. In the case of the suscepti-
bility, the curvature of the ratio plots for higher
spin values was successfully understood in terms
of a universal value of the critical exponent y as-
sociated with the dominant singularity which is
somewhat masked by confluent corrections, again
with universal exponent y —A„butwith amplitude
which is quite large at s =~, and gradually di-
minishes to zero as s decreases to s =

As noted in the Introduction, we expect from
renormalization-group arguments that such cor-
rections are also present in the second moment
and that the same correction exponent ~, is in-
volved. Further, from the similarity of the spin
effect found in ratio analysis of p. , to that found
in ratio analysis of X, we expect the corrections
to diminish in importance as s decreases to s =-,'.
The confluent-singularity analyses discussed be-
low satisfactorily confirm this picture.

A. Baker-Hunter analysis

The results of the Baker-Hunter analysis will
be described first. Given an accurate value for
v, (s) from susceptibility analysis, one can obtain
estimates for the exponents and amplitudes in Eq.
(13) for p, (t). In fact, we have performed Baker-
Hunter analyses for each value of spin using a
range of values of v, (s) about the "best" value
from susceptibility analysis. We present herein
the Baker-Hunter analysis for the central value of

v, (s) for s =-,', —,', and ~. The variation in esti-
mates due to small changes in assumed value of

v, (s) are also discussed. Finally for s = —,', 1, —,',
2, —,', and ~ the results for v, A, (s), B~(s), and 6„
obtained using the best value of v, (s) from suscep-
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tibility analysis, are summarized.
In Table III are list the results of Pade analysis

of the Baker-Hunter transformed series for s = —'. .
The estimate, v, '--9.7944, was employed in the
transformation. ' The four entries in Table III
listed for the [I./I] approximants represent, in
order from top to bottom, the correlation length
exponent p, the amplitude of the dominant singu-
larity n~, in Eq. (13), the correction-to-scaling
exponent A„and the amplitude of the leading cor-
rection term A,B,. (The estimates for v were
obtained using y =- 1.250.) The convergence of
higher-order estimates to p =0.638 is very good.
Similarly the correction exponent is consistently
in the range 6, = 1.0-1.1 (which is consistent with
an analytic background correction; see below).
The amplitude of the dominant singularity is found

to be A, ~ =11.10 with good precxszon, and the cor-
rection-term amplitude is in the range A, B,=0.93
+0.10.

These estimates are, of course, biased in that a
particular value of v, (-,') is assumed. However, the
results are not significantly sensitive to small
variations in the assumed value of the critical
point. In particular, for critical points in the
range 9.794~ v, (-,') '&9.795 v varies in the range
p =0.637-0.640. Additionally, the smallness of 82
and the proximity of 6, to unity are unchanged by
such variations in the assumed value of the criti-
cal points.

In Tables IV and V &re present similar analyses
for s =-', (y assumed to be 1.250), and s = ~ (y as-
sumed to be 1.247).' [If the assumed value of y(~)
is changed to 1.250, the listed estimates for p(~)

TABLE III. Besults of Pade analysis of the Bakex-Hunter transformed second-moment series
for s= 2. The critical. point is taken. to be N~(2)"~=9.7944. The g jMj approximants for ~, &&,
A2, and A282 are given sequentially. Most higher-order approximants have very weak
(~residues I

&10 ") defects.

0.641
0.95

10.96
1.06

0.637
1.21

11.19
0.93

0.638
l.00

11.09
0.87

0.641
0.74

10.81
0.86

0.620

12.60
0

0.638
1.10

11.13
0.92

0.632
1.36

11.26
0.87

0.639
0.95

11.05
0.87

0.638
1.27

11.14
1.36

0.638
1.10

11.13
0.46

0.639
0.98

11.05
0.95

0.638
l.07

11,10
0.93

0.638
1.08

ll. ll
0.93

0.638
1.02

11~ 09
0.89

0.631
1.38

11.25
0.88

0.638
1.07

1l.10
0.93

0.638
1.08

11.11
0,94

0.638
1.07

11.10
0.93

0.638
l.06

11.10
0.93

0.639
0.95

11.05
0.88

0.638
1.08

11.11
0.93

0, 638
1.07

11.10
0.93

0.638
1.06

11.10
0.93

0.638
1.30

11.14
1.60

0.638
1.02

11.09
0.89

0.638
l.06

11.10
0 93

0.635

0.638
1.11

11.11
1.02

0.636

0.636 0.636

11.21 11.25

0.636 0.637

0.638
1.11

11.11
1.01

11.26 11.21

11.13
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TABLE IV. As in Table III, but for s=~~, the critical point is taken to be&~(&2) =10.451.

0.652
0.579
6.51
5 ~ 53

0.637
0 ~ 621
7.41
4.67

0.637
0.618
7.37
4.70

0.634
0.648
7.63
4.52

0.647
0.525
6.58
5.14

0.638
0.631
7.35
4.88

0.701
0.345
2.53
7.77

0.710
0.346
2.36
8.11

0.633
0.644
7.64
4.48

0.637
0.618
7.38
4.70

0.637
0.621
7.41
4.67

0.636
0.623
7.43
4.64

0.641
0.581
7.09
4.86

0.644
0.545
6.80
4.99

0.710
0.345
2.33
8.12

0.637
0.618
7.38
4.70

0.635
0.631
7.50
4.60

0.636
0.623
7.44
4.64

0.637
0.621
7.41
4.66

0.630
0.650
7.80
4.32

0.637
0.615
7.40
4.64

0.637
0.621
7.41
4.66

0.636
0.623
7.44
4.64

0.635
0.636
7.56
4.55

0.686
0.321
3.36
7.01

0.635
0.630
7.53
4.56

0.636
0.620
7.44
4.65

0.637
0.623
7.42
4.66

0.685
0.325
3.46
6.98

0.633
0.645
7.68
4 44

0.641
0.581
7.09
4.86

0.630
0.651
7.81
4.31

0.635
0.630
7.53
4.55

0.644
0.547
6.81
4.99

0.637
0.614
7.40
4.65

0.522

7.77

would be lowered by 0.001.] For s = ~, we esti-
mate v( 52) =0.635+0.002, and z, =0.63+0.02; and
for s =~, our best estimates are v(~) =0.633~0.002
and z, =0.62~0.02. The Pade tables for s =-,' and
s =~ are noticeably noisier than those for s =-,'.
Again, the values of v, (s) employed in the trans-
formation were the best values determined from
susceptibility analysis in Ref. 2. Now, however,
the results, for s =~ especially, are notably more
sensitive to the assumed value of v, (s). For ex-
ample, if the best value v, (~) ' = 10.524 determined
in Ref. 1 is substituted for v, (~) ' = 10.522 in the
spin-infinity analysis, the central estimate for
v(~) drops to v(~) =0.625+0.005, consistent with
hyperscalingt However, the apparent convergence
of the Pads table noticeably worsens under such a
change; and no consistent secondary singularity
is estimated. Furthermore, the Pade table be-
comes highly defective in a manner which sug-
gests"" that the critical point has been misesti-

mated. Thus, we do not place much credence in
the lower estimate for p. In this regard it is sat-
isfying that the best apparent convergence of the
Baker-Hunter second-moment analysis for s =~
and s =-,' is obtained using the same critical points
that optimized the convergence of the susceptibility
analysis.

The striking aspect of Tables IV and V is the
large amplitude of the correction terms B,(—,')=0.60
and B2(~)=0.66. This is in strong contrast to
spin--,' where no evidence was found for the leading
nonanalytic correction to scaling. In the case of
s = —,

' we assume that the Baker-Hunter analysis
indicates a zero amplitude for the leading correc-
tion to scaling, and that the correction terms found
are due to analytic background —although the pos-
sibility that they represent a term t"

~ t ~ &+ " + ~i
cannot be dismissed (such a term is always ex-
pected to be present, but would normally be
masked in our analysis by stronger leading cor-
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TABLE V. As in Table III, but for s=~; the critical point is taken to be v~(~) =10.522.

0.652
0.571
6.19
5.58

0.637
0.601
7.00
5.07

0.634
0.611
7.15
4.94

0.630
0.647
7.48
4.71

0.639
0.560
6.78
5.07

0.629
0 ~ 718
7.66
5.12

0.673
0.349
3.95
6.62

0.635
0.646
7.08

10.85

0.634
0.614
7.18
4.92

0.634
0.615
7.19
4.91

0.639
0.597
6.90
5.17

0 ~ 633
0.621
7.27
4.84

0.633
0.615
7.22
4.87

0.634
0.600
7.12
4.90

0.643
0.492
6.37
5.04

0.633
0.615
7.19
4.91

0.634
0.614
7.17
4.92

0.631
0.634
7.35
4.82

0.633
0.617
7.23
4.86

0.632
0.624
7.30
4.82

0.633
0.621
7.26
4.84

0.638
0 598
6.91
5.15

0.631
0.634
7.35
4.82

0.633
0.622
7.27
4.85

0.636
0.584
7.00
4.99

0.633
0.621
7.27
4.84

0.633
0.621
7.27
4.84

0.633
0.617
7.23
4.86

0.636
0.585
7.00
4.98

0.632
0 ~ 627
7.31
4.82

0 ~ 633
0.615
7.22
4.87

0.632
0.624
7.30
4.81

0.633
0.621
7.27
4.84

0.634
0.600
7.12
4.90

0 ~ 633
0.620
7.26
4.84

0.643
0.499
6.41
5.07

rections).
As a summary, in Table VI we list the best

estimates for the critical parameters for s =-,', 1,
3 5

2~ 2y Rlld ~.
One can, of course, perform Baker-Hunter

analysis on the series for g, /y t2", whic-h pro-
vides estimates for p independent of y. We have
performed such analysis for all values of spin
studied. The resulting analysis is slightly noisier
than that of p. , itself. However, it fully confirms
the results in Table VI. Indeed the range of best
values for v is somewhat smaller than that listed
in Table VI, varying from around 0.634-0.635 at
s =~ to 0.638-0.639 at s =-,'. The value of a, is
again in the range L,-0.6; and the amplitude of
the leading correction diminishes rapidly with
decreasing spin value. Since the s =-,' analysis
is especially clean, we would quote the spin- —,

'
value p =0.638 as our best universal estimate.
The best value for the correction exponent, 6,

TABLE VI. Best estimates for the critical parameters
of the spin-s second moment as deduced from Baker-
Hunter analysis.

s fv, (s)] B&(s)

9.7944

10.229

10.362

10.421

10.451

10.522

0.638

0.638

0.637

0.635

0.635

0.633

0.68

0.66

0.64

0.63

0.62

11.10

8.8

8.2

7.5

7.3

0.08

0.4

0.5

0.5

0 ' 6

0.7

=0.6 is slightly higher than that found in suscep-
tibility analysis (6,=0.5+0.1)." Finally, we feel
that the higher-spin analyses are sufficiently noisy
that the somewhat lower estimates v=0.633-0.635
for high spins should not be taken too seriously.
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A final point concerning the Baker-Hunter anal-
ysis: As discussed by Baker and Hunter" and
Camp and Van Dyke, 2 for series composed only
of confluent singularities the sequence of [N —1/N j
Pade approximants converges most rapidly.
Nevertheless, we have used the full Pade table
in arriving at our estimates for critical param-
eters. This was done for two reasons. First, as
a practical matter, for the series considered
herein, the two convergence criteria differ little
or not at all. Second, we have found that on
"dirty" test series, i.e. , test series with weak
nonconfluent corrections in addition to the stronger
confluent corrections, the full-table convergence
criterion provides a more faithful guide to the true
critical behavior.

B. Four-fit analysis

As noted above, in four-fit analysis, either v, (s)
or y+2p is chosen. as an input parameter and the
remaining four parameters, y+2v or v, (s), A, (s),
B~(s), and a, obtained as functions of the series
coefficients and the (fifth) input parameter. We
may then vary the value of v, (s) or y +2v to obtain
the smoothest possible sequence of estimates for
the four undetermined parameters.

Since v, (s) is employed as the input parameter
in the Baker-Hunter analysis, we choose to dis-
cuss four fits with y+2p as the input parameter.
Setting y equal to 1.250 we thus vary p to obtain a
smooth sequence. [We have also taken v, (s) as
the input parameter, and varied it with y set equal
to 1.250 to obtain smooth sequences of estimates
for the remaining parameters. There are no con-
sequential differences between the results of the
two types of four fits. ]

We thus vary p between 0.625 and 0.650. For all
values of s the convergence was greatly degraded
if p was chosen outside the range 0.633&p &0.643.
We therefore varied p in steps of 0.001 through
this narrower range. In this range, the estimates
for v„b.„A,(s), and B,(s) exhibited relatively
good apparent convergence for all p. Nevertheless
the variation in apparent convergence was suf-
ficient so that we could, in all cases, distinguish
a "best" value for p. Another, independent cri-
terion by which to choose p is how well the four-
fit analysis reproduces the critical point, as de-
termined from our prior analyses of the suscep-
tibility. The critical point v, (s) determined by
choosing p so as to optimize apparent convergence
agreed with that determined from the susceptibility
analysis to at least one part in 10' for all values
of s; so there is no apparent conflict between the
two methods of choosing v.

We show in Table VII the p variation of the se-

TABLE VII. Variation of the sequence of four-fit es-
timates for v~, &&, A2, and 82 as a function of the value
of & assumed in the analysis, for the case s= g~. t See
Eq. ~13'.l

v (h

5
6
7
8
9

10

0.102 05 1.221
0.102 06 1.262
0.102 06 1.282
0.102 07 1.336
0.102 07 1.403
0.102 07 1.471
No root with 4& &1.50

11.258
11.270
11.275
11.284
11.293
11.300

was found

0.0723
0.0731
0.0739
0.0772
0.0830
0.0910

4
5
6
7
8
9

10

0.10211
0.102 10
0.102 10
0.102 10
0.102 10
0.10210
0.102 10

0.102 16
0,102 15
0.102 14
0.102 13
0.102 13
0.102 12
0.102 12

1.098
1.090
1.063
1.062
1.066
1.066
1.066

v= 0.643

0.980
0.938
0.884
0.853
0.829
0.802
0.778

11.117
11.114
1l.103
11.103
11.104
11.104
11.104

10.925
10.895
10.857
10.837
10.821
10.805
10.790

0.0839
0.0839
0.0835
0.0835
0.0836
0.0836
0.0836

0.1013
0.1027
0.1038
0.1042
0.1042
0.1041
0.1039

quence of estimates in the case s = —,'. Except for
the values of 6, and A. , this is typical of the re-
sults for larger spin values also. The apparent
convergence of the estimates for v, (—,') is good for
all three v sequences shown. However, the p
=0.638 sequence shows much better apparent con-
vergence in the estimates for L, and A~. Further,
the estimate for v, (—,') obtained from the v =0.638
sequence is within one part in 10' of that from
susceptibility analysis, ~ while those obtained from
the p =0.643 and p =0.633 sequences are, respec-
tively, 20 and 30 parts in 10' different from v, (-,')
as determined from analysis of the susceptibility. 2

The apparent convergence of the p = 0.637 and
p =0.639 sequences is nearly as good as that of
the v =0.638 sequence, while the p =0.636 and

p =0.640 sequences are noticeably less well con-
verged than the p = 0.638 sequence. Thus we
would quote I/(S = 2) = 0.638+0,002 with reasonable
confidence.

In Table VIII we list our best estimates for the
critical parameters of p, ,—as determined from
this kind of four-fit analysis —for all values of
spin studied. We list the value of v, (s) determined
by the apparent-convergence criterion. These
estimates for v, (s) are, as noted above, in com-
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TABLE VIII. Best vatues for &, &&, & (s), &2, and 8~ from four-fit analysis. [See Eq. (13).1
The uncertainties l.isted are based on smoothness of the sequence of four fits.

&&(s)

0.102 10+ 1

0.097 77+1

0.096 52 +1

0.095 97 ~1

0.095 68 ~1

0.095 06 ~2

0.638+ 2

0.637 +3

0.638+ 2

0.637+ 3

0.635+4

0.635+4

1.07+ 8

0.68 ~2

0„63+1

0,62 +2

0.62 + 2

0.61 +2

11.104+ 60

8.727 ~60

7.853 + 60

7.568 +90

7.488 + 80

6.948+ 60

0.084+ 2

0.381 +17

0.534 +15

0.594+ 21

0.612 +19

0.751 +25

piete agreement with those estimated from sus-
ceptibility analysis. ~ Except for s =

~ and ~ all
estimates for p are clustered at, p=0.637-0.638.
For s =

2 and ~ the apparent convergence was best
for p =0.635. However, it was very good for a
fairly wide range of values of p, and we would not
say that these estimates were significantly out
of line with the higher estimates for other spins.
Bather, we take this difference to be an indication
of the minimum uncertainties of the four-fit anal-
ysis.

As we have seen above in the Baker-Hunter anal-
ysis the magnitude of the leading corrections to
scaling decreases as s decreases, and we find a
changeover from ~,=0.6 for large s to 6,=1 at
s =-,'. This is consistent with the Baker-Hunter
analysis, and with our interpretation that the lead-
ing correction to sealing disappears at s =-,', where
it is reylaced by the analytic correction with ex-
ponent equal to unity.

In summary, four-fit analysis (i) confirms
Baker-Hunter analysis quantitatively, (ii) is in
agreement with susceptibility analysis'" (with the
minor exception that h, is estimated here to be
-0.6, rather than 0.5), (iii) finds a universal value
p = 0.638+00.~~~ for the correlation-length exponent,
and (iv} is consistent with corrections to scaling,
with exponent a,-0.6, whose amplitude vanishes
ats = —,.1

IV. SPECIFIC-HEAT ANALYSIS

The series for the internal energy and specific
heat have traditionally been the least well be-
haved of the standard high-temperature series. 2~

This poor behavior is manifested in our analysis
by the failure of Baker-Hunter and four-fit anal-
yses to provide reasonable results for the spin-s
specific-heat series for s & —,'. For spin-~, the
four-fit analysis again fails to produce convergent
estimates for the critical parameters of the speci-
fic heat. The Baker-Hunter analysis of the spin--,'

specific heat is not terribly good. However, using
the 14-term spin-~ specific-heat series of Sykes

eI; al. ,
' we estimate that +=0.12+0.01 if the criti-

cal point is forced to be that estimated from sus-
ceptibility and moment-series analyses. No sec-
ondary singularity was seen in the analysis. (How-

ever, a large additive constant would not be found

by Baker-Hunter analysis, but could seriously
deteriorate convergence of the analysis. )

In the absence of definitive results from Baker-
Hunter and four -fit analyses, we turned to anal-
ysis based on ratio methods. One of the major
difficulties encountered in studying the internal
energy and specific-heat series is that there are
expected to be large additive constant terms in both
functions at the critical point. ""' Batio analyses
are somewhat less sensitive to such terms than

are, for example, Pade methods. " Thus, while
the analysis reported below is far from definitive,
it cannot be dismissed as evidence on the question
of hyyersealing.

As noted above, Sykes et al. 2~ concluded on the
basis of rather direct ratio methods that n =0.125
for the spin- —,

' Ising model. %e have performed
ratio analyses of the energy density e(t), the
specific heat c~, and the temperature derivative
of the specific heat, as well as Pade analysis of
the specific heat for s =-,', s =-'„and s =~. The
methods of end shifts' and Neville tables" were
used in the ratio analyses. In both types of anal-
ysis the critical point was specified as an input
parameter of the analysis and chosen to agree
with the "best" critical point from analysis of
susceptibility and moments. Similarly, estimates
for the critical exponent were obtained by evalu-
ating Pade approximants to id Inc„/dt at f = 0,
where f =1-7,/T and T, is obtained from sus-
ceptibility analysis.

The most singular part of the internal energy,
the specific heat, and the temperature derivative
of the specific heat are, respectively, expected to
behave as I,

" ", t ", and I;
~'+ ~ in the critical

region (t=0). Based on our analyses of these func-
tions we would quote an apparent value + —0.12
+0.02 for s = —,', s = ~, and s =~. Bather than show



our analysis for all cases we display in Table IX
the end-shift analysis of c~ for s = ~, and in Table
X the Neville analysis of s(t) for s =-', and s =~.
The results are entirely typical of the other anal-
yses performed. The end-shifted ratio analysis
of c„(s= —,') displayed in Table IX is quite well con-
verged to+=0.11. The small value of the end
shift 6-0.2 indicates at most small corrections
to scaling. ' The Neville analysis (Table X) of
s(s =-', ) and s(s =~) is similarly indicative that
+=0.12. Por s =~ the second-order estimates,
a, , are particularly well behaved and indicate
that a =0.125.

To see whether the apparent convergence to
n=0. 11-0.12 is masking hidden (weaker) singu-
larities we have formed the functions f,(t) =f" ' s(t),
f,(t) =fsc„(t),andfs(t) =t~+'dc„(t)/dt. Two choices
were made for n: a= —,', to agree with series
estimates, and e = ~, which is consistent with the
hyperscaling relation dp =2 —n. The series forf„f„adnf,were then analyzed by ratio methods
as well as by the Baker-Hunter transformation.

In Table XI we display the end-shift analysis of
the series for f, for the spin--,' case. The first
analysis listed is that obtained by assuming that
o. =—,~; the second is that obtained by assuming
o. = —„andthe third is that obtained by assuming
a = 0.11—the Table IX series estimate for 8 = -,'.
%e interpret these results as follows. Assume,
following Sykes et al. ,"that c„=At "-J3. Then
t"c~=A -Bt". That is, the reduced series should
have a branch-cut singularity with critical ex-
ponent, —n. If the value of n is underestimated
(overestimated) in forming the reduced series f„
the apparent exponent from end-shift analysis will
be smaller (larger) than the inputted estimate for

5'ith th~s inte~retgtion, a scan through the
results in Table XI indicates that the estimate
Q j2 is badly inconsistent with the series, while
e = 8 is closer to consistency and Q. =0.11 is fully
consistent with the series. To see whether there

TABLE X. Neville analysis of the internal energy &(t)
for s= —and s=~. The s=~~ and s=~ critical points are
forced, respectively, to equal &~(2) =0.09566 and v~(~)
= 0.095 05. Assuming &( t ) —I'~, m th-order Ne ville
estimates using coefficients &„upto order E are shown
for E =6, ..., 12»d m =1, 2, and 3. (See Bef. 18 for
the definition of the Neville estimates n& ~ in terms of
the series coefficients (&„}.i

6
7
8
9

10
ll
12

0.34
0.25
0.24
0.20
0.19
0.17
0.16

0.34
0.28
0.25
0.22
0.20
0,19
0.17

0.02
0.09
0.19
0.11
0.13
0.12
0.12

-0.09
0.17
0.18
0,11
0,14
0.12
0.12

-0.55
0.16
0 33

—0.02
0.17
O. 11
0.11

-0.85
0.42
0.20

-0.01
0.18
0.10
0.12

7
8
9

10
11
12
13
14

—0.071
0.133
0.082
0.010

-0.032
-0.046
-0.047
-0.045

-0.23
-1.52
-1.14
-0.52
-0.12

0.03
0.04
0.01

TABLE XI. End-shift ratio analysis of t"&z(t) for the
spin-2 Ising model. Again, the critical point is set equal
to &, ( ~) = 0.102 10. Besults for the exponent n of the s in-
gularpartof t"e&(t), as well as for the end shift (see
Bef. 8) are shown for the three assumed values n=~,

12
G = ~~, and + = 0.11.

TABLE IX. End-shifted ratio analysis of &z for s= 2.
e, (2) is chosen to equal 0.10210 in agreement with mo-
ment analysis. The estimates u„obtained by using ~th-
order series for &= 7, 8, ..., 14 are shown. The end
shift &„is also shown. (Series taken from Bef. 21.)

-0.147
0,072
0.007

—0.079
—0.129
—0.145
-0.146
-0.143

-0.40
—1.66
-1.21
-0.53
-0.10

0.05
0.06
0.03

7
8
9

10
11
12
13
14

0 ~ 052
0.242
0.210
0.158
0.126
0.114
0 ~ 112
0.113

0.28
-1.18
-0.89
-0.35

0.01
0.16
0.19
0.17

7
8
9

10
ll
12
13
14

-0.122
0.092
0.032

-0.050
-0.097
-0.112
-0.113
-0.110

-0.35
-1.62
-1.20
-0.53
-0.11

0.04
0.05
0.02
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are other weaker corrections in c~ which could
cause the apparent inconsistency of n =—„,we ap-
plied the Baker-Hunter transformation to t' c„
and t' 'c„.Both transformed series were poorly
behaved and no weaker confluent singularity was
detected in either case.

The analysis of f, for s =~ is fully consistent
with that for s = —,

' shown in Table XI. Namely, if
we assume that cH=At +B+ ~ ~ ~, then n =0.12 is
consistent with the s =~ series and n =0.08 is bad-
ly inconsistent. Furthermore, the analysis of f,
indicates that e(t)=Eot' "+E,+Eaf+ ~ ~ ~, in accord
with the analysis of f,. Again, the choice n=s is
consistent with the assumed form, and the choice
Q —

yp is inconsistent with it.
The most striking fact about the specific-heat

analysis is that the corrections to scaling found in
the susceptibility and moments are apparently
completely masked by the presence of a large ad-
ditive constant in both the specific heat and in-
ternal energy. In fact, we find no evidence for

corrections to scaling of the form predicted by
renormalization-group theory. This may be due
to the rather poor convergence of the series (as
compared to the series for y and p, 2). Alternately,
it may provide a hint as to why the hyperscaling
relation fails (if it indeed does fail).

In summary, we estimate that a =0.12~0.02 for
s =-,', s =-,', and s =~ in agreement with previous
s = —,

' estimates. " No evidence for confluent singu-
larities is found —although such singularities, if
weak, would be effectively masked by large ad-
ditive constant contributions in the energy and
specific heat.
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W. J. Camp and J. P. Van Dyke (unpublished); D. M.
Saul and M. Wortis (unpublished).

3'We note that —as with the susceptibility —attempts to
use five-fit analysis in which both y+2v and v~ (s) are
unknowns [or to replace y+2v or v~(s) by 4& as the
input parameter in the method of four-fits] are notably
unsuccessful.
This is the best estimate for v~ (~)

' determined from
susceptibility analysis in Ref. 2. The best estimate
obtained in Ref. 1 was about 0.001% higher. The re-
sults of our analysis for s = &, particularly as regards
p+2v and b,

&
are insensitive to such a difference.

In the Baker-Hunter analysis of p2, we obtain v

consistently for a given value of v~ (s) by using the
Baker-Hunter estimate for p obtained from suscep-
tibility analysis using the same value of v~(s). For s
= ~ and s = 2 this is 1.25, but for s =~ exponents in the
range p = 1.245—1.247 were consistently produced by
Baker-Hunter analysis of X.


