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Per Bak
Brookhaven National Laboratory, Upton, New York 11973

(Received 7 June 1976)

The phase transitions in a large class of physical systems are described by n ) 4 component order parameters.
Here, the critical behavior of quenched random n ) 4 vector models is studied by means of renormalization-

group theory in 4—e dimensions. Recursion relations for average potentials are constructed following the
methods derived by Lubensky. For several Hamiltonians describing homogeneous n ) 4 systems there exist no
stable fixed points in 4—e dimensions which explains the first-order transitions actually observed in these
systems. It is shown that the recursion relations for the corresponding quenched random systems are also
unstable. However, the runaway in this case is of a fundamentally diA'erent nature. The fluctuations of the
local mean-field transition temperature diverge, and this behavior is interpreted as a smeared" transition.
This interpretation is consistent with existing experiments. On the other hand, in the cases where the
homogeneous Hamiltonian possesses a stable fixed point in 4—a dimensions, this fixed point remains stable
against random perturbations, so no change in the critical behavior is expected. For most of the models
studied there is at least one fixed point of order e'". These fixed points are all unstable. It is suggested that
experiments should be performed to determine the critical behavior of random n ) 4 systems. Of particular
interest are the systems with no stable fixed points, such as Cr, Eu, MnO, and UO2, where crossover from
first-order to a smeared transition is predicted.

I. INTRODUCTION

The nature of the phase transitions in quenched
random systems, ' or systems with "frozen" im-
purities, has recently drawn more and more at-
tention. Whereas the phase transitions in annealed
disordered systems where impurities can diffuse
freely to reach thermal equilibrium are rather
well understood, ' only little is known about criti-
cal properties of quenched systems. Very few
rigorous results exist. McCoy and Wu' have
solved exactly a disordered two-dimensional mod-
el in which all the vertical bonds in any horizon-
tal row are identical. They find a "smeared" or
rounded phase transition. An interesting question
is whether this behavior is specific for systems
with long-range correlation of impurities or
whether it is a general feature of disordered sys-
tems. No rigorous results exist for more realis-
tic models, and no conclusive experiments have
been performed.

A convenient approximate method of calculating
critical properties of real three-dimensional sys-
tems is the renormal ization-group theory, or the
e expansion. For pure systems the e expansion
has been very successful in calculating critical
exponents, ~ and also in predicting the order of
the phase transition. ' Generally, the e expansion
assumes translational invariance, which is not
fulfilled for quenched disordered systems. Lu-
be nsky' and Grinste in and Luther' have indepen-
dently extended the e-expansion formalism to

quenched random systems. Grinstein and Luther
derived an effective translational invariant Ham-
iltonian which leads to the same free energy as
the original Hamiltonian, ' and performed the e

expansion on this effective Hamiltonian, whereas
Lubensky directly constructed the recursion rela-
tions for the probability distributions for random
potentials. These theories can be shown to be
equivalent. The i,sotxopi, c n-vector model was
studied by both groups. The main result was, that
if there are no long-range correlations of the ran-
dom potential there is a sharP transition with pure-
system exponents if the specific-heat exponent n
of the pure system is negative, and if n is positive
there is a sharp transition with nese exponents.
For n & 3 it can be shown that anisotropy does not
affect the critical behavior of pure systems, '
since the isotropic fixed point is always stable
to first order in e. It can be shown (see Sec. II)
that for n & 3 the corresponding random isotropic
fixed point is always stable. Hence for n ~ 3 one
should always expect sharp transitions. (A special
case is the random Ising model where a fixed point
of order e' ' has been found. ") The effects of ran-
domness, if any, are difficult to observe experi-
mentally for two reasons. First, the exponents
of the pure and random fixed points differ only in-
significantly, and second, one cannot avoid macro-
scopic gradients of impurity concentration through
the crystal. Such unintended inhomogeneities will
cause a rounding of the transition temperature
and obscure the intrinsic critical behavior. "
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Recently, it was pointed out by Mukamel" that
the phase transitions in certain physical systems
in which the magnetic unit cell is doubled should
be described by n ~ 4 component order parameters ~

This is a very important observation, since it
turns out that many, if not most, magnetic phase
transitions are n = 4 transitions. Mukamel, Krin-
sky, and Bak'" constructed Ginzburg-Landau-
Wilson Hamiltonians corresponding to several of
these systems, and performed a renormalization-
group analysis in 4- e dimensions. The first-or-
der transitions in several typesof antiferromagnets
could be explained by noting that the corresponding
Hamiltonians possess no stable fixed point. Ex-
amples of physical systems corresponding to
these Hamiltonians are Cr (n =12), Eu (n =12),
UO, (n=6), and MnO (n=8). The question now
naturally arises what kind of critical behavior
should be expected for the corresponding quenched
random systems. There is no reason that a
gradient of dilute impurities or imperfections
should automatically cause a rounding of a
first-order transition. Hence, if dilute impuri-
ties do in fact change the nature of the phase tran-
sition, this effect should be interpreted as a genu-
ine intrinsic effect.

Let us briefly review the experimental situation.
It turns out, surprisingly, that a rather extensive
amount of neutron scattering experiments has been
performed on Cr with various impurities. "" Cr
is one of the systems with a first-order transition
generated by a lack of stable fixed point. A very
interesting experiment was performed by Lebech
and Mikke. '4 They found that very small amounts
of Re {0.18 at.%) in Cr make the phase transition
continuous. This observation seems to be consis-
tent with measurements on Cr with impurities of
Mn (0.05 at.%)," and Fe (0.37-0.5 at.%)." With
larger concentrations of impurities, the magnetic
structure usually becomes commensurate and, in
agreement with a simple Landau argument, ' the
phase transition again becomes of first order. "'"
However, in this context, we are only interested
in the dilute case. Another interesting feature is
that for" Eu early experiments indicated a con-
tinuous transition. The purity of the samples used
in these experiments was reportedly lower than
that of the sample used in the experiment of Cohen
et al, ."which revealed the first-order transition.
Also for MnO it is important to have a sample of
good quality in order to observe the first-order
transition. " These experiments clearly indicate
that impurities and other imperfections are im-
portant in determining the critical behavior of
random n ~ 4 systems. Whether the "continuous"
phase transition observed in these experiments
should be interpreted as a sharp second-order

phase transition with temperature-independent
exponents or a "smeared" transition in the McCoy-
Wu sense is not yet clear. The experiments were
certainly not set up to study critical properties of
random systems. In any ease, these experiments
provide sufficient motivation to study these tran-
sitions from a theoretical point of view.

In this paper the critical properties of random
n ~ 4 models are studied by means of renormaliza-
tion-group theory in 4 —e dimensions, using Lu-
bensky's formalism. This paper is organized as
follows. In Sec. II the general structure of the re-
cursion relations for the average potentials and
higher cumulants is derived. The disorder is
characterized by a single variable ~ which be-
haves like a quar tic potential. This variable may or
may not be relevant in the Wilson sense4 according to
the symmetry of the Hamiltonian. It is shown that
in general the number of fixed points is doubled
when randomness is included, and the new fixed
points and their exponents are related to the pure
fixed points in a simple way. We also show that
for n ~ 3 there is always a stable fixed point inde-
pendent of anisotropy. In Sec. III the random n
~ 4 models corresponding to the homogeneous
Hamiltonians with no stable fixed points are stud-
ied. It turns out the randomness does not create
stable fixed points for any of the models studied
by Mukamel, Krinsky, and Bak. Superficially
one might be tempted to conclude that the transi-
tions should be of first order. However, it has
previously been pointed out by Aharony" and
Lube nsky' that the "runaway" for random systems is
of a fundamentally different nature than the runaway
for homogeneous Hamiltonians. Therefore, one
should rather expect a smeared transition. Once the
"randomness" is turned on, the runaway is of the
same nature whether or not the original Hamiltonian
had a stable fixed point. On the other hand, in the
cases where the pure system has a stable n ~4 fixed
point, this fixed point remains stable with respect
to random perturbations. This reflects the fact
that the critical exponent o. is negative. Hence,
random impurities should not influence the criti-
cal properties of these systems. For some of the
Hamiltonians, namely, those corresponding to n
=4, the stability of the fixed point is marginal to
first order in e. The conclusions above are not
affected by this fact. In Sec. IV it is shown that
most of the random Hamiltonians have at least
one fixed point of order c' '. For the n=4 Ham-
iltonian describing type-II antiferromagnets with
m(~k we determine explicitly three such fixed
points. However, it turns out that these fixed
points are always unstable and hence probably
without physical significance. In addition, there
are always unphysical fixed points which can
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never be reached. Finally, the results are sum-
marized and discussed in Sec. V, and specific ex-
periments are proposed.

II. RENORMALIZATION-GROUP THEORY FOR

RANDOM SYSTEMS

In this section we shall briefly review the re-
normalization-group theory for quenched random
systems and extend the formalism to include all
possible fourth-order anisotropy terms of the
Ginzburg-Landau-Wilson (GLW) Hamiltonian cor-
responding to the pure system. This fourth-order
anisotropy plays a crucial role for the critical be-
havior of both homogeneous and random n ~ 4 sys-
tems ~

The most general GLW Hamiltonian for the pure

system, including terms of up to fourth order in
the order parameter may be written

n

Xp —— d g -q rP, ~+ Vp;x
i=1

' Z ((';,. (;(*((;(*((.(*((,(*()
P igkl

(1)

where P; are the n components of the order para-
meter, and the sum g~(, is over all the possible
fourth-order invariants O~ of the space group
which can be formed by the components of the
order parameter. However, in order to describe
the corresponding random system, we rewrite
this Hamiltonian on the more general form

n

X„=JI d'x, d'x, g --,' [~'(x„x,)P (x, )P;(x,)]
i=1

+ d X1 ~ X4 Q X1y X2P X3y 4) Pf jk$ (It i X1)P ' X2 Pk X3)(II)(i X4
igk1

+ J d x, ~ ~ d x, g w (x„-x„x„x, ) Q p;, „,(t(;(x, )((((,.(x, )(p„(x,)(p, (x, ) . (2)
P ijkf

The coupling constants r'(x„x, ) and u~ are now position dependent, "since the random system is not trans-
lationally invariant. Moreover, since all the symmetry elements of the homogeneous system are absent,
there are additional fourth-order terms not invariant under the space group of the pure system. The ran-
dom system is defined in terms of a probability distribution of the potentials r'( x„,x), u, and w~ . Mathe-
matically, the free energy is obtained by averaging the logarithm of the partition function over this prob-
ability distribution function.

We now transform the reduced Hamiltonian into momentum space:

v, q„q, )p, (q, )p, q, }
Q1eQ2

~,' q„q„q„q4) P''kl 4; q, )4, (q. )4k q3)4t~ 4)
Q1 eQ2. Q3 iQ4

+ g v.'(q„q„q., (4) P Pl,'»I, (q, )A, (q. )0»(q. )A, (q, )

The randomness is now characterized by a prob-
ability distribution function of the potentials in q
space, P(fv, (q„.. . , q, )}). The renormalization
group operates on the potentials (v', (q„.. . , q, )j
of a particular member of the ensemble and trans-
form it to a new q-dependent set of potentials,
(v,~(q„. . . , q, )j, where because of the change of
scale, the q spaces of the initial and the trans-
formed potentials are the same. In this way the
renormalization group operation transforms
P ((vfj) to a- new probability distribution P(( tv).
The probability distribution function can alterna-
tively be described in terms of its cumulants Ck.
The lowest-order cumulants are (v,) and (v, v ),
where the angular brackets denote averages over
P((v,j). The recursion relations for the potentials

(v, (q„q, )) = (r +q', )5(q, + q, ),

(v, (q„q„q„q,))= u, 5(q, +(1, +q, +q, ),
(v,' (q„q„q„q,))=0,

(4)

(5)

(6)

where we have expanded the second-order poten-
tial in the long-wavelength limit and, as usual in
renormalization-group theory, suppressed the q;
dependence of the fourth-order potentials.

can thus be converted to recursion relations for
the cumulants. Following Lubensky, ' recursion
relations for (v,) and (v~~) can be constructed by
averaging the recursion relations for the general
inhomogeneous potentials. Since the average po-
tentials transform according to the full space
group of the pure system we see immediately
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In addition to the recursion relations for the
average potentials, we also construct recursion
relations for the quantity (5v25t)p), where
5u, (q„q, ) =o, (q„q ) —(t),(q„q, )). In the long-
wavelength limit we have

(5t),(q„q, )6u, (q„q, ))=66(q, +q, +q, +q, ), (7)

where & is proportional to (5v, (x, x)5u, (x, x)).
Since o, (x, x)- T —T,(x), where T,(x) is the local
mean-field transition temperature, & is simply
proportional to the variance of the fluctuations in
the transition temperature. We note that 4 by de-
finition is a positive quantity. Therefore, we must
reject any solution of the recursion relations with
& negative as unphysical. It turns out that 4
enters the recursion relations on an equal footing
with the quartic potentials, but it should be em-
phasized that ~ is not a coefficient of a term in an
effective Hamiltonian.

In general the recursion relations for the homo-
geneous system to second order in a = 4 —d may be
written'

r' = b' x c~u~ A{y

up = b up — Q dorp up upr K» lnt)
p pppp

Here b is the cutoff ratio in momentum space

K, = 2&'-'~~-'~'[I"(-.' d) j-'

P
&P = ~ dnm&n&m y

(16)

2cp 1 +6y xpy —4y

Equation (16) is identical to the equation determin-
ing the fixed point of the pure system, for which
the solutions are known. Hence, if the pure sys-
tem has a fixed point x& = x~, y =0, then the ran-
dom system has the same fixed point and, in addi-
tion, a new mndom fixed point

ness, in agreement with an argument of Harris. '3

This relation ean be extended to higher order in z.
I et us first determine the fixed points of (11) to

order 0(e). Defining x; = (K»/e)u; and y= (K»/e)4,
the equations fox the fixed points become

xp = Q d„~x„x~—6vxp, (

Q 2cpxpy —4y

Suppose the homogeneous system has the fixed
point given by x~=x~~, p=1, . . . , l. The random
system obviously has a fixed point given by x~
=x~~, y=0. Now, let us consider the ease yc0
(b, »0). We define nepc parameters xp by means
of the equations

xp = (1+6y)xp, y » ——,', 0

and the fixed-point equations now read

1
A(r) =

~,~, (2w) q +p

Using the diagram technique, we construct the
corresponding equations for the random system.
They are, again to second order in the coupling
constants

y

(10)

Qp = I) up — Q GYprpnupiupN —64up K» in&

(11)

6' = b' 5, — 2cpup 6 —44 g4 lnb

We note that the exponent v, describing the diver-
gence of the correlation length at the critical point
is —,'++pep/4uppK» to first order in e, where upp are
the fixed-point potentials. Using scaling we get

u=-t»+2= — —E 2 "x) .
1 (12)
2 p

By inspection of the recursion relation for ~, we
note that the stability of the pux e fixed point with
respect to perturbati. ons in & is determined by the
sign of ~. When ~ is positive the homogeneous
fixed point is unstable with respect to random-

4 ~ 2
(19)

Clearly, if n* determined by Eq. (I'I) turns out to
be 0, no new fixed point has been obtained. Of
more interest is the fact that if pp cpxpp =-,', then
Eq. (17) has no solution for &. According to Eq.
(12) this case occurs whenever p = p+ —,', e or o.
= —,'z for the pure system. In Sec. IV we shall see
that in this case thex e is a fixed point of order
~'~' similar to the one obtained by Khmel'nitsky. "

We conclude that it is a rather trivial matter to
solve completely for the random fixed points,
once the fixed points fox the corresponding homo-
geneous problem ax'e known. However', following
this procedure, 4* may turn out to be negative
and the fixed point is unphysical. For example,
the random Gaussian fixed point corresponding to
x~ =0 for all P has y = —

& and should be rejected.
The intex esting question now arises as to what

determines the stability of the new fixed points.
Before considering the general case with arbi-
trary anisotropic fixed points, let us prove that
when n ~ 3, the isotropie xandom fixed point is
always stable. Blez1n 8j al. showed that w'hen

n ~ 3, the isotropic fixed point is always stable
for the pm"e system. I.et u, (or x, ) be the coeffi-
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eient of the isotx'opie four-spin tex m of the Ham-
iltonian. The recursion relations are nom

Q =Q1 + Cg — 4 R +8 + d P~1QPr+
Pt~1

when pw1. The recursion relations for gp, pc1,
do not contain terms proportional to u', or u, up,
where P 4P . The lsotropie fixed point ls

x~ = 1/4(n+8), xg,„,=0, y+ =0,

~'=~+ ~~- 8(m+2 u, ~-4~'

+ g 2c~u 4 K, knb,
p&1

where y* = &K,/e, and the corresponding random
fixed point is

4-n
x~ =

16( 1) & xp p&&~
=0

& y =
8( 1) (22)

MP
= ++ GAP AP1QPQ1

+ dPp p. up u~. -6~4 g4 lnb,
p p"

To determine the stability of this fixed point;, we
lineax'ize the recursion relations around the fixed
point. Stability xequires the following matrix to
have negative eigenvalues only:

1 —8(n + 8)x,"*+6y*
8+

dP1 ~1

1 —4p g + 6$*

Homever, since we know that the isotropic fixed
point is stable for n ~ 3 for the pure system,

1-dP, x,* O.

Using Eqs. (21) and (22) we find that this equation
implies that the diagonal elements, 1 —dpP, x, +6y
&O. The stability is thus determined by the eigen-
values of the 2x 2 submatrix

!

1 — (8n+)8x*s, +6*y 6x,

—8(n+2)x,* 1+8y~-8(n+2)xs„

and the problem is reduced to the case considered
by Lubensky' and by Qrinstein and Luther. ' Qne
finds that for n& 4 the eigenvalues are all negative.
Therefore, the isotropic random fixed point is
always stable when n&4. For regl systems in
three dimensions, it turns out the exponent +
seems to be negative, and one should expect the
pure fixed point to be stable. In any case, for n
& 3 one should almays expect sharp transitions
mith concentration independent exponents, which
do not differ significantly from those of the pure
system, and no observable effects of randomness
shouM be expected.

III. n ~~ 4 HAMILTONIANS VfITH NO STABLE FIXED POINTS

In Sec. II, the general structure of the recursion
relations for random systems mas outlined, and it

mas shown that the fixed points mere closely re-
lated to those of the corresponding pure system.
%e sam, that mhen n ~ 3 one should, in general,
not expect any change in critical behavior. In

this section, the formalism is applied to random
systems where the eorxesponding n ~ 4 Hamilto-
nians describing the homogeneous system do not
possess stable fixed points. In particular, me

shall consider the cases studied by Mukamel,
Krinsky, and Bak."" For a list of physical sys-
tems corresponding to these Hamiltonians, see
Ref. 5. The lack of stable fixed points explains
the first-order phase transitions in several ma, g-
netic substances, such as Cr, Eu, MnO, and UO, .
However, as discussed in Sec. I, there is clear

pe tal d th tth ph t to
in the corx esponding quenched random systems
may be continuous. 14 ""

Most of these Hamiltonians mere unstable to
first order in e. Charaeteristie for the recursion
relations" l.s that the fixed points are all unstable
with respect to perturbations of a simple linear
combination of the four-spin potentials, and that
the fixed point value of this linear combination
is zero. As an example, let us consider the n = 6
Hamiltonian representing type-I antiferromagnets
with m&k, such as UQ2 or NdSn3. The space
gx'oup has five fourth-order invariants, mhieh can
be formed by the six components of the order para-
meter. Mukamel and Krinsky" constructed the
eorx esponding GLW Hamiltonian:
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3

4'4'- 3
i —1 i =1 i=1 i& j

u4(41 P2 4243 43 PI) 5('4142 4243 4 301) (25)

P;, P;, i =1, 2, 3 are the six components of the or-
der parameter. For several fixed points, u4* = u,*
=0. The remaining fixed points are related to
these fixed points through symmetry relations.
The recursion relations for u, -u, can be written

u,' -u,' = (I+we lnb)(u, -u~ ),
where

(26)

x = 1 + 4x,*—24x,* —8x,* —8x,* (27)

with

A~u~ = (1+Xe lnb) P A~~,
P

(28)

A. =l —P a~xg&0. (29)

The corresponding recursion relation for the ran-
dom system is, according to Eq. (11),

A, u,'=(I+a'~ lnb) QA~u, , (30)

with

x' = 1 —g a~x~*+6y*,
P

where xP and y* are related to xP through Eqs.
(I'I) and (18). Inserting x~*=xg(1+6y*), we find

(31)

A,
' = 1 — aP xP~ 1 + 6y*) + 6y

aP xP~ (1 + 6y*) = A.(1 + 6y*) .
P

(32)

Since 6 (and y) are positive definite, and a itself
is positive, w' can never be negative. Therefore,
there can be no stable fixed point for the random
system. Mukamel and Krinsky also studied an n
= 4 model which is marginally stable to first or-
der in e, but unstable to second order in e. In
the Appendix it is shown that if randomness is in-

and X&0 for all fixed points (with x4* —x,* =0). Re-
lations similar to (26) and (2 t) also hold for the
n =12 Hamiltonians describing Eu and Cr, " and
for the n = 8 Hamiltonian describing phase transi-
tions in type-II antiferromagnets of the Mno-type
with mLk.

Now, suppose that the homogeneous Hamiltonian
has a fixed point u,*,u,*, . . . , uP where Q~A~u~* = 0,
and the recursion relation for this linear combina-
tion is

eluded, the Hamiltonian remains unstable. We
may, therefore, conclude that for all the n~4
models with no stable fixed points, the correspond-
ing random "Hamiltonian" also diverges. Since
the lack of stable fixed point in pure systems in-
dicates a first order transition, one might be
tempted to draw the conclusion that the transition
should remain first order. However, one must
remember, that although ~ is treated in a way
perfectly similar to the fourth order potentials
the physical significance of these quantities is
different. For the homogeneous system, the run-
away reflects a "blow-up" of the fourth-order
terms of the free energy as a function of the or-
der parameters. For the random system not only
the corresponding "averaged" potentials but also
& goes off to infinity. From the structure of the
recursion relations [Eq. (11)] it follows that a
divergence of the potentials uP necessarily drives
a divergence of 4. Recalling that b essentially is
proportional to the fluctuations of the local mean-
field transition temperature, it seem very likely
that the "runaway" should be interpreted as a
"smearing" of the transition. Lubensky' and
Aharony" have presented arguments supporting
this interpretation. However, it must be stressed
that the runaway carries the Hamiltonian out of
the range where our approximations are valid,
and independent calculations are needed to identify
the nature of the transition.

The ultimate test of the validity of the predic-
tions, of course, is experiment. Existing experi-
ments clearly indicate that the transition does in-
deed become continuous, which in itself is remark-
able for first-order systems. Since the random
Hamiltonian does not have a stable fixed point, as
it should whenever the transition is second order, '
we predict that this transition is not a sharp sec-
ond-order transition. The present calculation sug-
gests that the transition should be rounded or
smeared. It would be very interesting to analyze
existing experiments on this basis, and also one
should perform similar experiments on the other
systems mentioned in Ref. 5. In particular, one
should test whether the transition becomes
"smeared" as predicted in this work, or rather
should be interpreted as second order with con-
centration-independent exponents, as seen to be
the case for n &3 systems. "

Finally, we note that for some of the n &4 mod-
els studied by Mukamel, Krinsky, and Bak," the
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Hamiltonian does indeed possess one stable fixed
point. It turns out that the specific-heat exponent
e corresponding to this fixed point is always nega-
tive. Hence, one should expect sharP second-or-
der transitions for the corresponding randomized
models, just as when n~3. Of course, this tran-
sition might be smeared by a macroscopic gradi-
ent of impurities. "

IV. FIXED POINTS OF ORDER q&&2

It has been shown by Khmel'nitsky" thatfor the
random Ising model (n =1}there exists a fixed
point of order e'~'. In this section, it will be dem-
onstrated that this is not an isolated phenomenon,
but a. very common feature for anisotropic ran-
dom systems.

I,et us consider the case that the critical ex-
ponent v for one of the fixed points of the homo-
geneous system is —,

' + —,', e (o. = —,
' e). In Sec. II we

found that in this particular case there is no ran-
dom fixed point of order e corresponding to the
"nonrandom" fixed point. Assume that the fixed
point of the pure system is x,*, . . . , x,* and Q~c~x~
=-,' so that the condition n = —,'e is fulfilled. Now
let us insert x~=x~ and y = —,'A into the second-or-
der terms of the fixed-point equations (13) and
(14):

Fd'„„x,.*„—Bye A' F d„'„*„'' —., ') =0,
nrn nnt

the corresponding random system.
An interesting case is the n =4 Hamiltonian

which corresponds to the phase transitions in type-
II m ~[k antiferromagnets (Tbp, TbAs, NdSe,
etc.)." The recursion relations have three fixed
points with e =- —,'e, namely, the Ising fixed point,
@*= a/36K„and two more complicated fixed points,
u* = e/48K„v = —e/72K„w * = s e/6K, . Since we
have already constructed the recursion relations
to third order in the quartic potentials (see the
Appendix), we can explicitly determine all the
e' ' fixed points. For the random Ising fixed point
we get

66
and ~*=——,q =—

K, 330 55 ' 110 '

and for the two nese random fixed points we get

48+, 6 ' 72@, 6

@)g
6K, 6

The exponent q corresponding to this fixed point
is —e/(216 && 12) .

It now remains to study the stability of these
new fixed points. We can prove that they are all
unstable using an argument similar to the one
used in II to show that the random fixed points of
order e are unstable.

Suppose again that one of the recursion relations
of the pure system is

2c& x& g —4g =A. —
coax~

—— =0 .

Equation (33a) follows from the fact that xg is the
fixed point of the homogeneous system. Since all
the second-order terms vanish, there are clearly
no solutions of order e, but, in general, there
are solutions of order e'~' with up =(A!If,)xge'~'
and &*= (A/6K4}e' '. The coefficient A is deter-
mined by inserting u~ = (A/ff, }xge'~'+gq + ~ ~ ~ and
&* = (A/6K )e'~'+ Ce + into the third-order
terms of the recursion relations.

Several of the Hamiltonians that we have con-
sidered have "Ising-like" fixed points, where
Q~c~xg = —,'. For the n =6 Hamiltonian describing
type-I antiferromagnets with mik (UO, ), there
are three such fixed points, (x,*=,'4, xf = —,', ),
(x,*=,—', ), and (x,*=,—', , x,*=—,', ), and the n =12 Ham-
iltonian" representing phase transitions in Cr and
Eu has a simple Ising fixed point. Qn the other
hand, the n = 8 Hamiltonian describing phase tran-
sitions in type-II antiferromagnets with m&k
(MnO) does not possess fixed points with a = —,'e,
so fixed points of order c'~' are not possible for

Then the corresponding equation for the random
system, with fixed point u~"*=(A/e'~')ug, is

P A~u~ = (1+A. 'K, lnb) P A~u~,

with

X' = —Q a~u~*+6&*

A~'~'
—Qa~xg+I = A&0.

Therefore, condition (34), which we used to show
that there is no stable fixed point of order e of
the pure system and no stable fixed point of order
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e for the random system, also implies that there
is no stable fixed point of order e' ' for the ran-
dom system. Clearly, the argument can be ex-
tended to show that there are no fixed points of
order e'~", since the stability condition in this
case is essentially the same.

A special case is the Hamiltonian studied in the
Appendix, corresponding to type-II antiferromag-
nets with m

~~ k, where a condition like (34) has
not been found. " The stability of the e' ' fixed
points is determined by the eigenvalues of the
4&4 matrix

1-96x,*- 24x,*- —,
' x,*

—48x+

—48x,*

—48y*

—24x,*

1 —48x+ —72x+

—24y*

1—zx,*

g x3+

1 —48x,*

6x,*

6x,*

6xf
2
3

(36)

where we have defined x,* = u*K,/e'~'A, x,*
= r*K,/e' 'A, x,*=w*K,/e' 'A, and y*= &*K,/e' 'A.
By inserting the fixed point values of the homo-
geneous fixed point we find that there is always
at least one positive eigenvalue (the sum of the
diagonal elements is positive). Therefore the
three fixed points of order e' ' for this system
are all unstable.

V. CONCLUSIONS

The influence of random perturbations on gen-
eral anisotropic n-vector models has been studied
by means of renormalization group theory in 4 —~

dimensions. The randomness can be associated
with an extra term, with coefficient 4, in the
GLW Hamiltonian which may or may not be rele-
vant in the Wilson sense, ' depending upon the sym-
metry of the system and the dimensionality of the
order parameter. Whereas for n ~ 3 (except, may-
be, for the random Ising model, and for models
with long-range correlation in the random poten-
tial) one should always expect sharp second-order
phase transitions with concentration-independent
exponents, it turns out that when n~ 4 qualitative-
ly different critical behavior may occur.

Recently, Mukamel, Krinsky, and Bak" studied
several physical realizable n ~ 4 vector models
using the e -expansion technique. For some of
these models there was a stable fixed point. The
critical exponent a for this fixed point is negati ve

and it is predicted that the critical properties
should not be affected by randomness, and the
transition should remain sharp, just as when n
~ 3. Experiments should be performed to deter-
mine the critical behavior. A good example is
Ho, where the n =4 exponents for the pure system
have been confirmed experimentally. '4

For most of the pure n~ 4 models, however, it
turned out that the corresponding recursion rela-
tions do not possess a stable fixed point. ' It has
been demonstrated, that for all these systems,

the recursion relations for the corresponding di-
lute random quenched systems are also unstable.
The renormalized fluctuations of the local mean-
field transition temperature diverge, and this be-
havior is interpreted as an indication of a smeared"
transition. We therefore predict crossover from
first-order transitions to "smeared" or rounded
transitions for the real physical systems assoc-
iated uith these models. Existing experiments do
indeed indicate that the transition becomes con-
tinuous when small quantities of impurities are
added, for example in Cr. It should be empha-
sizedthat this is a very unusual behavior for a
first-order transition. It is suggested that ex-
periments be performed to test this prediction.
For a list of systems, where this crossover
should be expected, see Ref. 5. In particular,
one should investigate whether the continuous
transitions actually observed in Cr and Eu, '

are sharp second order with concentration-inde-
pendent exponents, or rather smeared as pre-
dicted in this paper.

For most of the models considered in this paper,
there exist fixed points of order e' '. The fixed
point found by Khmel'nitsky" for the random Ising
model is thus not an isolated case but occurs wide-
ly for anisotropic random n-vector models. I
have explicitly found three such fixed points for
the Hamiltonian describing type-II antiferromag-
nets. These fixed points are in general not stable.
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APPENDIX

Mukamel and Krinsky" have studied an n =4
model describing phase transitions in type-II anti-
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ferromagnets with m~~k (TbP, TbSb, TbAs, CeS,
TbSe, NdSe, and NdTe). They found a fixed point
which is marginally stable to first order in e, but
unstable to second order in c. Clearly, the argu-
ment concerning the stability of random fixed
points presented in III is not valid in this case.
and we have to analyze this Hamiltonian separate-
ly.

The Hamiltonian is

The recursion relations for the random system
should be constructed to second order in e in or-
der to determine the random fixed points, and the
stability of such fixed points. The recursion rela-
tions are

r ' =r+ (24u+ 12v -4)A(r) —(192u' + 96v'+ 192u v —48u A —24VA+ A')B(r),
u' =u+ [e u —(48u' + 24u v + —,

' w' —Gu A)K~ + (1344u'+ 1152 u'v + 288 u v' + 15uw'

+ 3vw' —432u'A —360u VE —~ w A+ 21 u &')K,' —2qu] lnb,

v' = v + [~V —(36v'+ 48u v ——,
' w' —Gva)K~+ (864v' + 2304u v'+ 1728u'v —12uw'

—3v w'-288V'6 —288u v&+-,' w'6 + 21vh')K,' —2@v] lnb,

w ' =w + [ew —(48u w —Gw &)K& + (1728 u 'w + 5 76 u v w+ 3w ' + 2 lw &')K~ —2~ ] 1 nb,

a' = &+ [eh —(48u A + 24vd —4A')K~+ (112' —288ua' —144vh'+ 576u'A

+ 288v'&+ 576vu A)K', —2qL] lnb,

q = 4K~(192u'+ 96v'+192uv —48uh —24v&+a') .

(A2)

To first order in e there are several unstable
fixed points and one marginally stable fixed point,
namely the isotropic fixed point u = e/48K„V = 0,
w = 0, ~ = 0. To proceed we write

u = e/48K4 +use, v = vie

W=W26, ~ + +26

and

5E'

48K, 24x 48K, '

v* = 0, w* = 0, &* = —e'/18K,

5E.'
48K„24x 48K, '

(A4)

and determine u„v„w„and &, from the fixed-
point equations. By considering terms of order
O(e') the equation for u gives one additional con-
straint, whereas one has to compare terms of
O(e') in the equations for v, w, and 6 to get three
additional constraints. The solutions for which
&*=0 are all unstable. " There exist two random
fixed points with ~2*F0, namely,

4f = e'/8K4 .

13&2

24 x 12K,
(A5)

The first random fixed point is unphysical (6*&0),
but both fixed points are unstable with respect to
perturbations in w, since one of the eigenvalues,
~ =-,'e' in both cases.
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