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The constant-volume specific heat C~ of Bose liquids at low temperature T is investigated using a microscopic
generalization of the dynamical quasiparticle model introduced by Landau. The utility of the dynamical

quasiparticle model, which is to be distinguished from the statistical quasiparticle model, is based on the
outstanding feature of Bose liquids that the single-particle spectrum and the density spectrum coincide.
Contributions from collective modes not included in the dynamical quasiparticle model are estimated to be
negligible at low T. An exact expression is derived for the leading lifetime contribution SCI, due to the

damping of the phonon and 8CI, is found to be second order in I, the imaginary part of the matrix self-

energy. An explicit microscopic calculation of 8Cv is performed for a one-parameter Bose gas in a
perturbation approximation that includes three-phonon processes and satisfies the general symmetry
requirements for Bose systems. The surprising result is that SCi, —T lnT. The application of this result to
superAuid "He is discussed. It is concluded that the leading phonon dispersion cannot be rigorously
determined from a measurement of the 0(T') term of C~.

I. INTRODUCTION

The usual approach' to understanding the low-
temperature thermodynamic properties of Bose
liquids, e.g. , supe rfluid 'He, is based on the as-
sumption that the system can be regarded as an
ideal gas of infinitely long-lived "simple quasi-
particles" with temper ature- independent energies.
As an example let us assume' that the excitation
spectrum F~ at small wave vector & for superfluid
"He has the form

8 =chk(l +e (hk/mc)'+ ~ ]

where e, is dimensionless and independent of &,
~& is the mass of the helium atom, and c is the
zero-temperature sound speed. We find that the
constant-volume specific heat C~ for low tempera-
ture T takes the form

2n'k' kT2~T' 1 —~~'e 8 +1M''c' ' ' »c'

If this simple approach gives correctly the O(T')
term in C», then we see from Eq. (1.2) that a mea-
surement of the T' term in C~ would determine the
coefficient e, in the phonon dispersion (Eq. (1.1)j.
Because of the interest in the nature of the devia-
tion of the phonon dispersion (1.1) from iinearity,
several workers" have used Eqs. (1.1) and (1.2)
to analyze the data from thermodynamic measure-
ments of superfluid 'He. Their conclusion is that
at satur ated vapor pressure the phonon spectrum
curves upward, i.e., e, is positive, which is in

agreement with the results of other investigations. '
At finite T phonon-phonon interactions' lead to

quasiparticles with finite lifetimes, and the simple
quasiparticle calculation of Ci, breaks down. It is
instructive to estimate the leading T dependence
of the lifetime correction &C~ to the simple quasi-
particle contribution. For example in a Fermi
liquid the quasiparticle damping constant y~ is
order T', and since y~ is related to the width of
the one-particle spectral function, it might be
expected that the leading T dependence of &C~
-T(T')-T'. This estimate can be placed on a
firmer basis by anticipating the formal result of
Sec. III 8 that DCv is proportional to (y~/K~) times
the leading T dependence of the simple quasi-
particle contribution. Since & is measured from
the Fermi momentum, E~-T(T~), where T~ is the
Fermi temperature. Thus we obtain &Cv - T(T/T~)2- T', which has been confirmed in a microscopic
analysis. ' If we apply similar arguments to a Bose
liquid and use the quantum hydrodynamic result'
y, /E, -T', we find &C„-T'(T')' T" An add-i-

tional factor of T ' arises from the singular be-
havior of the phonon coherence factor, and our
estimate becomes &C~-T9. If this estimate &C~-I" is correct, then the above interpretation of
the O(T') term in Cv in terms of the phonon dis-
persion is valid. However, to the best of our
knowledge, there does not exist in the literature
a microscopic analysis of the leading T dependence
of the lifetime corrections to C ~ of a Bose liquid.
To fill this void we present here a microscopic
generalization of the simple quasiparticle model
taking into account lifetime effects, a derivation
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of an exact expression for the leading lifetime
contribution ~C~ for a Bose liquid, and an explicit
microscopic calculation of &C~ for a one-param-
eter Bose gas in a perturbation approximation that
includes three-phonon processes and satisfies
the general symmetry requirements for Bose sys-
tems. Although the details of the model calcula-
tion are not directly applicable to superfluid 'He,
unexpected qualitative features will be found and
will be helpful in improving our physical insight
into the thermodynamic properties of Bose sys-
tems at low T.

Previous work" on microscopic calculations
of the thermodynamic properties of quantum sys-
tems can be divided into two general classes.
The simple quasiparticle model discussed above
was originally formulated by Landau' and can be
considered as a special case of the first class.
Landau introduced the simple quasiparticles dy-
namically as "particles" of a fictitious ideal. gas.
The natural generalization of Landau's formula-
tion is to consider "dynamical quasiparticles"
with finite lifetimes. The energy of the dynamical
quasiparticle is complex in general and is deter-
mined microscopically by the pole of the single-
particle propagator. Thermodynamic properties
can be calculated from a formal expression for the
grand potential as a functional of the single-parti-
cle propagator. From this exact expression. it is
possible to derive a convenient form for the en-
tropy which is given solely in terms of the single-
particle propagator. This form of the entropy,
the "dynamical quasiparticle contribution, " is
approximate since modes not associated with the
single-particle propagator are omitted. The dy-
namical quasiparticle approach is particularly
useful for a Bose liquid because of its unique
property' that the single-particle spectrum and the
density spectrum coincide. Thus one dynamical
mode, i.e., the dynamical quasiparticle, domi-
nates the low-T thermodynamic properties of a
Bose liquid and the nondynamical quasiparticle
contribution to the entropy is negligible. The dy-
namical quasiparticle approach is not as con-
venient for a Fermi liquid" for which several
modes, such as the spin-fluctuation mode, must
be included.

In the second class''" of calculations the ther-
modynamic properties are given as functionals of a
distr ibut ion function for the exc itations, and the
equilibrium distribution function is determined by
minimizing the grand potential. The "statistical
quasiparticle energies, " which are real and can
not be identified with the pole of a (causal) propa, —

gator, are determined statistically as functional
derivatives of the total energy of the system with
respect to the quasiparticle distribution function,

The form of the entropy is identical to the simple
quasiparticle (Fermi or Bose ideal gas) form
evaluated using the statistical quasiparticle ener-
gies and is exact for all T. Since there is no sin-
gle dynamical mode that dominates the thermo-
dynamics of a normal Fermi liquid, the statistical
quasiparticle approach is useful, and in fact the
quasiparticle energies that enter Landau's theo-
ry" of normal Fermi liquids are essentially sta-
tistical quasiparticle energies.

Because of the unique feature of Bose systems
that one dynamical mode dominates the thermo-
dynamics, we adopt here the dynamical quasi-
particle approach to the study of low-T thermo-
dynamic properties of a Bose liquid. In the follow-
ing we shall be concerned with dynamical quasi-
particles exclusively unless otherwise noted. By
"quasiparticle" we mean a dynamical quasipar-
ticle with a complex excitation energy. By "simple
quasiparticle" we are referring to a dynamical
quasiparticle with a purely real excitation energy.

In Sec. II after introducing some basic defini-
tions, we show, from the formal expression for the
grand potential in terms of the one-particle propa-
gator, that the dynamical quasiparticle contribu-
tion to the entropy can be written in a transparent
form in terms of an entropy spectral function. We
estimate the T dependence of the contributions
from collective modes not included in the dynami-
cal quasiparticle model and find that they are
negligible at low T as expected. The relation of
the present formulation to other work on Bose
systems is also discussed. In Sec. III we separate
the entropy spectral function into a simple quasi-
particle part and a lifetime part by formally ex-
panding the single-particle propagator in powers
of I', the ..oaginary part of the matrix self-energy.
The simple quasiparticle part of the entropy spec-
tral function leads directly to the Landau form for
the entropy. An exact expression for the leading
lifetime correction &C~, which turns out to be
second order in I, is derived.

To gain further understanding of the low-T ther-
modynamics of Bose systems, we consider in Sec.
IV a one-parameter model of a Bose gas for which
explicit calculations can be performed. We show
how the dielectric formulation' can be extended to
T & 0 and be used to generate perturbation approxi-
mations in T and the dimensionless coupling con-
stant g that simultaneously satisfy the general
symmetry requirements' "of Bose systems and
yield consistent thermodymamics. " To first order
in g which includes three-phonon processes, the
simple quasiparticle contribution to C~ is found to
be analytic in T through O(T') Our main resu. lt"
is that the leading order of the lifetime contribu-
tion &C» is O(g ) and in dimensionless units is
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given by

6C v = -0.035g'T' ln(1/gT') . (1.3)

In Sec. V we discuss the interpretation and impli-
cations of the model calculation and the limitations
of quantum hydrodynamics. We also give a crude
estimate of the magnitude of the coefficient of the
7' lnT term in C„ for superfluid 'He.

The notation of this paper follows closely to that
in Ref. 9. The reader is assumed to be familiar
with the elementary features of the Bose gas and
the well-known Bogoliubov approximation.

II. DYNAMICAL QUASIPARTICLE MODEL

To emphasize the nature of the dynamic quasi-
particle (DQ) model we present a derivation of
a transparent expression for the DQ contribution
to the entropy S of a Bose liquid. We introduce
some basic definitions in Sec. IIA, derive the
entropy expression in Sec. II 8, and discuss the
DQ model and its relation to other work in Sec.
II C.

A. Basic definitions

We construct a, grand canonical ensemble at
temperature T and chemical potential p, with the
grand potential 0

Q — T ln (e- (8- Ps)/T) (2.1)

where H is the Hamiltonian, N is the total number
of spinless bosons, and the bracket (. ) denotes
the average over the grand canonical ensemble. The
volume of the system, Boltzmann's constant, and
5 are taken to be unity. To describe the conden-
sate we let ao=ao =no~2, where n~, a c number, is
the condensate density and a, and a„are the usual
Bose annihilation and creation operators. Bosons
having nonzero momenta are described by the
grand potential 0',

(2.2)

and N' is the number of noncondensate bosons. The
two parameters, n, and g, can be eliminated by
requiring that the stationary property, sQ/sn, =0,
be satisfied at the correct n„ i.e.,

8. Derivation of the entropy expression

The outstanding feature of a Bose liquid is that
the discrete spectra of the amplitude fluctuations,
density fluctuations, and longitudinal-current fluc-
tuations coincide. ' This coincidence is a general
consequence of Bose condensation, which invali-
dates the number of excited particles as a good
quantum number, and of rotation-translation in-
variance, which leads to the classification of the
states of the system in terms of the momentum k
and the helicity m (angular momentum along k).
Thus at a particular k, all of the zero-helicity
(m =0) excitations, which include amplitude, den-
sity, and longitudinal-current excitations, are
degenerate; these excitations are referred to as
the elementary excitation or quasiparticle of the
Bose liquid. We assume that all of the m40 ex-
citations at small & can be ignored in comparison
with the elementary excitation. For example, the
transverse (m = ~1) excitations of a Bose gas have
been shown by Ma" to be nonpropagating at long
wavelengths. Thus it is convenient to express the
thermodynamic properties of Bose liquids at low
T solely in terms of the elementary excitation,
which can be chosen to be represented by the one-
particle Green's function 9„„. The choice of 9„„
rather than a density response function to repre-
sent the elementary excitation is dictated by the
existence of a simple closed functional for the
grand potential 0' in terms of 9„„.

It is convenient to define the one-particle ther-
modynamic Green's function 9„,(k, ~„) as a 2X2
matrix

g, „(k, „)=—I dte""'(t,„(t),„), (2.5)

Tr„= TQ d'k(2v) ' -tr,
n

where g» -gz ]Lf g =+, and Qz&
——9 ~ 1f p, =-;

ly

=-2nniI', n is an integer; T is the time-ordering
operator for P=-1/T &&&0, and the bracket ( .)
denotes the average over the grand canonical
ensemble. The grand potential 0' can be written
as a functional" of 9:

20'[9] =4[9]—Tr„%[9]9—Tr„ln(-9 '), (2.5}

and with the condition.

(2.3)

(2.4}

tr is the matrix trace, matrix multiplication is
implied between the matrices 9 and%, and the
logarithm is defined in terms of its series expan-
sion. The matrix self-energy 3R is defined by the
Dyson equation

Equations (2.1)-(2.4) constitute the standard descrip-
tion of a Bose liquid with a uniform condensate at rest. 9, ' (k, (u„) = (u„r, —(», + p )v, ,

(2. I)
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where e„=—k'/2m, p is the chemical potential, v,
is the unit 2&&2 matrix, and &g &, and v, are the
three Pauli matrices. The functional 4[9] is given
by the sum of all distinct, connected vacuum dia-
grams with no self-energy insertions. A very
useful property of the functional Q'[9] is the sta-
tionarity condition under variations of 8, i.e. ,

5n'[BJ
Qg

(2.8)

at a fixed value of the condensate density n and at
a particular function 9 that satisfies the following
relation involving the first functional derivative
of 4[8] at constant n

(2.9)

The second functional derivative of dk[9] with re-
spect to 8 gives the kernel of the Bethe-Salpeter
equation.

Since the entropy S is related to the partial
derivative of 0' with respect to T, we analyze the
T dependences of O'. First, there is an explicit
T dependence that arises from the discrete fre-
quencies and the frequency sums. Second, there
is the implicit T dependence of 8 itself. These two
different T dependences of 0'[8] can be convenient-
ly denoted by the obvious notation Or[Br]. Be-
cause of the stationarity property [Eq. (2.8)J of
II'r[Br] with respect to Br, the implicit T depen-
dence of 9~ can be ignored in evaluating S. Thus
we can write

S(T~)= —lim A'r[Br ] (2.10)

where only the explicit T dependence Q~ due to the
discrete frequency sums is differentiated.

The frequency sums may be converted by stan-
dard techniques" into frequency integrals over the
real axis, and the explicit T dependence due to the
frequency sums is then reflected in the T depen-
dence of the Bose statistical function f (~)= (e
—1} '. In this manner, the second term of Eq.
(2.6}becomes

Tr„l%[9]8)r = Tr([Re%(k, u) p(k, &u)

+I'(k, (u) ReB(k, (u)]r f((u) j
(2.11)

and the third term of Eq. (2.6) yields

and the spectral functions, p(k, u&) and I'(k, &u),

are defined by

)
"

d(u p(k, (u)

2 7T CO@
—(d

(2.13a}

%(k
27t' Cdq —(d

or in terms of response functions

p(k, ~) =-2ImB(k, &@+i0+),
I'(k, ~) = -2 1m% (k, u& + i 0+) .

(2.14a)

(2.isb)

(2.14b)

The functions 9(k, &u s i0+) are analytic continua-
tions of 9(k, ~„) into the upper (lower) half plane
of (d.

The explicit T dependence of the first term of
Eq. (2.6) deserves a more detailed analysis. An
"integral" version of Eq. (2.9) can be written in

the form.

dk[9] = g Tr„(%'"'[9]9)+const. ,
1

v=& 2v
(2.15)

4'r[Br ] = Tr ([Re%(k, &u}p(k, w)]r f (u&)j . (2.17)

This a.nalysis of 4'r[Br ], resulting in Eq. (2.17),
0

does not leave out the contribution from the m =0
collective excitations in contrast to the applica-
tion of the same treatment of @' in a Fermi system.
The reason lies in the unique property of a Bose
system that the m =0 collective excitations and the
single-particle excitations coincide.

Equations (2.11), (2.12), and (2.17) can now be
collected in Eq. (2.6) to get

where %'"[9]is the sum of all self-energy dia-
grams with (2v —1) 9 lines and the constant con-
sists of contributions from the condensate. To
extract the explicit T dependence, we first con-
sider only the f (&u) that arises from the 9 line that
has been singled out in Eq. (2.15). We find for the
vth term

Tr„(%'"[9]9)=Tr([Re%'"'(k,u) p(k, w)] f (~) j .
(2.16)

To obtain the rest of the T dependence, we sepa-
rate successively a different 9 line in the vth term
of Eq. (2.15}. The contribution from each explicit
9 line is the same as Eq. (2.16}and thus the factor
1/2v in Eq. (2.15) is cancelled. Summing over v

we obtain

Tr„[ln(-9 '}]r
= Tr[2 Im ln[-9 (k, &u —i0+)]r f (&u)), (2.12)

where

&',[9,] =--' »([&(k, ~)j,,f (~)j,
X (k, &u) = 2 Im 1n[-r, 9 ' (k, cu —i 0+)]

+I'(k, (u)ReB(k, (u),

(2.i6)

(2.19)

T =(2 ) 'J &df dt
with ~, introduced to ensure the vanishing of the
logarithm at the limits m- +~. The entropy S can
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be found from Eqs. (2.10) and (2.18) to be

S (T ) = —,
' Tr X(k, &c)

&f((d) (2.20)

A more transparent form of S may be obtained
by using the identity

sf ((o) en(&c)
BT 9(d

n(~) =—[1+f («))] in[1+ f («)}]—f («)) in f («))

(2.21)

(2.22)

and partially integrating Eq. (2.20) with respect
to ~ to obtain

) f d)t ) )
( ) () ) (2.23a)

v(k, (u) = — trX (k, &d) .
1 8

(2.23b)

Since

2 lm in[-», 9 '(k, &() —i 0+)]

p — Re 9, (2.24)

it follows from Eqs. (2.19), (2.23), and (2.24) that
o can be written compactly as

& Re(9 ') 6 Re9p+r
9 (d 8 (d

(2.25)

Equations (2.22), (2.23), and (2.25) constitute the
basic formulas for the DQ contribution to the en-
tropy of a Bose liquid. The function v(k, &c) can be
interpreted as the DQ entropy spectral function,
and is expressed solely in terms of functions
related to the one-particle Green's function.
From the symmetry properties of 8, e.g. ,
9„„(k,&c)=9 „„(-k,-~), it is easy to see that
v(k, &u) = o(-k, -(u).

The constant volume specific heat C~ is given by

(2.26)

After a differentiation of Eqs. (2.23) and (2.25) and
a partial integration, we find the following sym-
metrical form for C~:

d'k "
den a

where X(k, &d) may also be considered a spectral
function. The partial derivatives in Eq. (2.27) are
to be understood to be at constant N and V and at a
constant value of the arguments of f and 9. Al-
though C~ is the physical quantity of interest, we
shall find it more convenient to calculate the en-
tropy using Eq. (2.23) and the entropy spectral
function (2.25) and then to obtain C» via Eq. (2.26).

C. Discussion

The simplicity of the DQ model is manifest in
the entropy expression (2.23). All the complica-
tions due to lifetime effects are included in the
DQ entropy spectral function v. The crucial point
in our derivation of Eq. (2.23) is our assumption,
in the steps leading from Eqs. (2.15) to (2.17), that
it is possible to separate successively one dif-
ferent 9 line at a time in the vth term of Eq. (2.15).
This procedure implicitly assumes that there is
no new contribution to M'/5T arising from two 9
lines grouped together. Upon closer examination
it is seen' that an additional contribution to 5&k/5T

does indeed arise if there exists at least a pair of
intermediate states on the energy shell. In other
words, corrections to the DQ model can arise
from real scatterings among the quasiparticles.
The dominant effect of real scatterings is to pro-
duce collective modes of quasiparticles, which can
of course be classified by k and ~. Since the zero-
helicity excitations in a Bose liquid coincide, the
m =0 collective mode, which is second sound, is
already included in the poles of the one-particle
propagator. Therefore only the m 4 0 collective
modes can give corrections to the DQ model of a
Bose liquid. A crude estimate of the contribution
from the m &0 collective modes can be obtained
from the observation that the m 4 0 modes are os-
cillations in the normal component of the Bose
liquid; hence we expect that their contribution to
C» might be C»-T'(p„/p, )-T', where p„&,) is the
normal (super} fluid density. Such an estimate as-
sumes that the m40 modes are propagating modes
like the phonon; since they are not propagating,
C'„-T' is certainly an overestimate. To obtain
a more reasonable estimate of the contribution
of a nonpropagating mode, we use the expression
derived by Riedel"

'f ("'
~(k

BM

" aT DR
(2.28}

X(k, &()) = — trX(k, &c)
1 8

&Re(9 ') BRe9

(2.27a)

(2.27b)

where D(k, &c} is the propagator for the mode in
question, the subscripts Rand l denote the real
and imaginary parts, respectively, and the prime
on the S' is to remind us that this is a correction
to the DQ model. The transverse (m = +1) mode
at small k can be given by a propagator of the
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S t (Tp /q)3» +15 (2.30)

where we have used"" p„-T and q-T '. Thus
we conclude that the corrections to the DQ model
of a Bose liquid at low T are negligible.

In contrast, in a Fermi liquid the relevant
collective mode is the nonpropagating spin fluc-
tuations, which can be described by a propagator
of the form

ir, k
D (k (o) = '. k«k

CL)+PC kS
(2.31)

where c, and &, are independent of k and T. The
corresponding correction to the DQ model of a
Fermi liquid can be obtained from Eqs. (2.28) and

(2.31}and is non-negligiblee".

S'-T'lnT . (2.32)

It follows that at low T the DQ model is not as
useful for a Fermi liquid as for a Bose liquid.

Another feature of the present derivation of the
entropy expression (2.23) for a Bose liquid is the
expansion of the grand potential 0' and the Green's
function 9» about an arbitrary finite temperature
To&0 rather than about TO=0. Such a To&0 expan-
sion has been utilized by Fulde and Wagner, "who
wrote down Eq. (2.23) for the entropy of phonons
in an amorphous solid. The importance of the
T0&0 expansion can be seen from an inspection of
the third-order diagrams for 4'[9], which reveal
that the functional dependence of 4[9] on Qr is not
the same for TO=0 as for To&0. Hence the entropy
expression derived by an expansion about To =0, as
done by Gaze and Wagner, " is valid only to leading
order in T in contrast to the general expression
(2.23) valid for all T We discuss .the T, = 0 deri-
vation further in Sec. IIIA.

The entropy form (2.23) has also been derived
by Kane and Kadanoff, ' who were interested in the
nonequilibrium states of a Bose system. Their
derivation depends on several "nonequilibrium
identities, " which have been shown" to be correct
at T =0 but only approximate at T +0. The terms
that violate the "nonequilibrium identities" are
those that involve real scattering processes at
T & 0. Thus the nonequilibrium derivation of Eq.
(2.23) has been shown to be valid only to leading
order in T.

form" '"
i k'

(2.29)&+ &V) pn}k

where q is the first viscosity and k is some cutoff
momentum. Substituting Eq. (2.29) into Eq. (2.28),
we find

III. LOW-TEMPERATURE OR QUASIPARTICLE EXPANSION

In the previous section we derived a general
expression for the DQ entropy in terms of the
entropy spectral function a. We consider in this
section the separation of both v and p, the one-
particle spectral function, into a simple quasi-
particle part, a~p and p&p, and a lifetime part,
&0 and &p, by formally expanding o and p in powers
of I', the imaginary part of the self-energy. Such
a separation is expected to be useful at long wave-
lengths or equivalently at low T for which the
quasiparticle is well defined.

We show in Sec. IIIA that o~p assumes a simple
&-function form with no normalization factors in
contrast to the form of p~ . This form of a'&P leads
directly to the Landau simple quasiparticle form
for the entropy and the specific heat. In Sec. III B
we derive an exact expression for the leading
correction to a~ and find that it is proportional
to I'2.

9 '(k, (u} =9,'(k, (u)+-,'iI'(k, (u), (3.1}

where the response function QQP = (QQP}
' is given

by

QQP'(k, (u} =9, '(k, (u) —Re%(k, cu}

and

=((u-ReS}7,—(e, +ReS —p) ~,

—Re% 7 +i0+ (3 2)

8 = —,'PR„-% ),
8 =2(3}I„+% ),
%2 =% —=%-..

(3.3)

We take the inverse of the matrix QQp in Eq. (3.2)
to obtain the following form for 9o~:

QQP —31QP/~QP

&Q'=z(~7, + $,7, —$,~,),
~QP —Z2 (~2 h2 + g2)

(3.4a)

(3.4b)

(3.4c)

whe re ~Z = co —Re8, 8,Z = &~ +Rel —p. , and

S,Z =Re%,. If we write

E~(k ~) —62 g2 E(k ~)—:[E2(k ~)]~»

A. Simple quasiparticle limit

We first investigate the form of p(k, cu}, the
spectral function (2.13) of the one-particle propa-
gator, in the simple quasiparticle limit, which is
defined as the limit in which I'(k, &u) vanishes. We
write Dyson's equation (2. t) for the response func-
tion 9 [see Eq. (2.13b)] in the form
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gPP =Z'[(u —E(k, (u)] [(a+E(k, co)]

and use Eq. (2.13b), we can write p~» as

respectively:

d3k
Sop = . , [(1+f»)ln(1+ f, ) —f, lnf„], (3.12)

pQP —pQP7 + pQP+ + pQ3PT3 (3.5) QP d3k d

(2.) ""'dT f" (3.13)

+E»-=E(k, (») =+E»),

()[ ~ »(», )1=((( v z, v( v z.) ~ (u=~g k

-1
1 — 6((u+ E,),8 ()L)

(3.7)

(3.6)

where (eE/S~)» =(SE/S&u) s, and E(k, ~) =E(k, &u)-
have been used. Note that there could be another
zero of [~+ E(k, &u)].

The form of oop can be found using Eq. (2.25)
with I' =0, Eqs. (3.2) and (3.5) to be

gg-1
GQP 1 tr QP pQP2

+ (~p, -&y. -&ipse).
Bg

The second term on the right-hand side of Kq.
(3.9) can be seen to vanish using Eq. (3.6) and the
relation E = 820 —8,. If we again use the latter
relation, we obtain after some algebra the simple
for m

aop(k, u)) =v[&(&u —E»)+&((d+E»)]. (3.10)

Note that o&'(k, ur) is an even function of (d in
agreement with the general property of v(k, cu) and

that in contrast to pQP, o QP has no normalization
factors. Thus Ek ean be interpreted as the simple
quasiparticle energy, and is defined by 9&»(k, E,}
=0. Similarly the simple quasiparticle limit of
X(k, ())) [Eq. (2.27b}] is found to be

&op(k, (u) =x ' [6((d —E,)+6((u+E»)]. (3.11)dEk

If we substitute Eq. (3.10) into Eq. (2.23a) and Eq.
(3.11) into Eq. (2.27a), we obtain the simple quasi-
particle form generalized to a T-dependent excita-
tion energy E,(T}for the entropy and specific heat,

where

p»o = (v8, /ZE}[6((d —E) —6((d +E)], (3.6a)

pP =(-x8, /ZE)[6(&u —E)- &((u+E)], (3.6b)

po»' = (&/Z)[~(~ —E)+&(~+E)l. (3.6c)

Although pQP has formally the familiar &-function
form, it contains normalization factors. The ar-
gument of the 6 functions in Eqs. (3.6) can be sim-
plified by expanding E(k, (()) about a zero of
~ +E(k, (o), namely

Co»' =+, v'(T/c)'+ ~ ~ ~ . (3.14)

Other workers" have derived Eq, (3.14) by taking
I'0 =0 in the derivation of the entropy. This pro-
cedure leads to an expression for S similar to Eq.
(2.23a) but with o' evaluated at T =0. The simple
quasipartiele limit of a' would then have the same
form as Eq. (3.10}, but with E» evaluated at T =0.
Since it is known" to all orders of perturbation
theory that at T =0 and in the long-wavelength limit
E, =ok+ ~ ~, the result (3.14) follows simply.
However, this derivation involves the tacit as-
sumption that the temperature corrections to o at
T =0 vanish as T-0, an assumption which is
similar in spirit to the one used above for c(T)

In deriving Eq. (3.8), which is an intermediate
step to Eq. (3.14), we have assumed the existence
of only one zero in (() =E(k, ())). There exists a
second zero in (d =E(k, ~), viz. , second sound.
However, since second sound is strongly damped
( T ') as T-0, its contribution to C» at low T
is negligible (-T)») and Eq. (3.14) is unchanged.

The derivation of Eq. (3.14) is not complete un-
til the lifetime contribution to C~, considered in
the following section, is shown to be higher order
in T. Also since the deviation of Ek from linearity
in k at T =0 and the T dependence of Ek have not
been established for a Bose liquid, the nature of
the deviation from T3 of the specific heat of a
Bose liquid is not known.

8. Expansion of the lifetime part

The usefulness of the simple quasiparticle limit
of o(k, ())) suggests an attempt to separate v(k, ()))

where f„=(es»(r)~r —1) ' and the total temperature
derivative is at a constant f)['. Equations (3.12)
and (3.13) have been widely used to describe super-
fluid ~He at low temperatures. "

Inspection of Eq. (3.13) shows that the leading
T dependence of CQ depends on the behavior of
E»-T «mc' (c is the T =0 macroscopic sound
speed}. Since the form of E» in the limit E»-T
«m@2 has not been established to all orders of
perturbation theory, we assume that in this limit
E„has the form E»(T}= c(T}k with c(T) = c+0(T"),
n&0, i.e. , the temperature corrections to c vanish
as T-O, which is substantiated by quantum hy-
drodynamics. ' With this assumption we easily ob-
tain, using Eq. (3.13), the well-known T' law of
Landau'
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into a simple quasiparticle part OQ~ and a lifetime
part ~o. Such a separation can be constructed for
the propagating mode in g, i.e., the elementary
excitation, by expanding 0' as a functional of I' for-
mally in powers of I'. We write

g =gQP+&g, p =pQP+&p, cJ =OQP+&o . (3.13)

The expansion of the response function g is found

by writing Eq. (3.1) in the form:

g =gQ' --,'zgQ'rg, (3.i6}
where 9~ is defined in Eq. (3.2). The first itera-
tion of Eq. (3.16) in powers of I' gives

g&" = --,'zgQ'rgQ (3.17)

and can be interpreted as the first-order (in I')
correction to g . To find the corresponding con-
tribution to &p, we substitute Eq. (3.16) into Eq.
(2.13b}and use Eq. (3.1}to write p in the form

p = (Re9op)I' Re9, (3.i9)

which is exact and reduces properly to pQP as
I'-0. If we let 9-9 ~ and keep I e0 in Eq. (3.18),
we obtain the first-order contribution

&p =(Re9o )I'Re9op. (3.19)

Substituting Eqs. (3.1) and (3.19) into Eq. (2.25) to
find the corresponding contribution to &o, we ob-
tain the unexpecting result that to first order (in
I') ~a vanishes. This result for &o can be made
conspicuous by using the exact relation (3.18) to
rewrite a [Eq. (2.25)] in the form:

rr = —,
' tr &Re(9 ') op S(Re9) '

8(d 9(d

Qg (2) I gQP I gQP I'gQ& (3.21)

Using the second-order contribution [Eq. (3.21)
in Eq. (3.20)] we find that the leading correction
to OQP is second order in I':

gg-1
r = —-', t "r (s&'rlwrso ))8(d

(3.22)

This new relation (3.22) is an exact result for the
leading lifetime correction to the simple quasi-
particle entropy spectral function and is con-

(3.20)

which can be shown to reduce to o'op [see Eq.
(3.10)] as I'-0. If we substitute 9 P for 9 and keep
I' o 0 in Eq. (3.20), it is easy to see that to O(1 ),
&o vanishes. Thus although the lifetime effects
enter in the one-particle spectral function to first
order in 1" [see Eq. (3.19)], these lifetime effects
do not enter in this order to the thermodynamics
of the system. The second iteration of Eq. (3.16)
gives

venient for subsequent analysis as it depends only
on functions related to the one-particle propagator.

We are interested in the low-'I' limit of Eq.
(3.22) for a Bose liquid. In a Bose liquid at T =0,
g approaches g for small 4 and co so that ignor-
ing the matrix sum, we expect Eq. (3.22} to be
proportional to &"(u —E,). Inspection of Eq.
(2.23a) shows that the important values of ck are
O(T), and thus an estimate of the T dependence
of Eq. (3.22) depends on our knowledge of the be-
havior of I'(k, u) for ck-~-T Si.nce the behavior
of I'(k, &u) in this limit has not been established to
all orders in perturbation theory and since the
matrix I' is not directly related to the experimen-
tally observed quantity y, (the width of the one-
phonon peak), we cannot make an estimate of the
leading T dependence of &0 for a Bose liquid. We
can gain further understanding of the low-T ther-
modynamics of Bose systems by considering a
simple model of a Bose gas for which we can
evaluate E„ I'(k, ru), &cr, and C» explicitly.

IV. MODEL CALCULATION OF Cv

We consider now the evaluation of the simple
quasiparticle and leading lifetime contribution to
the low-T specific heat Cv of a model Bose gas.
We present the small parameters of the model in
Sec. IVA and discuss in Sec. IVB the nature of a
perturbation calculation in the dielectric-function
approach. We give an outline of the model calcula-
tion of the simple quasiparticle and leading life-
time contribution to C~ in Secs. IVC and IVD,
respectively, and reserve a presentation of some
of the details of the calculation to Appendixes
A-C. The reader who is not interested in the cal-
culation may on the first reading skip all of Sec.
IVD and go on to Sec. V.

A. One-parameter model of a Bose gas

We consider a dilute gas of spinless bosons of
mass m at density n and assume that the short-
range two-body interaction can be summarized by
the s-wave scattering length a. A detailed dis-
cussion of many of the T =0 properties of the mod-
el is given in Ref. 9, and unless otherwise noted
the notation of Ref. 9 is adopted hereafter. [Ex-
ception: the one-particle spectral function p(k, ~)
was called t2(k, co) in Ref. 9.]

The zeroth approximation in the model corre-
sponds to the well-known Bogoliubov approxima-
cion in which the natural units for momentum and
energy are, respectively,

k —= (4sna)~'=ms, T =—4sna/m =ms' (4 1)

where so is the phonon speed in the Bogoliubov
approximation. The model can be characterized by
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the small dimensionless parameter

g=- k30n-L = (4 va)~n~ . (4.2)

The tempera, ture T is assumed to be sma. ll com-
pared with T„which defines the small dimen-
sionless parameter

t= T-/T, =mT/4vna. (4.3)

In Sec. IV and Appendixes A and 8, we shall
work in a convenient set of units in which the mo-
mentum and energy are measured in terms of k'0

and T„respectively; so that

k =To= ~=so=I,
(4.4)

Our procedure is to calculate the O(g) contribu-
tion to 9 and I' and then to expand the O(g) contri-
bution in terms of T. Hence our perturbation
expansion is a double expansion in g and T with
gC g

8. Approximations in the dielectric formulation

Our calculation to O(g) of 9 and I' will be per-
formed in the framework of the generalized dielec-
tric formulation. %e discuss here only its salient
featuxes; the extension to T +0 is given in Ap-
pendixes A and 8.

Our basic philosophy is to incorporate as many
exact conditions into the formalism as possible
before any perturbation expansions are made. For
example in Sec. II we ensured consistent thermo-
dynamics by incorporating the condition of ~' de-
rlvabLILty [Eq. (2.9)] illto oui' deI'lva'tLon of ills
entropy formula (2.23). However, the manner
in which Eq. (2.9) is used is important.

If we follow the usual approach" of approxima-
ing 4' and using Eq. (2.9) to obtain an approximate
self-energy, then the approximate two-particle
Green's function generated by the second func-
tional derivative of 4'[9] is of a higher order than
the resulting approximate one-particle Gx een's
function. As a consequence, the one-particle and
density spectra do not coincide for a given approx-
imation, which violates a general and basic feature
of a Bose system. ' Furthermore, the gapless
condition on the one-particle spectrum and the con-
servation laws cannot be simultaneously satisfied
in a given approximation by this procedure. "

These difficulties are all circumvented in '.he
dieleetrie function approach, e in which the re-
sponse functions are expressed in terms of the
corresponding regular functions (those that do not
involve an isolated single-interaction line nor an
isolated one-particle line) rather than in terms of
the self-energy %. In particular, the denominators
of the amplitude, density„and longitudinal-cur-

rent (i.e., zero-helicity) response functions can
all be related to the dielectric function e. Thus
the zero-helicity spectra coincide, and the ele-
mentary excitation spectrum is given by the zero
of e(&, &u). By using the generalized Ward identi-
ties to express the x'egular functions involving
the density, in terms of regular functions involv-
ing the longitudinal current, we see that an ap-
proximation for the regular longitudinal-current
response function yields automatically an appx'oxi-
mate density response function that is consistent
with local number conservation and the relevant
sum rules.

Since the properties of the Bose liquid are domi-
nated by the elementary excitation, we are led to
use Eq. (2.9) in its "integral" form [Eq. (2.15)] to
express 0' solely in terms of 9. In this way a
given approximation for 9 in the resulting form
for A' automatically satisfies 4' derivability and
the approximate theory yields consistent thexmo-
dynamics. " Hence although the usual approach to
4' derivability is not useful, we can east Eq. (2.9)
into an "integral" form [Eq, (2.15)] for Bose
liquids and make approximations on 9 rather than
directly on 4'. In the dielectric formulation the
exact 9 can be expressed in terms of regular
functions involving the longitudinal current. By
developing a perturbation expansion for these
regular functions rather than for 9 or % directly,
we ean now generate a perturbation theory that in
a given approximation yields consistent thex'mo-
dynamics, coincidence of excitations, a gapless
one-particle excitation spectrum, and a density-
response function that satisfies the relevant sum
rules.

The present calculation is now reduced to an
evaluation to O(g) of the regular functions involv-
ing the longitudinal current, viz. , the regulax'
self-energy I», current vertex A &, and current-
current-correlation I'"". These regular functions
to O(g) are evaluated explicitly in Appendix A.

C. Simple quasiparticle contribution to O(g)

The simple quasipartiele contribution to the en-
tropy and specific heat is given [see Eqs. (3.12) and

(3.13)] in terms of the T-dependent quasiparticle
spectrum ~,(T), which is defined in Sec. IlIA in
terms of the real part of the pole of the one-par-
ticle response function 9. As discussed in Sec.
IV 8 we can alternatively find the quasipartiele
spectrum from the zero of the dielectric func-
tion. %'e shaH use the notation ~~ for the quasi-
particle spectrum of the Bose gas model and re-
tain the notation E„for the quasiparticle of a Bose
liquid.

To obtain co~(T) to O(g), we first expand co2~ in
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0) (1 ) = 1 0)2 (1 ) /(0 (0) 0) (1 ) (0 ) + 0) (1) (T ) (4.5)

The T-independent part (02")(0}was evaluated in
Ref. 24 and has a nonanalytic term in the k«1
limit:

terms of g,

002 (02(0) + g(02(1) + O(g2)

where 0)2(0) =k'(1+ —,'k') is the Bogoliubov spectrum
and the O(g) correction (d22") is given in terms of a
sum of one-loop integrals [see Eq. (Bl)]. Only the
real part of (0, (T) is of interest in this section.
We separate the T-independent and T-dependent
parts of (d'"'

particle Green's function in O(g), i.e. ,
I' =gr")

+O(g'), and thus the leading order of 6g is O(g2).
It follows from Eq. (3.20) that to O(g2) the 9o» in
&0 needs to be evaluated only to zeroth order,
i.e. , the well-known Bogoliubov approximation
9"'. Since the singular behavior of the coherence
factors associated with 9"' will be important in
determining the T dependence of &o, it is con-
venient to isolate the singular coherence factors
a,nd write 9(0' (p, v =+-) in the form

9(P) 9 + 9 9(P) g (4 6)

9, =)},((2 —b), 9, =)i(a —b), 9„=2(((+b), (4.9)

where the coherence factors, q, and q,
0)„")(0)/k = v '[1 ——,'0 k' —

220
k» ln(1/k) + O(k')].

(4.6a)
)4 —)}= —,)(, )},+)}= I /2)(,

are proportional to 1/k for small k. Here

(4.10)

We observe from Eq. (3.12}or Eq. (3.13) that for
low T we are interested in (0,")(T) in the limit
k-T «1. In Appendix B 0)2")(T) is evaluated in

this limit and the leading T dependence is found

[see Eq. (B2)] to be also nonanalytic:

0)"'(T)/k = —' vT»1 (1n/T)+ O(T»), (4.6b)

in agreement with a previous calculation" in the
k«T «1 limit. Substituting Eqs. (4.5) and (4.6)
into Eq. (3.12) and using the integrals

8~8 n4
dzz'f(z)= and dzz'f(z)=

Jp p

with f (z) = (e' —1) ', we find that the nonanalytic
terms in Eqs. (4.6) give contributions to the en-
tropy of equal magnitude [order T'ln(1/T)] but
with opposite sign and thus cancel exactly. Our
final result for the low-T simple quasiparticle
contribution to C» to O(g) is

C» = —,
' Tv'(C, + C,T' + C,T' + ~ ~ ),V Z5

Co=1 3tt g ~ C2= 14~ + g 63

(4.7a)

(4.Vb)

D. Lifetime contribution to 0(g2 )

The behavior of the leading lifetime part of the
entropy spectral function, 5() [see Eq. (3.20}],
depends on the form of 9~ and I . As emphasized
in Sec. III 8, lifetime effects enter in the one-

The evaluation of the C4 coefficient is tedious and
has not been attempted. We have not investigated
the nature of the higher-T terms. Note that to
O(g) the leading correction to the T' behavior of

Cg is of the order of T', the coefficient C, of the
T' term is not affected by the T dependence of
(d, (T), and Co» is analytic in T through at least
order T'. The significance of the exact cancella-
tion of the nonanalytic terms in Eq. (4.6) when

integrated is not fully understood.

r„=-2(s+e), , r, =-25}I„, (4.11)

where we have adopted a shorthand notation
(S +8)1—= Im(S +8), etc. In the dielectric-function
approach, ' the O(g) contribution to I' can be ex-
pressed in terms of one-loop regular functions
(see Appendix C):

(S -5|I,)("= (S —M, ), ,

—,'(S +5}I,),") = (2/&u2)(S —M, ),

(4.12)

—(2/(d)L, 1 +L,1+ 2 (S +M, )z, (4.13)

a,")=-(2/~)(S -M, ), +L

where

(4.14)

L21 —= A1 + (k/(u)P „A01,
L„=(k/(u)5„A'„, + (k / 2)F(d2

(4.15)

(4.16)

and the superscript (1) on the one-loop regular
functions or integrals, explicitly given in Appen-
dix A, is suppressed. We note for future refer-
ence that the leading T dependences for &-~-T
«1 are [see Eqs. (A21)-(A26)]:

(S —M2)~
-T2 P A' -A -T'

(9+M ) -6 A' -F*'" T4-
2 I P ()II I

so that from Eqs. (4.13) and (4.14):

—=(0-(0, , &
=(d+0), , (0, =k(1+—»k2}(~2,

and the superscript (0) and the k and &u dependences
of various functions have been suppressed when-
ever it will not cause confusion. In the limit k-~
-T «1, 9, -9, -T ' and 9„-T ' Note that 9, and

9, are both odd in ~, whereas .9„ is even in ~.
It is also convenient to divide the imaginary

part of the self-energy I'„, into even and odd pieces
[see Eq. (3.3)]:
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(8+K )(') -T(& I2(» -T and (8 K )«' -To

The first step in the evaluation of &() is to per-
form the matrix sum in Eq. (3.22). Using the
fact that 89&o(/s(d =7„we write Eq. (3.22) in the
form

T; similarly the T ' terms combine to give terms
proportional to T; thus K++/9++ To. Similar can-
cellations or combinations can be found for the
other K functions in the same manner. The final
result of this algebra is

bo=--,'g'Im(n„, —r ),
(9(o)F(&)9(o)Z ())9(o&)

PV ]1V y

(4.17)

(4.18} Ko = -P (S —M, )i/2D',

(4.25)

(4.26)

6 =4HK,
I g(0) I (1)

Ig(0)I (l)g(0)

(4.19)

(4.20)

(4.21)

where the matrix K also enters into the leading
correction to 9'o' given in Eq. (3.17), i.e. ,

69") = igK (4.22}

where matrix multiplication is implied. The
evaluation of 6 directly from Eq. (4.18) is
straightforward but tedious. We can separate the
evaluation into several steps and write 4 as

((d'- k'}[L~ + k'(S —M, ), /2(o]
1 D2

where

p(k, o&) -=2k' —(o' —k'(o ',
D (k, (o) =— ((r" —(o'„.

A similar analysis of the H functions yields

H~, =Ho +Hi, H+ —H + ——H

Ho = —(o&' —k') (S —M, )i/(d'D,

(u!' —2k') (S —M, )~/2(d —L~
1 D2

(4.27)

(4.28)

(4.29}

(4 3o)

(4.31)

(4.32)

To be concrete we consider K„ in some detail.
Using Eqs. (4.8} and (4.11) we can write K„ in the
form

K+ i = (9o gi —29, (&,Koi +(tooKoi)

+ [9',8~ + 29, 9„(8—2K, )i —(I,' 8~]

+ (9„'Sz + 29, 9„8z)+9„'8z . (4.23)

Since the expansion (4.22) of 9 is expected to be
valid at low T, we expect that K„/9„would
vanish as T-0. In the limit &-~-T«1, O', Si
-(T ')'T' T', so tha-t K++/9 T' wh-ich does
not vanish as T-0. However, if we group together
terms of the same leading T dependence as noted
by the brackets in Eq. (4.23), this singular behav-
ior is cancelled and K„/9„T' as expe-cted. To
see this we substitute the explicit forms (4.9) and

(4.10) of 9, and (t, into Eq. (4.23), cancel singular
terms, collect terms, and obtain

H, = —[2L,~+(d(S —M, ),]/D. (4.33)

The leading T dependence of these functions are as
follows: Ko Hp ™T Ky Hy Hy ™T, and higher-
order terms have been neglected.

From Eqs. (4.19), (4.25), and (4.30) we see that

= 8(H+&+H, Ko)+ 4H, Ko. (4.34)

Substituting Eqs. (4.26), (4.27), and (4.31)-(4.33)
into Eqs. (4.34) and (4.17), we find the following
simple form for the leading T dependence of 50'

bo = —g'8P(S —M, )ilm(N, z/D'),

N, z
——Az+ kP„A'„z/(o+ k'(S —Mo)z /2(o,

(4.35)

(4.36)

where N, i- T'. Noting that Im((o —(do+f0+) ' can
be interpreted a.s ——,'w6 "((o—(o,), p((o, ) =p'((do)
=0, P"((d,) = —8, and anticipating two integrations
by parts, we can express Eq. (4.35) for (o)0 in the
the form:

(a —b)'(8 -K,}, 5o = —g'4wk '(S —1I,)P', ib((o —(oo). (4.37)

(a —b)'8, )((a —b)9„(8+K,),
4 2

(a —b)9„(S —K,),

)('(a —b)'(8 +K,},+
8

(4.24)

where the leading T dependence of the three groups
of terms in Eq. (4.24) is T ', T ', and To, re-
spectively. Further cancellation occurs when we
substitute Eqs. (4.12)-(4.16) into Eq. (4.24). The
T ' terms combine to give a leading behavior of

From the leading T dependence of the one-loop
integrals in Eq. (4.37), we see that 5o-T'5((o —o&,)
and thus the leading lifetime contribution 5S to the
entropy is order T'. However, a careful evalua-
tion of (S —M, ), shows that (S —,1I,),—T' lnT rather
than simply T-', and thus the leading T dependence
of 5S is T'lnT. To see explicitly the origin of the
logarithm, we use Eq. (A5) for the integral (S -M, )
and consider the part of the integral proportional
«fpQ':

(S —Mo)g= ——
o 1+ fg, b((o&) —(oo, —o&o),

dp ~x

(4.38)
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where p' =p+ k and the argument of (S —Mz)~ is
k, ur =(o~. We interchange p and -p', use the small

p expansions X~= zp and &@~=p, and write Eq. (4.38)
as

1 t ~ 0+0 PI
(S —M, ),= —

J dPPfp dP'P' 1+—
87t'k 0 ip pi p

where the statistical factor n(z) is defined in Eq.
(2.22). The integral in Eq. (4.43) involving F(z)
is evaluated numerically and the other integrals
can be done analytically. Our final result for the
leading low-T lifetime contribution to the specific
heat of a Bose gas is

x5(p +p
(4.39)

5C»= C~T' ln(1/gT'), (4.44a)

(4.44b)

The 5-function singula. rity occurs in Eq. (4.39) at
the limit of the range of integration and thus Eq.
(4.39) is not well defined. A careful limiting pro-
cedure shows that if &o~/k is an increasing function
of k at small k, then one-loop integrals such as
Eq. (4.39) are nonzero. However, if &o~/k is a
decreasing function of k at small k, then Eq.
(4.39) vanishes. Since in our model &o,/k = (1
+ ,k')'~'—isan increasing function of k, we obtain

(S-M, ),=- — dP(k P)f, - (4.40)

The logarithmic divergence in the integral f, dpf
in Eq. (4.40) arises from the large number of
phonons in low momentum states and implies that
a straightforward expansion in powers of g does
not exist for the imaginary part of the self-energy
function in the limit k - e -T «1. Because of the
nature of our perturbation calculation, quasi-
particle damping has not been included in the prop-
agators (4.9). Since we are interested only in

the dominant logarithmic term in Eq. (4.40), we
can introduce a low-P cutoff, P, =gkT', which is
a measure of the phonon damping. " The contri-
bution to (S —M2)I from the R' part of the inte-
grand [see Eq. (A5)] is the same as Eq. (4.40)
so that the dominant contribution to (S —M, )z is

(S —M, ) z
= —(I/4r) T 'z ln(l /gT '), (4.41)

where z = k/T If we —use E. qs. (A22), (A23), and

(A25) in Eq. (4.37), we find that N, I does not con-
tain a logarithmic singularity and is given by

N, J T'[ ,'vz —z'/32m ———(3—/4v)F(z)], (4.42a)

where F(z) is a positive integral

Z

F(z) = dxx(z x)f(x)
0

(4.42b)

5S=, T'ln, dzn(z)
27r 2 gT

F"8 32'
(4.43)

and f(x)=(e"—1) '. Using Eqs. (4.41), (4.42), (4.37),
and (2.23), and the evenness of o(k, &o) with respect
to v, we obtain the following form for the leading
low- T lifetime contribution to the entropy:

which is quoted in Eq. (1.3). The significance of
Eqs. (4.44} and its derivation is discussed in Sec.
V.

V. DISCUSSION

In Sec. IV we have performed a microscopic
calculation of the simple quasiparticle and leading
lifetime contribution to C~ for a one-para, meter
model of a Bose gas. We discuss in Sec. VA the
interpretation and implications of the model cal-
culation and compare them to some qualitative
features found from quantum hydrodynamics. The
limitations of quantum hydrodynamics are also
discussed. In Sec. VB we consider the interpreta-
tion of C„ for superfluid He and give a crude esti-
mate of the coefficient of the T' lnT term for
supe rfluid 'He.

A. Qualitative features of the model calculation

The main result of our model calculation [Eq.
(4.44)] is that the leading lifetime contribution
5C„ is O(g') and proportional to T'lnT. Thus the
naive argument given in Sec. I yielding 5C~-T'
is incorrect. In order to understand the origin
of the T'lnT dependence of 5C~, we discuss the
microscopic calculation and compare it to the
results of a, quantum-hydrodynamics (QHD) cal-
culation upon which the argument presented in
Sec. I is based.

The significance of the O(g} one-loop diagrams
(see Ref. 9, Fig. 6) is that they are the simplest
diagrams which contribute to Imv„, the quasipar-
ticle damping. The corresponding result" for
Im&~ can be interpreted as the transition rate
from a quasiparticle with momentum k to two-
quasiparticle states, i.e., a three-phonon process.
The vertices in the one-loop diagrams result in
the X~ factors that appear in the one-loop integrals
Eqs. (A4)-(A9). If we ignore the stxwcture of the
vertices, the O(g) contribution to Ime, can be
represented as in Fig. 1(a}. It was shown in Sec.
GIB that the total contribution of the one-loop
diagrams to the entropy is identically zero. Hence
the typical structure of the lowest-order contri-
bution to 5o is given by the two-loop O(g') diagram
shown in Fig. 1(b). If we consider Fig. 1(a) as a
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Thus, attempts to include the lifetime contribution
to the specific heat by introducing a Lorentzian
line shape" for o(k, v) are most likely overesti-
mates. In the limit that I'~ is small, we can sep-
arate the lifetime correction in Eq. (5.1) as

5o -(I'„/k'(o,')5((u —~„). (5.3)

FIG. l. Structure of (a) one-loop contributions to
Imco& and 6p, and (b) two-loop contributions to 6(T.

Dotted line represents the imaginary part, and the de-
tailed structure of the vertices is ignored.

diagram for 5p, we can see from Fig. 1(b) that

0' pP~(&- a) +~ a

r„
k (&o —&u~)' '+I'„'

(5.1)

(5.2)

We have assumed that the matrix structure and k
and u& dependence of I'(k, &o) can be effectively rep-
resented by a single function of k, I' . The k '
factor arises from the divergent phonon residue.
The form (5.1) can also be obtained directly from
Eq. (2.25) by making the above assumptions on
I"(k, ~). Note that from Eqs. (5.1) and (5.2), o(k, &oj

falls off much more rapidly in the wings as a func-
tion of e than p(k, u&) and has a stronger peak.

If we assume that I'~ is equal to the damping con-
stant y~ of the quasiparticle and use the result"
that y~/k-g T', then we find 5a-g'T'5(e —co,).
The complicated structure of the vertices and the
matrix structure of I', which have been ignored
in obtaining this estimate, give rise to an impor-
tant factor of T . Thus 5c-g'T 5(&o —&o~) as
found in Sec. IV C. The reason for this factor, as
in the appearance of a T factor in the damping
of second sound, "is the near proportionality of
the phonon energy and momentum, which renders
the emission and absorption processes anomalous
in the sense that only small angle processes are
possible. As we have seen from the integrand in
Eq. (4.40), the logarithmic factor is due to the
large occupation number of phonons in the low
momentum states. Thus the origin of the T'lnT
term in 5C~ can be said to be threefold: the
large number of phonons in the small-k limit, the
small-k divergent phonon residue, and the ano-
malous three-phonon absorption and emission
contr ibution.

We now compare the microscopic calculation
to the calculation of 5o based on the assumed val-
idity of quantum hydrodynamics"' (QHD). Since
there is no need for a matrix notation in QHD, we
can write Eq. {3.22) as

gg-l
5c= o-r—I'(k, &o)'1m[ger(k, (o)P, (5.4)

where Qo'r = &o' —c'k'. Here f'(k, &o) is the imagin-
ary part of the inverse of the phonon Green's
function 9, a two-particle function, and is not
simply related to the matrix I'(k, &u) defined in
Eq. (3.1). If we retain only the three-phonon con-
tribution to I'(k, u), we have'8

3

f'(k, (o) =4v, [ V2'(k, p, p+k)(f~- f,„-) 5(o{+eq—e;,„-)+V'(k, p, k —p)(I+f~+f„;)5((o &~ —&„--;)
21r 3

—V'(k, p, —k- p)(1+f~+f;„-)5(&u+ e~+ c;„-)],
where

(5.5)

V(k, p, p') = (ckpp'/32m')'"(2u 1+k j+p p+ p'.k), . (5.6)

& =(~/c){sc/en) is the Gruneisen constant, and

f~ = (e ' —1) . An inspection of Eq. (5.5) shows
that «» &-T«I, 1(k, &o)/k-T', and hence
f1 Gill Eq. (5.4), 50' T and 5+&- T m agree

ment with the naive argument given in Sec. I but
in disagreement with the microscopic calculation.

The missing factor in the QHD calculation is
T~, which arises in the microscopic calculation



from the near proportionality of the phonon energy
and momentum. At T =0 the relationship of QHD
to microscopic theory has been investigated by
Josephson, '9 who pointed out that in the case of
almost collinear phonons the validity of QHD may
be in doubt, because singularities other than the
pole singularities taken into account in QHD may
have important effects. In the microscopic cal-
culation, we see from Fig. 1(a) that p has the
form [Eq. (5.2)] and 9 has a branch singularity
due to a phonon decaying into almost collinear
phonons. The branch structure plays an impor-
tant role in the two-loop contributions jFig. 1{b)]
to 5o', but is not important in the one-loop calcul-
ation of Ime„. Therefore the leading contribu-
tion to Imv~ is amenable to QHD but the leading
contribution to 50' is not. Our conclusion should
not be interpreted as denying the validity of QHD
in general. The QHD Hamiltonian should pxoperly
be regarded as a pseudo-Hamiltonian that generates
the asymptotically correct correlation functions in
the hydrodynamic limit. %hen used within its
limitations, QHD should illustrate certain correl-
ations among macroscopic quantities. However, if
one regards it as a microscopic model and com-
putes higher-order perturbation terms, the x'e-
sults may not be very meaningful.

From the microscopic calculation, we see that
the effective expansion parameter g of 5o (or 5C»)
with respect to o o (or C@»r) can be written as
g-y~/kT'v~- gT and the leading lifetime correc-
tion is O(g'). Alternatively the leading lifetime
correction to the statistiea/ quasiparticle energy
is O(g'k') and has the form g'k' In(l/gk '), in
contrast to the nonanalytic dynamical quasiparticle
energy" gk ' ln(l/k) .

Although O'P and 5C» are calculated to O{g) and
O(g'), respectively, both are calculated from the
one-loop functions that represent three-phonon
processes. The O(g') contribution to Co»r, which
arises from four-phonon processes, is not known;
in particular it is not whether an O(g'T' lnT)
term exists in C~~~. Nevertheless we can say un-
ambiguously that the O(g) three-phonon process
gives rise to a g'T' lnT term in the lifetime con-
tribution 5C~.

The numerical value of Cz. in Eq. (4.44) super-
sedes the value cited in Ref. 14. The g'T'lnT
term in 5C~ owes its existence to the upward cur-
vature of {d~, but the numerical value of C~ itself
is independent of the magnitude of the (upward)
curvature.

As discussed elsewhere~' the quasipartiele in
our model should be interpreted as "zero sound, "
and thus the form of many of the v-dependent
functions in the present calculation are valid only
for e»g. In the region 0&v&gT', second sound"

appeax's. However, it ean be shown that second
sound contributes to C» in O(g') and thus can be
ignox'ed hex'e.

B. Interpretation of Cz measurements in superfluid 48e

Since the effective expansion parameter of 5C~
with respect to C~ is g-I, T, it is not unreasonable
to assume that the leading low-T behavior of 5C~
in superfluid 'He, in which g is not small, is order
T'lnT and arises from the three-phonon processes.
In the model calculation the existence of the T'lnT
term in 6C~ depends on the upward curvature of

The phonon curvature of superfluid 'He at low
pressures' is now accepted as upward; however,
at high pressures the phonon curvature is thought
to be downward and the three-phonon process is
forbidden by energy-momentum conservation. In
the latter case the simplest conjecture is that the
induced three-phonon process would also yield the
T'lnT dependence of 5C~.

The quantity of physical interest is of course C~
=C~~ +5C„. Although we have argued that 5C~- T'lnT, it is not known whether C~~~ has a T'lnT
term or not. In the event that C~p- T'lnT, it fol-
lows that the excitation spectrum E& has the form
(1.1) but with an additional logarithmic term
-e,~k'ink, which at small k dominates the e,k'
term. Hence in principle a measurement of the
T' term of C~ would not determine the leading
phonon dispersion (e,z,). On the other hand if Co»»

does not have a T'lnT term, then at low T the
T'lnT term in 5C~ would dominate the T' term.
It follows that an analysis of the low-T specifie-
heat data with the T'lnT term ignored would in
principle also not determine the leading phonon
d1spe1's loll (e 2) ~

Although these conclusions are mathematically
1 lgox'ous the lmpox'tant consldex'ation from the
practical point of view is the magnitude of the log-
arithmic term. Since there appears to be little
evidence for a e»k'ink term inE„, we restrict
ourselves to the case where C~ has no T'lnT
term and attempt to estimate the magnitude of the
T'1nT term in 5C~ for helium.

It is convenient first to reduce the low-T spec-
ific-heat data to a dimensionless form. Phillips
eI, g/. ' fitted their data to the form

C» =(A/TB) T'+ (8/ ')TT'+ ~ (5.7)

where at saturated vapor pressure (V=27.58 cm'/
mole) the coefficients were determined to be
A/To =81.57 mJ/mole K' and 8/T,', = -15.6 mJ/
mole K' and T,= »nc'{0)/ks. If we ta—ke the character-
istic temperature T'0 to be T,= 27.7 K, which cor-
responds to c(0)= 2.4&& 10~ cm/sec, we can rewrite
Eq. (5.7) in dimensionless form
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C»/A T' = 1 +Q T' +

Q = -146.7,

(5.8a)

(5.8b)

where T is now the temperature divided by Tp.
The dimensionless coefficient Q may include both

simple quasiparticle and lifetime contributions,
since it was obtained by a straightforward fit'of
the data. If we assume that at low T the specific
heat has only a simple quasiparticle contribution,
then the low-k form of the quasiparticle spectrum
leading to Eq. (5.8) is given by Eq. (1.1) withe,
= -(7/100w')Q = 1.04.

The lifetime correction to the T' phonon contri-
bution to C~, from the model calculation, can be
written in dirnensionless form as

C„/A T' = 1 +L T' ln(1/g T') + ~ ~ ~,

L = -(15/2v')g'Ci.

(5.9a)

(5.9b)

[c (T) —c (0)]/c (0) =
333- v'(u + I)'T' In(1/ T),

where u is the Gruneisen constant and T is the
temperature divided by T,. Both results agree
if we take g= [=, (u+I)]'. This identification is cor-
roborated by the results for phonon damping.
Since u is approximately 2.75, we find that g= 6.25.
Such a value is not too large, especially if we note
that the effective expansion parameter is gT.

If we take g= 6.25 for helium, then from Eq.
(5.9b) we find L= -l. At 0.4 K, the coefficient of
the T' term in Eq. (5.9a) is L ln(1/gT')= -16.
Comparing this figure with Q in Eq. (5.8b), we see
that 5C~ is approximately a 1(F/~ correction at
saturated vapor pressure. At higher pressures
the coefficient B in Eq. (5.7) or Q in Eq. (5.8) de-
creases in magnitude. At V=26.23 cm'/mole,
Phillips et al. found A/T', = 52.41 mJ/mole K',
B/To =-1 mj/mole K', c(0) =2.732x 10' cm/sec,
Tp 36 K, and the dirnensionless coefficient is
calculated to be Q= -25. If we assume that the
lifetime coefficient L in Eq. (5.9) does not vary
strongly with pressure, we find that the magnitude
of 6C~ is comparable to the alleged quasipa, rticle
contribution. " At still higher pressure (V- 26 cm'/mole), the curvature of the phonon dis-

Taking this form as valid for helium, we can now
estimate the lifetime contribution by inserting an
effective value of g into Eqs. (5.9). Such an effec-
tive g for helium can be obtained from a compari-
son of the results of a microscopic calculation with
that from QHD. '" For example, the microscopic
calculation" of the leading T dependence of the
phonon speed in a Bose gas gives

[c (T) —c (0)]/c(0) = ~v'gT' In(1/T);

the analogous result from quantum hydrodynamics'
1s

persion changes sign. Detailed measurements of

C~ and other properties of superfluid 'He in the
neighborhood of the change in sign in the phonon
dispersion is clearly of interest.

Thus we conclude that the leading phonon dis-
persion cannot be rigorously determined from a
measurement of the O(T') term of C». If the above
estimate is valid, the lifetime contribution might
be a 1(P/&& (or larger) correction.

APPENDIX A: ONE-LOOP INTEGRALS AT T~)0
In the dielectric-function approach (see Sec.

IVB), all functions of interest are expressed in
terms of the x'egular self-energy M „current-
vertex A'„, and current-current-correlation F'
For ease of reference we collect here the evalua-
tions at T&0 of these regular functions to O(g).

The diagrams corresponding to the regular func-
tions (M„„A'„, and F"")to O(g) all have a one-
loop structure, as shown in Fig. 6 of Ref. 9. The
evaluation of the one-loop diagrams at T& 0 is
straightforward" and yields

d3
If„".(k) = —

„I (2
s TQ [29'~'(P) ~„.+ 9„",'(P+ k)]

3T „„)P+kg ~P 5)5
E

—,'[9'„(p»g"J.(p)

+ g„g (p+ k)g „(p)]6 6 ),

3
A't'i(k) =—,T Q k (p+ —', k)P„(2v)'

(A 1)

xgt„"„(p+k) g'„'„'(p) p„p„
(A3)

where 5„, is the Kronecker 5 function, 5„=1,
p„= sgn(p), p and k denote (p, e) and (k, &u), re-
spectively, & and ~ are discrete frequency varia-
bles 2mniT, and g„', is the matrix Green's function
in the Bogoliubov approximation. The form (Al)
for Mi, '& differs in part from that given in Eq. (4.1)
of Ref. 9; the latter (T=O) form does not satisfy
the general symmetry property, V„,(k)=M „,(- k).
The results of the T = 0 calculation, ' however, are
not affected by this lack of symmetry. The fre-
quency sums can be performed in the usual way, '"
and we obtain the following one-loop integrals at
T&0:

x g'„'„' (p+ k) gt ', ~ (p ) 6„(A2)
3

F-"&'i(k)=--, T g [k (p —,'k)]'
2 . (2v)'
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3
—'($ ') +M~') —p, '))=— X A-+g(Q' —R+)2 2 2 (2 )3 P P+ t

k($(3) M(i) )3(3))

(A4)

We first consider the real parts of the T-depen-
dent one-loop integrals at m = ~~'~. As an example,
we evaluate the integral

dpI(k) =
(2 )3 p p+2 p

4 „(2v)' ); P (1+2f-)

1 d'p &p

4 (2&)' &p+% )).p+ti

dp~, )&.;(Q-+ R-),

(A5}

(A6)

pA'&'= —,k (p+ —,k) (Q —R ),
1 d p ~ g A p + +

2 . (2)i)' (A8)

„,(, )
1 d'p [k (p+-,'k)]'
8. (2v)' »). p)&. p, k

6 A'~'& =—
I k (p+ —,'k)[(),- —)&.-, )Q

1 I d'p-
p 3 2 (2 )3 2 p p+k

+ (Z-+)).-,-k)R J, (A7)

1 1
X QPg —QP + k

—
/PE + (2L) +Tf + fdL)

t)

(A12)

where the principal part is understood. If we use
the fact that the integrand of —', (S+M, —p, ) in Eq.
(A4) is symmetric in p and p+k, it is easy to see
that I(k} is the T-dependent part of —,'(S+M, —p, )
that arises from Q'. An inspection of Eq. (A12)
shows that the dominant contribution to the p in-
tegral is from p - T«1; similarly from Eq. (2.23)
the dominant contribution to the k integral is from
k-T«1. In the limit k- T-P «1, we see from
Eq. (A12) that the dominant T dependence arises
from the singularity of the denominator (ug —&d-, k
—ur-) '. We let k)-, -k= Ty(1 —,'T'y'+ ~ ~ ~ ), —X

=-,'~~+ ~ ~ ~, co~= Tx, cu, = Tz, and write the singular
part of I as

T4 ~g f @+XI=, ' dxx'f(x) dyy'(z -y —x) ',16''z .,

where

x[(Xp —)h. p+2)'Q' —(Xp+g-, k)R+], (A9)

1 1
&d —rdp —(dp+j (8+rdp+(dp+k

(A13)

where 6 = —', xz(z —x) andf(x) = (e* —1) '. Since we
are interested in the leading T dependence of Eq.
(A13), only the range of integration shown needs to
be considered. Performing the angular y integra-
tion, we obtain

(A10)

R'-=( —,) 1 1'-=f3 f;i(-
p p+k p p+k

(Al 1}

It is convenient here to express the regular self-ener-
gy functions M„„in terms of $=2(M„+M ),
A=- —,'(M„-M ), and M, = M, =M, , and—to omit
the zero superscript on ~~~ ~ whenever it does not
cause confusion. The one-loop integrals at T=0
can be easily recovered from Eqs. (A4)-(All) by
letting all the statistical factors f p

——(e p~r —1) '
in Q' and R go to zero.

To evaluate explicitly Eqs. (A4)-(A9), we reduce
the one-loop integrals to functions of k by taking
~ = ~~~'~, which is sufficient for many applications.
We divide the one-loop integrals into T-indepen-
dent and T-dependent parts. Since the T-indepen-
dent pa. rts of Eqs. (A4)-(A9) have been evaluated
in the T=O limit, ' we concentrate, in the remain-
der of this appendix, on the T-dependent parts in
the limit k- T«1.

1 4 1I=—,T'ln — dxx (x-z)'f(x).8pz T Jp
(A14)

The part of —,'(S+M, —p. ) that arises from R' and
the remaining integrals in Eqs. (A6)-(A10) are
evaluated in the same manner. The T-dependent
results for k- T«1 are

—,'(0" +M&')- )3&')) = & )f'T'1n(1/T) + O(T'),

-'(0') -M&') —) ~')) =O(T')
A~'» = —r)z T'ln(1/T}+ O(T'),

6„A' ') =(&v' p, z+')T'ln(1/T} O(T+'),

P A'„~') = —&z T'ln(1/T)+ O(T'),
E"' ' = (,)i'+ ~z')T'ln(1/T)+ O(T'}.

(A15)

(A16)

(A17)

(A18)

(A19)

(A2o)

In Sec. IV D the method of. calculating the imagi-
nary part of the one-loop integrals has been illu-
strated by evaluating the integral (S -M,),
—= lm(S-M, ) in some detail. We shall not repeat
the discussion here and merely list the results.



SPECIFIC HEAT OF INTERACTING BOSE SYSTEMS. .

The leading T dependences of the imaginary part
of the one-loop integrals at & =co(,') for k- T«1
are

(S(' & +M(' &), = —T 4(~'/4807(+ z,/48v+ ~ v') + O(7'),

(A21)

(3('& -M(, '&) = —T' +— dxf(x) + ~ ~ ~,J 16& 4&

(A22)

4r ) — z", , 4„„(, „)f(„))j 3 z F
96' 24 4g „,

+ o(T'),

g(1) 4 Z Z

960~ 48 15

~ 4*(z —*) (z —2*)'f(*)) ~ O(Z')
Bnz, ,

(A24)

P A'('~ = T' +z —+— dx(2x-z)'f(x) + ~ ~ ~,96' 12 87t .,
(A25)

640' 24 15

4*(»-*)'f(*))32gz

Greek indices are summed, and all the one-loop
integrals are evaluated at co = ro(~'). We can divide
+„'(') into T-independent and T-dependent parts:
(L)~ "&(T)=(d~(')(0)+(d„'(' (T). We evaluate here only
the T-dependent part &„'(')(T). The quantity v ' is
T independent and can therefore be ignored.

The real part of ~,'('~(T) is obtained by substitu-
ting Eqs. (A15)-(A20) into the real part of Eq. (Bl).
We find for k- T«1 the leading T dependence

~,'('&(7)/k' = ~3, v'T"'In(I/T)+ O(T'4, k'T', . . . ),

(B2)

which is quoted in Eq. (4.6). It is easy to see from
Eq. (Bl) that n'(' ~ = (3x') '+ ~ T '+ contributes
only to the O(k'T') term. In earlier papers'" the
real part of (d~(T) was calculated in the k«1,
T=O limit and in the k«T«1 limit. Comparing
these results, we see that the leading k dependence
in all three limits agree and that the leading T de-
pendence of the k- T«1 and k «T«1 limits is
also consistent. The leading T dependence in the
T«k«1 limit has yet to be calculated.

To evaluate the imaginary part Im&(~'), we sub-
stitute Eqs. (A21)-(A26) into the imaginary part
of (Bl). Upon collecting terms, we find that the
logarithmic divergent terms in Eqs. (A21), (A25),
and (A26) cancel, and we obtain for k- T«1:

T' 3, z4 37t4Imv(') = ———z'+ —+ z
Bw 80 24 5

dz zz( V**—16**~ 8 ')jt*))2 o

where' =k/T. Note that Eqs. (A22), (A25), and
(A26) contain the logarithmically divergent integral

f dxf(x), and must be handled with care.

APPENDIX 8: QUASIPARTICLE SPECTRUM AT T ~~0

+ O(T'),

where z = k/T. Previously we have calculated
Im(d(~') in the k && 1, T = 0 limit

1m'' & = - (3/640x)k'[I - „' k'+ O(k')]

and in the k« T« 1 limit"

(B4)

A simple application of the one-loop integrals
evaluated in Appendix A is to the calculation of the
quasiparticle spectrum ~, to O(g) at T&0. Fol-
lowing our earlier calculation" of &u, to O(g) at
T =0, we develop a perturbation expansion for &,
by writing ((),'=(4),'(')+g((),'('&+ O(g'). As shown in
Ref. 8 [Eq. (4.18')], &u~

') is given by

(dp +(g2(~) 3() ) +M() ) () i k4 $(~i ~(~) (~)

2

k' kP. P«') k2~~(1)k-1 (0) g Pc(1)
2(0) 0 p p 2 440g

(O)g(1) ~gg(1) (1 )
2 )

where p„=sgn(p), 6 =1, ((, =+ or —,repeated

lm~(, "= —,v'kT '[1 -%Pv'T'+ O(T')1.

Comparing Eqs. (B3)-(B5)we see that the leading
k dependence in all three limits agree and the
leading T dependence of the k- T«1 and k« T«1
limits is also consistent.

APPENDIX C: SOME SELF-ENERGY IDENTITIES AT T ~~ 0

We derive in this appendix some relations for
the self-energy which follow from the application
of the generalized Ward identities. ' We first
establish the O(g) results quoted in Eqs. (4.12)—
(4.16). The second group of identities is exact and
related to certain T =0 long-wavelength (k = 0)
identities for the self-energy required by Gotze
and Wagner'9 in their investigation of the leading
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T dependence of C~. We derive these identities at
arbitrary T and give some additional static (u =0)
identities, which can be considered as generaliza-
tions of the Hugenholtz-Pines" relation. To O(g}
we show that the k=0 identities contain a loga-
rithmic singularity ignored in Ref. 23.

In Ref. 9 [see Eq. (2.41)] we expressed the self-
energy ~„,in terms of the regular self-energy

M& „, density vertex A„, and dens ity-density-c or-
relation F":

generalized Ward identities to express the self-
energy in terms of regular functions multiplied by
factors of k or (d. The limit of small k or & can
then be taken easily. As an illustration consider
the self-energy 8 —OR, —p, which using Eq. (Cl)
can be written

8-OR, —p=S —M, —y. +(v/2e'}(p„A„)'. (C9)

By the use of the generalized Ward identities'

OR„, = M„, + (v/e')A„A„,

c" =1 —vF".
(cl)

(c2)

The generalized Ward identities' of interest are

S —M, —p= a n, ' '(kp~A~ —&dpqAp) —e~,

p„A „=n, '~' (kF*" —&dF "),

p A' = n '~'(kF"" —&dF'"+nk/m),

(C10}

(C11)

(C12)

(dAp kAp +np PvGvp (c3)
&d'F" = k'(F"" +n/pn) -n'i'P (kA'+(uA ) (C4)

where A*„ is the (regular) current vertex, F' is
the (regular) current-current correlation, the in-
verse of the irreducible Green's function G„,' sat-
isfies G„„'=(G'„„) ' —M„„, and G'„„ is the Green's
function for the noninteracting system. These ex-
pressions (Cl)-(C4) are exact and valid at any T.
Our approach is to use the Ward identities (C3) and
(C4) to express OR&„ in terms of the regular func-
tions M», A» and F"", and to expand formally
both sides of the resulting expression to first order
in g. For example, we write

we can rewrite Eq. (C9) as

1
8 -M, —p = k'F"" —2~kF'"+(g)'F"

2n.

n'
+ —„(kF'"—&dF"}' +—

np

(C13)

Hence in the k =0 limit we find the long-wavelength
identity

(8 -OR, —i&)(k = 0, &v) = (I/2n, )+'(F'/e')(k =0, &v).

(c14)

$ ( I) —$(&) +I (I)
7 (c5)

g' 'A'„=a kp„(1 —agn ")+aA'„"+o(g')

gF zzr gF~zr(1) + 0(g2)

etc. , where the zeroth order is the Bogoliubov ap-
proximation. It is convenient to express QR„, in
terms of 8, 8, and OR, defined in Eq. (3.3). After
some straightforward algebra, we obtain the O(g)
identities:

Similarly we can establish

1 1
C(k=0, &d) =&v 1 —,i, OqAq —„(k=0,&v)

0

(C15)

The identities (C14) and (C15) are valid for arbi-
trary T and to all orders of the perturbation ex-
pansion. By a careful counting of diagrams at
T =0, Gavoret and Nozieres" derived the
(k =0, &d - 0) identities [(4.7) and (4.8) in Ref. 23]:

n&"=-(2/&d)(S'" —M&"- p&o}+A&"+(k/(u)p A'"

(C6)

1 Bn'
(8 -OR, —p}(k =0, &v-0) =-&d'

2np 8 p
(C16)

cm(~) —M(~) +I (I)
2 2

where

2
L()-v(~) nf() 1 +

2 S() M() p()
C0 (d

(c7) Bn'0 (k = 0, &v - 0) = -&d
8 np

If we compare Eq. (C16) with Eqs. (C14) and (C15)
we can identify at T=O

k2

(d2 l' ll (0 P P (d2

an = ——„(k=0, + 0),
BP

(C17)

(c8)

If we take the imaginary part of Eqs. (C5)-(C8),
we obtain the results quoted in Eqs. (4.12)-(4.16).

To derive the exact T = 0 identities, we use the

an' 1
an 2n'~' " " c"5 A —(k=0 (g —0).

0 0

To O(g) we can explicitly evaluate the right-hand
side of Eqs. (C17) (at T=0}
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F'o&(k, g) =—,— (1 —xpkp, q)Q',
p p+k

(C18)

1
5„Aip'i(k, (u) =— d'P

(2 )
s (A. p Xp, k

—1)Q )

where the statistical factors in Q' [see Eq. (A10)]
are set equal to zero. It is easy to see that
F'io(k=0, w —, 0)-in&u and that 8 „A&„'~(k=0, u —0) is
finite. Since e" =1 —vF', we find from Eq. (C17)
that an'/s g is well behaved but an'/an, has a log-
arithmic singularity that was ignored in Ref. 23.
However, the logarithmic singularity cancels out
in the final results of Gavoret and Nozieres. "

There are trivial static (&u =0) identities that fol-
low from symmetry in &, e.g. ,

(C19)

where the argument is (k, &u =0). The nontrivial
co =0 identities can be derived from the generalized
Ward identities [Eqs. (C10)-(C12)]. By taking the

m =0 limit of Eqs. (C10)-(C12) and using the fact
that P„A„(k, u =0) = 0 and F"(k, u = 0) does not di-
verge faster that ~ ', we find in the & =0 limit

e„(mF""+n') =n, (S —M, —p) =no '2 kP&A'p —n,e~,

(C20)

(C21)

where all functions are evaluated at (k, &u
= 0).

Using Eqs. (C9) and (C11), we can rewrite one of
the ~ =0 identities (C20) as

S -K, —g =n 'e„[n'+mF""+ m(v/e")(F'")'].

(C22)

The identities (C20)-(C22) are valid for arbitrary
k and T. In the 0- 0 limit, F""and F'" vanish,
and Eq. (C22) reduces to the identity derived by
Hugenholtz and Pines. "
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