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Parametric excitation of collective modes in an electron layer on a liquid surface
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Parametric excitations of electrostatic oscillations in a two-dimensional electron gas on a liquid surface and a
surface wave (ripplon) of the liquid are studied. The excitations are achieved by an oscillating (pump) electric
field along the liquid surface at a frequency near the characteristic frequency of the two-dimensional electron

gas. The threshold value of the pump field depends„among other parameters, on the damping rate of the

oscillation mode of the electrons, If the damping is controlled by the electron to atomic helium scattering,
then the threshold value for the pump electric field can become as low as 100 mV/cm.

I. INTRODUCTION

A sheet of electxons bound to the surface of
liquid helium or neon has many interesting prop-
erties. It can be a strongly correlated system. ' '
Since the Coulomb interaction energy becomes
greater than the thermal as well as zero-point
energies, a two-dimensional Wigner lattice may
be formed' '„however, such a lattice has not
been observed yet.

Gn the other hand, the electrodynamieal prop-
erties are recognizable more easily than the
structure of electron gas. The electron density
wave which is similar to the usual electron plasma
wave exists and its dispersion relation has been
investigated. "We simply call this a plasma
wave here. The damping of the plasma wave which
gives information on microscopic processes
such as self-collisions, collisions with the vapor
of the liquid or the ripples on the surface, '4 has
not been studied over a wide range of wave num-
bers. The surface wave of the liquid "ripplon" is
another normal mode in the present system. A
vextical eleetrie field which confines electrons on
the liquid surface modifies the dispersion relation
of the surface wave by localizing electrons in the
troughs of surface waves and causing a downward
frequency shift, ' at the ripplon.

In this paper, we p esent a method whereby both
the plasma wave and the surface wave may be
excited by means of a parametric process using
a high-frequency "pump" electric field along the
surface. Gur stability analysis is analogous to
those well known in the nonlinear theory of plas-
mas." The result indicates that the threshold
of the pump rf field for this instability is deter-
mined only by the damping rate of the plasma
wave, since the frequency of the surface wave is
always small compared with the damping rate of
the plasma wave. ' Therefore, one can infer the
damping rate of the plasma wave from the observed
threshold value of the pump. We also expect that

the excited surface wave decreases the electron
mobility.

We present the theory in the following order.
Section II aims to illustrate the basic coupling
mechanism involved in the paxametric process.
The result obtained there is applicable to a situa-
tion where the wavelength of the excited waves is
much shorter than the depth of the liquid, but
much longer than the microscopic (kinetic) scale
lengths. The effects due to finite depth of the liquid
are taken into account in Sec. III. In Sec. IV, the
coupled equation is solved and the growth rates of
the instability are presented for various range of
parameters. The threshold value of the pump
field is obtained there as a function of the damping
rate and the wavelengths of the excited plasma
wave. A brief discussion is given in Sec. V.

II. COUPLED EQUATIONS FOR SHORT-WAVELENGTH
EXCITATION

To illustx ate the basic coupling mechanism be-
tween the electron plasma wave and the liquid
surface wave through the externally applied pump
field we consider a situation in which the depth
of the liquid can be regarded as infinite.

We assume the coordinate z to be perpendicular
to the equilibrium surface as shown in Fig. 1,
and consider small perturbations in the electron
density and liquid surface in the x-z plane. We
use a fluid approximation to describe the electron
dynamics. The liquid is assumed to be incom-
pressible and to have a unit index of refraction,
and its macroscopic electric properties are ig-
nored. The microscopic properties such as scat-
tering of electrons by the ripplons are included
in the effective friction term in the descriptions of
the electron dynamics. The forces acting upon the
fluid are the gravitationa1. force, surface tension,
pressure, and the electric force applied to the
electron layer which pushes electrons down on
the liquid surface. The pump field is an oscilla-
ting uniform electric field, E„cos~,t, applied in
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the horizontal (x) direction.
To derive the coupled equation between the plas-

ma wave and the surface wave, we must analyze
three types of dynamics, i.e. , the high-frequency
oscillations associated with the plasma wave, the
low-frequency motion of the electrons associated
with the surface wave, and the low-frequency
dynamics of the liquid.

Let us first study the high-frequency electron
dynamics. The necessary equations are the equa-
tion of continuity,

ee(R, k)4» ur
= AH/ & Qv+0,

where

(12)

o(x t) =Reo
r

Between the two terms that contribute to the
coupling, ov„ in Eq. (1) and v„ev„/dx, the former
can be shown to contribute dominantly. The coupled
equation then becomes, from Eqs. (1), (2), and

(10),

Bo B—+ —(ov, ) =0,
Bf Bx

the equation of motion,

e (re, k) = 1 —(dp lk I /(d

v„,= eE,/im~, ,

(13)

(14)

(15)
B'U„+, O'U„e B&"+z'x "=—~ ——E,costs, t,
Bt Bx m Bx nz

and Poisson's equation,

Bg Bg,+, =4veo5(z -z,).
Bx Bz

(2)

(3)

and 0 is the frequency associated with the surface-
wave perturbation 0 = (d, —~. Without the pump
field, Eq. (1.2) gives zz =0, which represents the
eigenmode associated with the two-dimensional
plasma wave, whose dispersion relation is given
by

v„= —(eE,/~, rn) si ~n, t . (4)

The equilibrium solution of Eq. (3) gives the re-
lation between the externally applied vertical elec-
tric field F,e, and the unperturbed electron charge
density -ea„

E„=F,—4&eo,U(z -z,),

In these expressions, z, is the equilibrium posi-
tion of the surface, 0 the surface electron density,
v the electron velocity (with the subscript x de-
noting the x component), y the electrostatic poten-
tial, e, the vacuum dielectric constant, and -e
and m are the charge and mass of an electron.

The linear response of the electrons to the pump
electric field is obtained from Eq. (2),

(16)

Note here ~~ has a unit of cm sec '.
We now consider the electron dynamics associ-

ated with the low-frequency surface-wave pertur-
bation. Compared with the plasma wave, one
major difference is that the electrons face addi-
tional force due to the ripples on the liquid sur-
face.

If we designate the deviation of the liquid surface
from the equilibrium position z, by a(x, t) this
additional force F„on the electrons in the hori-
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where U(z) is the unit step function. From Eq. (5)
we see that the electrons may be confined on the
liquid surface by F, if Fp
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We now derive the coupled equation describing the
interaction of the plasma wave and surface waves
in the presence of a pump electric field. For this
it is convenient to use a complex amplitude for
oscillatory quantities, i.e. ,

y(x, z, t) =Rerp(z)e'~"
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Here qr(z) is obtained from Eq. (3),

y(z) = —(2@co„ /[ k()e

e-)aI ) z -&pl
Y A, QJ

where

(6)

(9)

FIG. 1. Geometrical configuration of situation that is
under consideration. The dotted line indicates the elec-
tron monolayer on an equilibrium surface. The solid
line and the broken line denote the liquid surface in the
equilibrium state and in a perturbed state. zo is the
depth of the liquid and d is the distance between tv; o met-
al frames. k is a wave number of a surface wave or a
plasma wave.
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zontal direction is given by, referring Fig. 1,

E,=-eF 6,

with

8 =—(&& I ) .Ba
Bx

(18)

The expression (17) is approximate and holds
when E,» 2roe. Otherwise F„ is reduced by the
shielding effect of the electron layer.

The nonlinear term that provides the coupling
to the plasma wave is also different. The dominant
coupling is provided here by the v, av„/Bx term
(the ponderomotive force). If we take these into
account, we can obtain the coupled equation for
the electrostatic potential associated with the sur-
face-wave perturbation qk „with the quantity

a, „and the plasma-wave potential cpk

, ~alki ~0'-k, n+ ~2 +oa-k, o

p.—„=—&&+pet,~(z -zo -s) —I]e.

8 a
+ v', , —eoF 5z -z, -a e, .

O g
2 O

Here P„v,p, g, and w, are the mass density,
velocity, pressure of the fluid, the gravitation
constant, and the surface tension, respectively.
The forces acting upon the fluid are a pressure
gradient, gravitational, surface tension, and the
electric force applied through the surface elec-
trons as represented by the respective terms on
the right-hand side. The externally applied verti-
cal electric field pushes electrons down on the
liquid surface, which acts as a vertical pressure
on the liquid. Because this force depends on the
electron-density perturbation, it produces the
coupling to the electric field perturbation.

To solve Eq. (20), we assume the liquid is in-
compressible, "i.e. ,

V v=0. (21)

We first look at the equilibrium state, in which
a=0 and sv/St=0. Because of the electrostatic
force acting upon the liquid surface, the pressure
p can be discontinuous at the surface. This indi-
cates that the macroscopic equilibrium can exist
even if the areas &z, is a vacuum. The electrons
provide sizable pressure upon the liquid surface
due to the applied vertical electric field I"0.

II II Po, tfol g 'P-k bf+2o ' . (18)

Finally we obtain the relation between a „„
and rp „„by applying the hydrodynamic equation
to the motion of the liquid,

The equilibrium pressure p, at z &z, is obtained
by integrating Eq. (20) by putting sv/st = a = 0,

po= e~o+o+ N(z'o

We now look at the dynamics of the surface
wave. The wave equation for the perturbed pres-
sure p, at z &zo can be obtained by taking a diver-
gence of Eq. (20) and using V v, =0,

v'p, =0.
The appropriate solution of this equation is ob-
tained in the form,

~e) kI {g -zo) ~i{kX -NC)
P1. (24)

Qn the other hand at z &z, we can assume p, =0.
Now the value P can be obtained from the bound-

ary condition on the surface. To obtain the suit-
able boundary condition, we linearize the z com-
ponent of the equation of motion (20) to give

BQ~ Bp 8 a
p '=-—+ v —eo& —p ga 5(z-z )0 gt g~ 0 g~2 1 0 0 p

where o, is the perturbed surface density of elec-
trons at the low frequency.

We integrate Eq. (25) from z, —0 to z, +0, and

have

8 a
0 =P(zo 0) + 7o 2 ~o»o Pok's .

Bx

Consequently P becomes

P=(" ~o+pol)so n+ 'e+oo~ n. (27)

If we now substitute this expression back to the
equation of motion (25) and use the fact u, = aa/st,
we can finally obtain the relation between a „„
and 0'

(
(~ k'+ p,g)ikf eJ', fu[

k ~ 0 -k, A
Po Po

or, in terms of y k z,

(7,k'+ pog) ~k
~

k'+o

p 0' , 0 2~p g 9 -k, O
Po Po

(28)

The above expression gives the relation between
the electrostatic potential q and the surface-wave
amplitude a associated with the surface wave of the
liquid. We substitute a „„obtained above into
the equation of the low-frequency electron dynam-
ics, Eq. (19). We can then obtain the coupled
equation between the surface wave and the plasma
wave, which is reduced to

zz(fl~ k)g-on= AI, (go ~v,xo V-a, ~+oovxo) ~
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ez(Q, k) = 1—,7,k'+ p,g—

lklg + lkl'7o/p.
I Q' 2' (31)

As usual e~ =0 gives the linear response of the
system. In the absence of the vertical electro-
static field E„one obtains the ordinary surface-
wave dispersion relation,

&'= lkl p.g+ ~.lkl'/p. . (33)

III. COUPLED EQUATIONS FOR WAVELENGTH
OF AN ARBITRARY SIZE

%e have seen the basic coupling processes be-
tween the plasma and the surface waves. For
the result to be applied to some real experiment,

However, in the presence of E„Q becomes an
imaginary number when

y'2) (gz7 p g)1/2

This is a form of the Rayleigh-Taylor instability,
since this inequality is achieved when the effec-
tive electron mass density (which is increased
owing to the electric force) becomes larger than
the fluid mass density. This type of instability
has been discussed in a recent publication. ' For
the present study of the parametric excitation of
the surface wave we assume that I'0 is below the
threshold value for the Rayleigh- Taylor instability
given by Eg. (33).

Equations (13) and (39) give the desired coupled
equations between the plasma and surface wave.
These equations are valid in a range of the wave-
length which is much shorter than the depth of the
liquid.

The surface wave modifies the plasma wave.
The oscillating electron velocity in the pump elec-
tric field times the low-frequency density pertur-
bation associated with the surface wave produces
a high-frequency current component. On the other
hand the plasma wave modifies the surface wave
because the ponderomotive force of the high-
frequeney field produces the low-frequency bunch-
ing of electrons which act to produce a low-fre-
quency pressure on the liquid surface.

&z(~~ k)ga, (u= Jiz&P*aoUxo -~,

where

(36)

4l sinhlk ld
(37)

Again, e„=0 gives the dispersion relation of the
plasma wave which is now modified by the bound-
aries. The metal boundaries terminate the electric
field associated with the wave and reduce the in-
tensity of the x component. This reduces the
restoring force in the plasma oscillation of the
electrons particularly in the long-wavelength
regime. At k-0 the dispersion relation is modi-
fied to ~o:k instead of ufo-(lkl)'", as wa. s found
previously. '

I et us now look at the low-frequency electron
dynamics associated with the liquid surface wave.
If we ignore the inertia term as before, the
low-frequency potential field y ~ & can be ex-
pressed

we extend the result so that it can be applicable
to waves with the wavelength comparable to the
depth of the liquids. The extension does not alter
the basic coupling processes; however, the linear
properties of the waves are modified.

First let us consider the plasma wave. The
field and the kinetic equations shown in Egs. (1)-
(3) remain the same. The difference arises in the
structure of the potential field. Ne take a bound-
ary condition as shown in Fig. 1 such that the
liquid is placed within two parallel conductors at
z = 0 and d (&z,). We ignore boundaries in the x
direction. Then the appropriate solution, for
cp(z) at z &z, and z &z, may be written

q(z) =A sinhlkl(z -d), y(z) =B sinhlklz, (34)

where

g sinh[kl (z, -d) =B sinhlklz, -=q„. (35)

The boundary condition that gives the jump in sy/
Bz by the amount of the surface electron charge
density remains the same. Hence the major dif-
ference which originates from the finite size of
the boundary is the effect of the image charge
appearing at both conductors. The coupled equa-
tion takes the form

sinhlk z lkl, lkl
slnh (O' zo '

Qp
' (d

~ — — +0~-f n ~ 0@~. + U*09'y, +2n z-zo

sinhlkl(d -z) lkl, lkl
~ —~- t «-)» y 0 -0 0 «09 k, ur «09 k,~a+20 & 0 '

(d (d

(39)
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Finally we consider the dynamics of the liquid. Here, the force equation, Eq. (20), should be modified
to include the additional force acting on the liquid surface through the electrons being affected by the force
due to the image charge:

p, —= —vt) + I)g[U(z -z, - a) —1]e,

+ T, , —ecr(x, t)F, + e'o(x, t) dx'dy'
8'a o„(x', t)
Bx Bz z +a '+ x-x' '+y" "'

1 ~ o(x', t}
2 ,~, ((x —x')' + [A (x) -A. (x') + eJ' + y")"'

o, (x', t} „)„,) 5)z-z, -a) (40)

Here, o„and 0~ are the number densities of the induced charges on the lower and the upper conductors,
respectively. It is convenient here to use the velocity potential )C) defined by

v= —Vg. (4

Then the boundary condition at the bottom of the liquid gives

=P(z =o)p gt

If we now integrate the z component of the equation of motion (40), and take a derivative with respect to
time and use Eq. (42), we have

s')t ~a
s'

~a

Pp~az '"ax~ a.g=g
0

g = gp g = gp

Ba+eF—
pgt

o„(x', t)(z, + a) 1 ~ o(x', t)[A(x) -A(x')]
st ' (x-x')'+(z, +a)' 2,~, (x-x')'+[A(x) -A(x')+e]'

o„(x', t)(d -z, —a)
(x-x')'+ (d -z, -a)' (43)

The induced densities o~ and o3 are, of course, functions of the electron density o itself. After some
manipulation, they ean be expressed as

1
" o(x', t)sin[(x/d)(z, + a)J

os 2d cosh[(v/d)(x —x')]+ cos[(z/d)(z, + a)] (44)

In a special case in which the equilibrium surface of the liquid is exactly in between the two conductors,
whereby d = 2z„o„and o~ are further reduced to

~o o, " va(x', t)/2z, , 1
"

o,(x', t)
ae 2 4z, „cosh'[(v/2z, )(x —x')] 4z, „cosh[(&/2zo)(x —x')]

where we neglect higher-order terms with respect

Now, the wave equation for the potential field g
is given by

v'q=0, z, &z&0,

which should comps. re with Eq. (23). The appro-
priate solution which is consistent with the bound-
ary condition that B)t)/Bz = 0 at z = 0 is

If we now substitute Eqs. (47) and (45) into (43),
llnearlze the result and use the relation v = Ba/Bt
= —a)t/sz, we obtain the relation between the po-
tential & and the surface charge density -eo, „:

k 7'p 2re o))*— ); ~ "— "
I), )cottle)z, )Po Po

)t)(x, z, t) = Re), „coshkze"* (47)
(«}

Pp
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The set of Eqs. (39) and (48), and the relation

~B ~B

4me Bz ~+p Bz ~ -op+ p

(49)

produce finally the coupled equation between the
low-frequency potential y „„and the high-fre-
quency potential y~ through the pump field v„„

we can simplify Eq. (53) to

(n' —n', )(n' —A;) = D-, (n', —n')

by using the approximation eH((d +Q, s k) = 2 ((v
—(d»+Q}/(d . Here, D, =(A»/2(k)o)k'~v„J' and b, »

=(do —(v». We solve Eq. (54}for n to obtain

n =a(1/k2))(b»»+Q»»+ D»

(54)

where c~ and A~ are given by

ei(n, k) = 1 —Q» /Q',

0,' = ktanhkz,

k gpX g+
Pp

(51)

k
2@i

—(d+ (dp = Q, (52)

»~(n, k)(p, a=A~((p» „v,() —(p, ~ k2nv„*(&), (50)
y [(A2 +D Q»)2 4D (Q2 Q2)]1/2}1/»

(55)

This expression indicates that the coupled waves
grow, i.e., ImQ &0, under one of the following
two conditions:

(i) A»&0 and

IA»+D» —Q»»l & 2[D»(n» —Q»»)]~; (56

(ii}b.»&0 and

(A;+D, )n; & iD, (n; —n', )i . (57)

x g+ k coth k zp
~o Pp

IV. PROPERTIES OF COUPLED-WAVE SYSTEM-
PARAlMETRIC INSTABILITIES

Equations (12)-(15) [or Eqs. (36)-(38)] for the
plasma wave and Eqs. (29)-(31) [or Eqs. (50)-(52)]
for the surface wave constitute a coupled system.
From these sets of equations, one obtains the
following dispersion relation:

A(n»/Q2 —1) 1 1

(0, -k) "(,—», k) „(, », -k)] '

(53)

where

A =(I/2(')k'iv„J'.

We investigate the parametric instability derived
from this dispersion relation. We find two types
of instabilities. One of them occurs when ev(n, -k)
=0 and e„*((do —n, k)=0. This type of instability
is called the "decay instability. " The other type
of instability, which is called the "oscillating two-
stream instability" (OTSI), takes place when
eH»'((v, —Q, k) =0 and e„((v,+Q, -k) =0. One easily
finds that these matching conditions are satisfied
when ~(v, —(vJ«(v„because ~n»~«(v, . In this case,

The decay instability appears when Eq. (56) is
satisfied, while the oscillating two-stream insta-
bility takes place when Eq. (57) is met. Note that
the surface wave generated by OTSI is a purely
growing mode, i.e., ReQ„=O.

With realistic parameters, we find that condi-
tion (57) is satisfied over a much wider range
of (d» compared to the range of (v» satisfying (56).
In fact, if we choose z, =0.1 cm, op=10' cm ',
F~=3 kV/cm, EO=3 V/cm, and (v =4&&109 rad/
sec, one estimates the coupling coefficient ap-
pearing in (54) as D»/(d»o = 10 ' A»/(do and Q» /(v»
=3x10 ', with &p defined by ~p=~&p. We obtain
from Eqs. (56) and (57) that the unstable frequency
range of the decay instability is given by ~((v, —(v»)/
(d ~& 4&&10 '0, and the OTSI occurs in a range
given by ~((vo —(v»)/(v)& 10 '. We also estimate
from (55) that the growth rate of OTSI Imn
= [D»(n' —n')]'' = 10 '(vo, and the growth rate for
the decay instability ImQ = 10 '~p. Therefore,
OTSI dominates over decay instability once it
starts growing.

We have ignored damping of the waves in the
above discussions. The wave damping gives rise
to a finite threshold value for the pump amplitude
to drive the instability. We phenomenologically
introduce damping by adding dissipation terms
-2@v„and -2I'v, to the right-hand side of Eqs.
(2) and (25) or (40), respectively. We will discuss
the physical processes included in y and I later.
The dispersion relation (53) is no.v rewritten as

A(van' —(Q + 2 i I')']
n(n +2 iI') —n'„

1 1
((d —n)((d, —n —2iy) —(d»» ((v, +Q)((d, Q++2iy) —(d,»

(58}
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Following the prescription given by Ref. 8, we
calculate the threshold pump intensities. We ob-
tain the minimum threshold

y Q„
AQTsI = 2

P Qf,
(58)

for OTSI when 4, =-y. The threshold for the decay
instability is given by

4ry Qk
decay (60)

QACOp Q Q
p p

provided Q~ —Q&» yI . If yI' becomes larger than

Q~ —Q2~, the decay instability does not overcome
the damping. Hereafter, we discuss only the OTSI
because it is the dominant instability. The growth
rate of OTSI is calculated from Eq. (58) as

ImQ =-y+( D —hs-)'~ . (61)

We plot ImQ in Fig. 2 as a. function of ~h, ~
for the

parameters given in the caption. Figure 3 shows
the threshold pump amplitude E, as a function of
y/~o. If the threshold value of E is obtained ex-
perimentally then we can find y as a function of

Here, k can be specified by choosing pump
qu" y~p

V. DISCUSSIONS

We now discuss the physical processes which
determine the damping rate y and the expected
threshold pump intensity. According to the recent
experiment by Grimes and Adams, the mobility of
the electrons is determined by electron-helium-
gas-atom collisions in the high-temperature re-

gime (T & 1'K). In the low-temperature regime
(T 6 1'K), the effect of scattering of the electrons
by the thermally excited surface wave, ripplon,
dominates over the electron-atom collisions.

If we employ the mobility determined by the
electron-ripplon interaction, the threshold pump
amplitude is a few tens of volts per cm. However,
the electron-ripplon interaction strongly depends
on the external field amplitude to excite the plas-
ma wave. In fact Ref. 11 reports that a significant
increase in the mobility is found when the applied
electric field exceeds a few tens of millivolts per
cm. We consider that this enhancement of mobility
is due to the heating of electrons. Since the elec-
tron-helium temperature relaxation time 7„ is
much longer than the wave-damping time, only
electrons are heated. Once electrons are heated
above a few tens of 'K, they decouple from the rip-
plon because the thermal energy of the electrons
exceeds the energy gaps between the bound states
of electrons. The energy-balance equation gives
that the electrons are heated up to this temperature
when

v„,& 10'v„y.

If we choose 7„@=10'and tu, =4&&10' rad/sec,
this condition is satisfied when E,~ 0.1 V/cm. We,
therefore, estimate the threshold pump amplitude
by employing the electron-gas-atom collisions.
If we do so, from Eq. (59) we find that the thresh-
old amplitude becomes a few hundreds of mV/cm.

The dips on the surface produced by each elec-
tron in a "clamping" electric field I'p may also de-

Ep(V/cm)

I
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E
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1.0—
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oaf = 4X10 rOd/aeC
10
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0.4
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FIG. 2. Growth rate 1m' is plotted versus ~Az~/c'z. Pa-
rameters of the electron layer and the liquid surface are
as follows: gp —0.1 cm, O.p=lp crn, Ep=3 kV/cm, Ep
=3 V/cm, (up —4&&10 rad/sec (broken line), 1.26x10'
rad/sec (solid line), y/~p ——10 '.

5 7
10

F?G. 3. For the same parameters as Fig. 2, the
threshold amplitude of rf field is shown against the damp-
ing rate of the electron plasma wave.
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crease the mobility of electrons. The binding
energy of the electron to a dip is given by

& = 7FO(4 +2 lnFO) x 10 'o erg .
(F, is in cgs-esu units. )

If the electrons are heated to above 10 'K as
discussed previously, then one easily finds that
E is much smaller than the kinetic energy of elec-
trons for realistic values of F, (&50 cgsesu =15
kV/cm). Therefore, the dips decouple to the elec-
trons. Once electrons start moving, the dips

should disappear because the surface deformation
does not respond to fast electron movement.

Finally, we note that one can detect the insta-
bility by observing plasma-wave sidebands to
the pump signal.
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