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The Hall resistivity pu(ﬁ, T) (ﬁ || [ooo1], TH [1010]) has been measured in a monocrystal of Cd in the
temperature range 1.5-580°K and in applied fields up to 2.0 T. At low temperatures p,, is highly sensitive

to minute traces of impurity and to misalignment of the sample. To eliminate the uncertainties which arise
from these sources in any comparison of p,, between different samples, we chose to make an intensive study of
a single well-oriented sample. This leads to clearly defined systematic tendencies in p21(1_3., T). Using path-
integral calculations based upon a simple model of the second-zone “monster” that allows intersheet
scattering, we are able to give a plausible qualitative description of all the observed features. We are able to
show, furthermore, how this interpretation encompasses a behavior previously observed in lightly doped
samples that was seemingly inconsistent with the intersheet scattering mechanism.

I. INTRODUCTION

Electrons moving parallel to the basal plane in
cadmium under the influence of a magnetic flux
B applied along the hexagonal axis can be divided
into two classes. The first contains those elec-
trons for which a Bragg reflection is a frequent
experience during their mean free lifetime be-
tween momentum-changing collisions. The re-
sult is that their overall response to B is hole-
like. In reciprocal space this class is represented
by points lying on either of the hole parts of the
reconstructed Fermi surface, which are the
“caps” of the first Brillouin zone and the trifoli-
ate surface formed from the “monster” of the
second zone.! The second class contains elec-
trons having momentum vectors such that they
rarely experience a Bragg reflection during their
lifetime. Their response is therefore electron-
like—although not necessarily very free-electron-
like—and they are represented by points lying on
the electron “lens” of the third zone.

Except at the very lowest temperatures, conduc-
tion in any direction parallel to the basal plane is
apparently dominated by charge carriers from the
first of the above classes, for we show that the
sign of the Hall effect is positive in the whole
range from about 4 °K up to the melting point.

This domination can be understood qualitatively
from the topology of the Fermi surface. The elec-
trons represented on the lens have velocity vec-
tors directed principally along the hexagonal axis
and are therefore not major contributors to any
conduction parallel to the basal plane. Further-
more, the typical effective mass associated with
the hole surfaces is considerably lower than that
for the electron one.> Consequently the holelike
carriers moving parallel to the basal plane are
not only more numerous but also more mobile

than the electronlike ones.

Below about 4 °K this domination is sharply
destroyed when a field exceeding a fraction of a
tesla is applied along the hexagonal axis. The
sign of the Hall effect becomes suddenly very nega-
tive, while its field and temperature dependences
indicate that the carrier compensation for this
orientation has been effectively destroyed.”—*

This detail in the metal’s behavior has received
considerable attention in recent years,>~" and a
particular mechanism—known as infersheet scat-
tering—has been proposed’ to account for the shift
from domination by holelike to domination by elec-
tronlike carriers. In addition to this singular fea-
ture, the temperature dependence of the Hall effect
observed in a carefully aligned sample shows over
a wider temperature range other characteristics,
such as a stationary value and marked general
tendencies. Our aim is to suggest a qualitative ex-
planation of these features, and to show how it re-
flects upon the difficulties encountered in earlier
studies®** of doped samples, where the behavior
seemingly did not fit with the expectations of inter-
sheet scattering.*

The principal experiments to be described in-
volve the measurement of the Hall resistivity and
transverse magnetoresistance in an oriented mono-
crystal of pure Cd over the ranges 0.1-2.0 T and
1.5-580°K. These data are given in Sec. II. Sec-
tion III describes a model used for path-integral
calculations, giving the results that are discussed
and compared with experiment in Sec. IV. Section
V describes comparative results obtained for two
oriented monocrystals of Cd containing Zn that
bear upon the qualitative interpretation of Sec. IV.
Qur conclusions are given in Sec. VI, while the
Appendix contains a brief outline of the path-in-
tegral calculations.
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II. EXPERIMENTAL METHOD AND RESULTS

The sample of pure Cd was prepared by the
Bridgman method exactly as described previously®
for Cu. A monocrystalline sheet having the ap-
proximate dimensions 2x8x%0.09 cm® was pre-
pared from starting material supplied by Alpha
Inorganics (Ventron Corp.) of 99.9999% purity
referred to metallic contaminants. A high-purity
graphite mold was used in which the crystallo-
graphic orientation of the final crystal could be
controlled with respect to that of a previously pre-
pared seed crystal. The final sample was oriented
such that the hexagonal axis was perpendicular to
its plane face to within the accuracy of our back-
reflection Laue techniques (~1°). The desired
sample shape was produced from the monocrystal-
line sheet by spark erosion using a template hav-
ing the dimensions specified previously.® The
orientation was chosen so that the primary current
of 1 A lay along a [1010] direction. The residual-
resistance ratio (R,,4 ox/R,,x) of the sample was
25600.

The monocrystalline alloy samples were pro-
duced in exactly the same way except that the
starting material was a previously prepared alloy
of slightly higher than desired solute concentra-
tion chosen to offset the zone-refining effect in-
herent in the Bridgman method. Cutoffs from the
top and bottom of each sample were analyzed by
atomic absorption methods in our Analysis Sec-
tion. The results are quoted in the caption to
Fig. 9, together with the value of the correspond-
ing residual-resistance ratio.

Measurements were made with a conventional
cryostat-electromagnet combination giving a tem-
perature range of 1.5-300 °K in fields up to 2.0 T.
In the cryostat the sample could be tilted through
small angles, while the electromagnet could be
rotated, so that the fine adjustment of the applied
fields’s direction along the [0001] axis could be
made empirically from observations of the low-
temperature magnetoresistance. The final coinci-
dence of these vectors was made to within about
0.1°. For temperatures in the range 300-580°K a
conventional vacuum furnace was constructed to
replace the cryostat. The instrumentation and
techniques used to determine the galvanomagnetic
voltages were identical to those described pre-
viously.®

Because the quantitative details of the low-tem-
perature dependence of the Hall effect for this
orientation are known to be very sensitive to
errors arising from trace impurities and position-
ing of the [0001] direction with respect to the ap-
plied field, a comparison of the Hall effect between
differentbut otherwise seemingly identical samples

g
@
3
T<I
" oH .l il 1 L L —
E 100 200 300 400 500 600
?o TEMPERATURE (°K)
@ -5-
~
&
Q
-10F

-5

FIG. 1. Comparison of the temperature dependence
of the Hall resistivity p,; (here divided by the applied
flux density for easier graphical presentation) observed
at the extremes of the range of applied field. A detec-
table field dependence exists up to about 140°K. The
sample’s residual-resistance ratio is 25 600. An en-
larged view of the lower temperature range is shown in
Fig. 2.

is confounded by erratic uncertainties®~* which up-
set the systematic tendencies. To avoid this prob-
lem, we chose specifically to study the field and
temperature dependences of a single well-oriented
sample. The temperature dependence of the Hall
resistivity measured in this sample over the range
1.5-580°K is shown in Fig. 1. A more complete
set of data for the limited range 1.5-38 K is
shown in Fig. 2. The experimental precision of
any datum in Fig. 2 is controlled primarily by the
precision of the voltage measurement, which is
about +1 nV. In the units of the abscissa of Fig.

2 this corresponds to an uncertainty of about +0.1
(10" m®* A-'sec™). The accuracy of a given da-
tum in Fig. 2 is dominated by the error in the de-
termination of the sample’s thickness. This quan-
tity (of magnitude ~0.09 cm) could be measured®
to within about + 0.0015 ¢cm, which gives an un-
certainty of about +1.6% in the absolute value of
the abscissa of any point in Fig. 2. Finally, Fig.

3 shows the corresponding transverse magneto-
resistance Ap/p,,(0), where Ap =p,,(B, T) - p,,(0, T)
enters the discussion of Sec. IV.

III. MODEL OF TRIFOLIATE SURFACE

It is pointed out in Sec. I that, apart from the
temperature range below about 4 °K, conduction
parallel to the basal plane is dominated by carri-
ers that have a relatively high mobility and show
a holelike response to the external field (Fig. 1).
The overwhelming majority of these are repre-
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FIG. 2. Enlarged view of part of the behavior shown in Fig. 1. Exactly the same circumstances prevail except that
here the effect of six different applied field strengths is shown. Insert: a section of the basal (TKM) plane of recipro-
cal space showing schematically the arrangement of the cloverleaf sections of the trifoliate surface. It is sufficient
here to show two of these, but in a complete drawing of the extended zone scheme equivalent clover leaf sections
would be located at the vertices of a space-filling array of hexagons.

sented on the trifoliate part of the reconstructed
Fermi surface' (since the volume of reciprocal
space occupied by the second-zone caps is small
by comparison) and it is the behavior expected of
electrons represented on such a surface which
forms the pivot of our description. A typical
cross section of this trifoliate part, here taken

in the basal plane (I'KM) of the Brillouin zone, is
shown shaded in the insert of Fig. 2. Before turn-

ing to our model of this surface, it will perhaps
be helpful to make a few general remarks about
the orbits it can support.

We recall that in any plane perpendicular to an
applied field B the effect is to move the represen-
tative points around the cyclotron orbit. If the
dynamical low-field condition prevails for the or-
bit (i.e., if wT< 1 in the usual nomenclature?),
then during the electron’s mean free lifetime the
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FIG. 3. Kohler plot showing the variation of the total
transverse magnetoresistance Ap =p (B, T)=p(0,7)
with field and temperature. Since it is impracticable to
label each point with its temperature of measurement,
the few chosen are some of those obtained at 2.0 T since
these data form the basis of the arguments in Sec. VI.

representative point is able to complete only a
short segment of the total orbit (such as x=7y or
p—g¢q in Fig. 2). In the high-field condition (w7
>1), on the other hand, the representative point
will complete many full cyclotron revolutions dur-
ing the electron’s lifetime (as around the entire
perimeter of the shaded area in Fig. 2). Frequent-
ly the experimental circumstances are such that
cyclotron orbits in both the high- and low-field
conditions coexist on different planes drawn
through the Fermi surface perpendicular to -1§,
and we shall call this the intermediate-field con-
dition for the experiment. For an orbit like that
shaded in Fig. 2, the net curvature of the com-
pleted segment of the orbit is of vital significance
to the electron’s overall response in the applied
field. For example, in Fig. 2 the segment p =~ ¢
includes a section having a curvature such that
the electron’s net rotation about B is in the direc-
tion expected from a positively charged particle,
while the segment x =y is to a first approximation
equivalent to part of the orbit of a free electron of

equivalent energy (shown dashed), and so the elec-
tron represented by this segment will during its
lifetime have the usual response expected from a
negatively charged particle.

Consequently, in the low- and intermediate-field
conditions a hole surface like that of Fig. 2 can
support orbital segments of both electronlike and
holelike character. Both types contribute to the
conduction parallel to the basal plane, and the Hall
effect (which is odd in the sign of the charge carri-
er) reflects the balance between their contributions
when summed over all planes perpendicular to B.
A change produced in the mean length of the seg-
ment traced out on such an orbit will generally
alter the relative amounts of electronlike and hole-
like response, and so will be manifested in the
Hall effect. For example, suppose that the effect
of a change in the mean relaxation time of an or-
bit is to extend a segment like x—~ y into one say
x=¢q; then the net response of the electron will be
changed from electronlike to holelike. (The sec-
ond-zone hole surface in Al provides a prominent
example of this mechanism; it dominates the met-
al’s Hall effect, which consequently switches from
electronlike in the low-field condition to holelike
in the high-field one. Forsvoll and Holwech!® first
pointed out this interpretation, while Boning et al.!!
and Douglas and Datars'? have since elaborated
upon it.)

To accommodate these features in a semiclassi-
cal path-integral calculation of the galvanomagnet-
ic tensor, we have used a single, cylindrical sheet
of Fermi surface having the cross section shown
in Fig. 4. As we pointed out in Sec. I, in this par-

(b)

FIG. 4. Section through the sheet of cylindrical Fermi
surface that is used in the path-integral calculation of
the resistivity tensor. Here we show the section in the
basal plane KM of the Brillouin zone. The solid lines
represent in (a) the giant cyclotron orbit available to an
electron able to undergo scattering between the orbit’s
pieces at the points A,B, ..., F. In (b) the solid line
represents the hole orbit produced where interpiece
scattering is not permitted, corresponding to the clover-
leaf orbits of Fig. 2.
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ticular case, where the electron motion is con-
fined to the basal plane, a single hole sheet is
sufficient to describe the electronic motion be-
cause the electrons on the lens are so ineffectual
in the total electron flux that they can be neglected.
The orbit shown in Fig. 4 is therefore used to imi-
tate the dynamics of the electrons on the second-
zone monster hole surface whose cross section in
the basal plane is shown more realistically in Fig.
2. We shall see that three distinguishing features
of the trifoliate surface’s cross section (shaded

in Fig. 2) must be possessed by the chosen model
before it can qualitatively imitate the observed
field and temperature dependences of the magneto-
resistive tensor. These features are electronlike
segments of moderate curvature (such as x—=y in
Fig. 2), holelike segments of high curvature (as
p=q or that labeled H in Fig. 2), and electronlike
segments of high curvature (as that labeled E).

We see below that these features are sufficient to
give a qualitatively correct interpretation of the
observed magnetoresistive tensor, and it is not
necessary to have an exact geometrical replica of
the trifoliate cross section.

Following the method introduced by Falicov and
Sievert,'? later modified by Young et al.” to include
intersheet scattering, we approximate the cyclo-
tron orbit in the basal plane of the monster sur-
face by six contiguous circular pieces (labeled
AB,BC, ..., in Fig. 4) each divided into three
arcs (numbered in Fig. 4). We assume explicitly
that magnetic breakdown does not occur in this
application (our maximum applied field is 2.0 T,
compared with 3.5 T at which breakdown in the
basal plane of Cd is first observed). Interpiece
scattering between channels’ is permitted only at
the six points A, B, ..., F, corresponding to transi-
tions like p =p’ of Fig. 2. (We prefer the term
“interpiece” scattering when referring to the mod-
el of Fig. 4 since it emphasizes that the scatter-
ing is between pieces of an orbit on the single
sheet of the model Fermi surface.) These so-
called “hot spots” represent the initial and final
wave vectors of small-angle scattering processes
that happen to start and finish on different but ad-
jacent areas of the Fermi surface. The probability
that an electron will make such an interpiece tran-
sition between any of these points is say @, which
we take to be given by Young’s two-channel expres-
sion®

(1)

Q:1—05[1+§:2223Q;33]‘

1-0.50l(1 -

Here w is the cyclotron frequency of the orbit in
question, and x=-1/wIl. This is a particularly
convenient characterization of the interpiece mech-
anism since it involves just a single parameter II,

which is the typical scattering time for the two-
channel process. The corresponding probability
that an electron will undergo a Bragg reflection
at any of the six points A, B, ..., F, and so will
remain on its incident part of the Fermi surface,
is thus 1 - @ (=P, the “interchannel scattering
probability”). The solid lines in Fig. 4 represent
the cyclotron orbits of an electron (a) with inter-
piece scattering (leading to a giant electronlike
orbit shown dotted in Fig. 2) and (b) without inter-
piece scattering (giving a hole orbit representing
the shaded trifoliate section in Fig. 2).

The effect of such interpiece scattering is in-
cluded in the calculation™ as a matrix M, where
the element M,, is the probability that an electron
which goes to the xth piece of cyclotron orbit will
have come from the yth. M is here the matrix
=
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The need to divide each orbit piece into three
arcs (Fig. 4) arises in an attempt to overcome a
fundamental weakness of this free-electron ap-
proach to the evidently non-free-electron conduc-
tion in the basal plane of Cd. To see this weak-
ness, consider the cyclotron orbit shown as a sol-
id line in Fig. 4(b), which we recall is the case
with negligible interpiece scattering. In the high-
field condition this is a hole orbit, but in the low-
field condition it can support both electronlike and
holelike conduction responses depending on wheth-
er points such as AD,EB, etc., are traversed dur-
ing the electron’s lifetime between momentum-
changing collisions. The net low-field response
of the orbit is electronlike, however, because of
the overwhelming contribution from its free-elec-
tron pieces F~ A, D—~E, and B— C (just like
the second-zone hole surface of Al described
above.) This heuristic interpretation is confirmed
by path-integral calculations, although it hardly
seems worth repeating the details here.'* Briefly,
an orbit like that in Fig. 4(b) [or that of Fig. 5(a)
in Ref. 7] has a negative element 0,, in the mag-
netoconductivity tensor when w7>>1; its only possi-
ble response in the high-field condition is thus that
of a hole orbit. But in the low-field condition,
when w71, 0,, is positive, showing the orbit’s
net electronlike response in that case. Hence the
response of an orbit like that of Fig. 4(b) changes
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monotonically from holelike to electronlike as w7
is varied over the appropriate range, and this is
exactly what we see reflected in the Hall effect of
Al. Since the low-field response of the orbit in
Fig. 4(b) is electronlike, it means that, without
further modification, the entire model shown in
Fig. 4 is inapplicable to this case of Cd because
we know from Fig. 1 that, in the absence of ap-
preciable interpiece scattering, the basal-plane
conduction is holelike over the whole temperature
range up to the melting point.

We can overcome this difficulty by introducing
(after Douglas and Datars'®) a relaxation-time
anisotropy into the path-integral calculation.
Hence we need to divide each orbit piece in Fig.

4 into three arcs, for the Appendix describes how
an arc-dependent electron relaxation time is in-
troduced through the expression 7(k)=b,7, where
b, is the anisotropy coefficient for the pth arc and
7 is a parameter that characterizes the relaxation
time for the orbit. It is shown in the Appendix that
b, is related to a parameter a,, which character-
izes the radius of curvature of the pth arc in k
space, by a,/b,=c,. (Douglas and Datars'? have
called c, the “transport anisotropy” parameter.
Throughout the present work it was fixed at unity
for all arcs.) We can increase or diminish the
contribution of the pth arc to the magnetoconduc-
tivity tensor by choosing an appropriate b, value
(and hence a, value since c,=1) and by a suitable
choice of the arc’s initial and final azimuth phase
angles (a, and B, of the Appendix). By making b,
on arcs 2, 8, and 14 of Fig. 4(b) very small rela-
tive to the rest, and by increasing the phase angle
(B, — a,) of these arcs at the expense of their con-
tiguous neighbors, we restrict the contributions
of these electronlike segments and so render the
orbit’s response more holelike in the low-field
condition. In this way we are able to diminish the
free-electron-like response of the unrestricted or-
bit—even to the point of producing a holelike re-
sponse from the orbit in the low-field condition—
and so make the model more appropriate to the
case under consideration.

This same contrivance has a second effect. By
making b, very small on arcs like 2, 8, and 14 of
Fig. 4(b) we have made the effective curvature of
these arcs correspondingly larger than the rest
(since ¢, is unity throughout). Thus we effective-
ly introduce into Fig. 4(b) the remaining of the
essential features described above: the high-cur-
vature electronlike segments corresponding to E
in Fig. 2. Figure 4 is therefore a picture of the
orbit in y space (of the Appendix), but in ordinary
K space it would show different curvatures for
arcs having different a, values. With b, (and hence
a,) chosen in the above fashion, the orbit of Fig.

4(b) has not only the potential to be holelike in

the low-field condition, it has in addition the three
essential features described above. Thus arcs 1,
3, 13, 15, 7, and 9 represent the electronlike seg-
ments of modest curvature, arcs 2, 8, and 14
represent the electronlike segments of high curva-
ture, and the cusps AD, EB, and FC represent

the holelike segments of high curvature.

IV. MODEL RESULTS AND DISCUSSION FOR PURE Cd

All the calculations are made with the model of
Fig. 4 using an azimuth angle (8 - a of Fig. 11) of
58° for arcs 2, 5, 8,...,17, and 1° for the rest.
The relaxation-time anisotropy b,assignedtoarcs
p=2,5,8,...,17 is specified in the following for
each case considered, but for the rest of the arcs
it is fixed throughout at unity. We recall that the
transport anisotropy parameter c, (Appendix) is
also fixed at unity for all ares p=1,2,...,18. The
only other variables in the calculation are two tem-
perature-dependent quantities: the interpiece scat-
tering time II, which leads to the interpiece scat-
tering probability through Eq. (1), and the char-
acteristic relaxation time for the orbit 7, which
specifies the local arc-dependent quantity 7(K)
=b,7. For the former we have used throughout
the values given in Fig. 5, where II varies mono-
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FIG. 5. Temperature dependence of the Young et al .
“intersheet scattering time” [II of Eq. (1)) that is used
throughout to describe the probability of scattering be-
tween pieces of the orbit in Fig. 4. The figure also
shows the corresponding values of @ of Eq. (1) obtained
in an applied field of 2.0 T.
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tonically between 1.3x10-'* sec at 1°K and 1.7
x10-° sec at 30 °K. This arbitrary range was
chosen to match what is thought to be the physical
situation” where the interpiece scattering probabil-
ity is a maximum!® at the lowest temperature

(@ =0.52 at 1°K for B=2.0 T) and becomes neglig-
ible above about 20 °K (@ ~1x10~* at 30 °’K for B
=2.0 T). Figure 5 shows the full range of @ given
by Eq. (1) for B=2.0 T. Note that the mid-range
value of @ (corresponding to a 50% chance of inter-
piece scattering) occurs at about 6 °K for B=2.0 T.
For the temperature dependence of the relaxation
time 7, we have used the variation shown by curve
1 in Fig. 6. This is again a somewhat arbitrary
choice based upon what are thought to be realistic
assumptions. We follow previous practice’ and
assume a relaxation time of the form 1/7=R +ST",
where R and S are obtained from experimental
data. Taking Hambourger’s result!’ that n=3 for
an orbit on the monster, and using our previous
data for the resistivity for Cd monocrystals pre-
pared in identical circumstances,!® leads to the
dependence 1/7=(8.68 +0.457%)x 10° sec~! shown
by curve 1 in Fig. 6.

Figures 7(a) and 7(b) compare the observed and
calculated temperature dependences of the Hall
resistivity for the illustrative cases when B=2.0
and 0.1 T. (The corresponding behaviors found
for other field strengths in this range vary syste-
matically between the cases illustrated and seem-
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FIG. 6. Temperature dependence 7(T') of the average
relaxation time around the orbit of Fig. 4 that is used
in the calculations. Curve 1 is the form used for pure
Cd, where 1/7=R +ST? as described in the text. Curves
2 and 3 are the forms used in the calculations for the
alloys described in Sec. V. It is described how their
choice is based upon the observed p;(T) shown in the
insert. Curve A is the observed p;(T) for Cd+330-at.-
ppm Zn and B is that for Cd +93-at.-ppm Zn. Corres-
ponding values for pure Cd are given in Ref. 18.
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FIG. 7. Comparison of the measured and calculated
p,1(T) for pure Cd in the applied fields shown (a) Ex~-
perimental data from Fig. 2; (b) corresponding results
from the calculation outlined in Sec. IV. The variations
A, B, and C correspond to the choices of b, (T') labeled
in Fig. 8 and illustrate the sensitivity of the calculation
to a small change in the anisotropy of the relaxation
time. (c) The effect of varying the interpiece scatter-
ing when B=2.0 T. Curves 1— 4 represent increasing
interpiece scattering, while curve 5 shows the behavior
when the scattering is turned off. .

ingly do not warrant special consideration.) In
addition to the temperature-dependent IT and 7
values defined in Figs. 5 and 6 (curve 1), respec-
tively, the calculation also uses the temperature-
dependent anisotropy b, (=2,5,8,...,17) shown
in Fig. 8. The gross range of this parameter is

0.04

0.02

ANISOTROPY by

| 1 |
0] 10 20 30
TEMPERATURE (%K)

FIG. 8. Temperature dependence of the anisotropy
parameter b, [where 7(k)=b, 7;p=2,5,8,...,17 used
throughout the calculations. The curves A, B, and C
are alternative behaviors that are chosen to represent
the transition from an impurity-dominated to a phonon-
dominated range of temperature.
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chosen to reduce sufficiently the free-electron con-
tributions of the orbit (Sec. III), so that its low-
field response in the temperature range of interest
is holelike, while the proposed variation of b, with
temperature is designed to represent the division
between the phonon-dominated and impurity-dom-
inated ranges. Thus as the temperature is re-
duced from 30 °K, we let b, increase to simulate
the lengthening lifetimes on arcs 2,5,8,...,17
(Fig. 4) as the umklapp processes originating on
them are cut off because of the elimination of the
higher -energy phonons in the energy spectrum.
(This mechanism, first proposed by Ziman'® in
connection with the “belly” areas of the group-1B
metals, is believed to have an important influence
on the Hall effect of many metals®® in the approxi-
mate range 10-70°K.) Ultimately, however, a
temperature is reached (about 6 °K in this case?!)
below which the scattering is increasingly influ-
enced by the residual impurity with its particular
and unknown anisotropy. To simulate this, and to
illustrate the sensitivity of the calculation to the
anisotropy parameter, we have considered separ-
ately the three dependences shown in Fig. 8. The
influence of these alternatives is shown for B

=2.0 T in Fig. 7(b). (A corresponding but less
prominent behavior is also found for B=0.1 T,
although not shown.) The curves A, B, and C
correspond to the choices of b,(T) so-labelled in
Fig. 8. Clearly, the low-temperature results
from the model are quite sensitive to the aniso-
tropy parameter —a realistic feature that reflects
the known sensitivity of p,, to traces of different

" impurity®**—and give best agreement with experi-
ment when the form B of Fig. 8 is used to describe
the impurity-dominated range.

Assuming for b,(7T) the behavior B of Fig. 8
leads to the results shown as solid lines in Fig.
7(b). These replicate—qualitatively, at least—
the gross features observed experimentally over
the same temperature range [Fig. 7(a)]. In high-
er applied fields p,, (7) shows two local positive
maxima centered at about 10 and 20°K, and a
sharp transition to negative values as the lowest
temperatures are approached. As the field
strength is reduced, these features become in-
creasingly insignificant, and have disappeared
for B=0.1 T. The most striking discrepancies
with experiment are the pronounced dip to nega-
tive values at about 15°K (B=2.0 T), and the nega-
tive sign calculated for p,, over most of the tem-
perature range in the lower applied field [ Fig.
7(b)]. Both of these discrepancies stem from the
inherent free-electron nature of the unrestricted
orbit of Fig. 4(b), already referred to in Sec. III.
Further juggling of the chosen b, and azimuth
angles subtended by arcs p=2,5,8,...,17 could

undoubtedly reduce these discrepancies, but it
hardly seems worth the cost of further computa-
tion with such a basically crude model. As it
stands it is adequate for our purpose, which is
to derive a qualitative interpretation of the data
shown in Figs. 1 and 2.

Consider the p,,(T) shown in Fig. 7(b) for B
=2.0 T. We recall that at the highest tempera-
tures the calculation permits essentially no inter-
sheet scattering, so the orbit of Fig. 4(b) is there-
fore the appropriate description. As the tempera-
ture is reduced from 30 °K, there is a shift to-
wards the more holelike response that an orbit
like Fig. 4(b) shows as its effective value of w7
increases (as described in Sec. III). For a con-
tinuing reduction in temperature, however, the
chosen b,(T) (Fig. 6) eventually produces the re-
verse tendency. Our calculations suggest that it
is the high-curvature electron segments we have
created on arcs like 2, 8, and 14 of Fig. 4(b) that
are important in producing this feature. This
electronlike tendency becomes dominant below a
sufficiently low temperature (~22 °K) and p,,(7)
then begins a marked tendency towards more nega-
tive values. This would continue as w7 is in-
creased if it were not that ultimately the entire
orbit must enter the high-field regime, and there
its response can only be (Sec. III) that of a hole
orbit. [The effective w7 values when B=20T
for the orbit of Fig. 4(b) are typically 77 at 1°K,
2.9 at 8°K, 0.9 at 12°K, and 0.06 at 30 °K; the
corresponding value of w7 for the giant electron
orbit of Fig. 4(a) at a given temperature is ap-
proximately half that for the orbit of Fig. 4(b).]

Superimposed upon these features is the effect
of the interpiece scattering. This can be judged
from Fig. 7(c), which shows for B=2.0 T the re-
sults of varying amounts of such scattering.
Curve 1, which is reproduced from Fig. 7(b), is
the result obtained with II(T) given by Fig. 5, 7(T)
given by curve 1 of Fig. 6, and b, given by curve
B of Fig. 8. Curves 2, 3, and 4 correspond to
the same conditions except that the interpiece
scattering time is taken to be, respectively,
(7T)/2, I(T)/4, and II(T)/10; thus curves 1—4
correspond to increasing interpiece scattering at
any temperature. The effect of such an increase
is clearly to decrease the high-field contribution
from the hole orbit of Fig. 4(b): Increasing inter-
piece scattering means an increasing contribution
from the giant electron orbit of Fig. 4(a) at the ex-
pense of the alternative in Fig. 4(b), and the con-
tinuing reduction in temperature takes the giant
orbit itself towards its high-field limit. [Hence
the sharp swing to negative values of p,,(7) pro-
duced by the interpiece scattering.”] Finally,
curve 5 is the result when the interpiece scatter-
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ing is turned off completely for all temperatures
(Q is set to zero in the matrix M of Sec. III). The
local maximum at about 20 °K is not affected—as

is expected since the interpiece scattering plays
no part in its origin—but the transition to the high-
field condition is now clearly delineated since the
competing electron contribution from the giant or-
bit of Fig. 4(a) has been removed.

V. MODEL RESULTS AND DISCUSSION FOR CdZn

Although we have not attempted a systematic
study of the effects of different solutes, it is worth
noting the results shown in Fig. 9 for Cd contain-
ing Zn, since they provide a further indirect test
of the above model and its interpretation. Curve 1
of Fig. 9(a) is the behavior of p,,(7) measured in
pure Cd when B=2.0 T [as in Fig. 7(a)]; curves 2
and 3 are, respectively, the corresponding behav-
iors measured for alloys containing 350- and
93-at.-ppm Zn. Figure 9(b) shows how the model
described in Sec. IV can reproduce these effects.
Curve 1, which is repeated from Fig. 7(b), is the
result obtained for pure Cd using the parameters
defined in Sec. IV [in particular, the 7(T) used
for this case is the variation 1 of Fig. 6]. Curves
2 and 3 of Fig. 9(b) are the results obtained from
an identical calculation except that the 7(T) is now
replaced by the variations 2 and 3 of Fig. 6, re-
spectively. [These 7(T) variations are chosen in
the following way: 7(1.7 °K) for each alloy is de-
termined from the ratio 7(Cd)/7(alloy) =p,,(alloy)/
p,:1(Cd), using the data shown in the insert to Fig.
6. The extent of the temperature-independent
range of 7(7) is read directly off the p,,(T) curve,
and its upper end is then joined by a smooth curve
to the background phonon variation.]

Figure 9 shows that, using a plausible 7(T), the
model can reproduce the qualitative features ob-
served experimentally for p,,(7T) when the solute
is added. Since the applied field is kept fixed, any
solute addition shifts the theoretical condition for
a given temperature away from the high-field lim-
it. Consequently, the high-field contributions
from both the hole ortit [Fig. 4(b)] and the giant
electron orbit [Fig. 4(a)] are reduced, which
means that both the local maximum in p,,(7) seen
at about 10 °K, and the strongly negative tendency
seen at the lower temperatures, are reduced by
the solute. A sufficient addition renders p,,(T)
to a behavior not unlike that observed for pure
Cd in the lowest applied fields, where vestiges of
high-field behavior are of course suppressed.

Two discordant features seen between the ob-
served and calculated p,, (7) for the most-concen-
trated alloy (curves 3 of Fig. 9) deserve comment.
The first is that in the approximate range 14-22°K
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FIG. 9. Comparison of the (a) observed and (b) cal-
culated p,(7) at B=2.0T for Cd (curve 1) and Cd con-
taining mean values of 93- and 330-at.-ppm Zn (curves
2 and 3, respectively). (Analyses of the top and bottom
of each sample gave ranges of 87—98 and 310-349 at.
ppm.) The orientations of B and J are as defined in
Fig. 2. The residual-resistance ratios (Ry50x /R 7o)
of the samples are 25 600 (curve 1), 5780 (curve 2),
and 1112 (curve 3). Identical parameters are used for
the calculations shown in (b) except for the chosen 7(7)
shown in Fig. 6.

the calculated p,,(7) is more positive than either
of the other less-concentrated cases. The second
is the marked tendency of p,,(7) to more positive
values as the temperature is reduced below about
10°K. Both of these details are connected with
the particular anisotropy b,(7T') assumed for the
calculation. In Fig. 9(b) we have for simplicity
let b,(T) be fixed throughout as the variation B

of Fig. 8, but this assumption may be too gross
since Zn could well have a distinctive scattering
anisotropy that is quite different from that of the
unknown dominant impurity in our pure Cd. The
sensitivity of the calculations to this parameter
has already been shown in Fig. 7(b), and no doubt
improvements could be made to the calculations
in Fig. 9(b) by introducing a different 5,(7), but,
just as in the case of difficulties discussed in Sec.
IV, we feel that here the present model is adequate
for our qualitative requirements.

VI. CONCLUSIONS

Figure 10 shows schematically the salient fea-
tures of p,,(7T) observed for Cd in the temperature
range below about 30 °’K. The solid line AF rep-
resents what can be called the low-field or back-
ground behavior seen when essentially none of the
contributing orbits are in the high-field condition.
(This is typically that of Figs. 1 and 2 when B
=0.1 T.) Superimposed upon this background are
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FIG. 10. Schematic diagram showing the salient fea-
tures in the temperature dependence of p, (T) seen in
the temperature range of Fig. 2. Curve AF represents
the background or low-field dependence (as when B
=0.1 T in Fig. 2), while superimposed upon this are
singular features, like C and D, which arise when par-
ticular topological features manifest themselves in the
high-field conditions (as when B=2.0 T in Fig. 2). At
E we have the closest approach to the high-field limit
possible in the experimental circumstances.

singular features that arise from contributing
cyclotron orbits rendered to the high-field con-
dition during the experiment. We turn first to the
low-field behavior AF.

As the temperature is reduced below about
100 °K the conduction is at first increasingly dom-
inated by holelike carriers (a feature that is most
pronounced below about 50 °K). It has been sug-
gested!®2° that this pronounced feature (which is
also seen in other metals®®) arises from the
“freezing out” of wide-angle scattering events
from umklapp processes as the higher-energy
lattice vibrations are extinguished. Support for
this suggestion in the present context comes from
the temperature dependence of the electrical re-
sistance in zero applied field, p,,(0, ), which
shows a linear behavior down to about 50 °’K. Be-
low this temperature?! there is a clear shift to-
wards the usual 7° dependence, indicating the be-
ginning of the Bloch regime as the higher-energy
phonons are frozen out. This temperature is seen
(Fig. 1) to coincide closely with the onset of the
tendency towards increasingly holelike behavior
shown by p,, (7). But it is not evident from the
free-electron model of Secs. IV and V why this in-
itial tendency in Cd should be towards more hole-
like behavior, for one would expect a preferential
lengthening of the relaxation time to occur first
on segments of the Fermi surface that are furth-
est removed from Brillouin-zone boundaries, and

these are just the most free-electron-like parts

of the surface (like the regions covered by x—y

in Fig. 2). Whatever its physical origin, however,
this positive tendency is overcome by a tendency
towards electronlike behavior as the temperature
is reduced, and the result is a localized maximum
in p,,(7) at about 15°K (AF of Fig. 10). Judging
from the calculations described in Fig. 7(c), inter-
piece scattering does not figure prominently in
forming this particular feature, although it may
reinforce the tendency towards more negative
p,;(T) seen at the lowest temperatures even in

the low-field data. (We have described in Sec. IV
how in the model calculations the tendency to elec-
tronlike behavior is produced by a judicious choice
of parameters that emphasises the contributions
from segments like E in Fig. 2.)

The singular features that appear superimposed
upon this low-field behavior when the applied field
strength is increased sufficiently are of course
most pronounced in the data obtained at 2.0 T
(Figs. 1 and 2), which we therefore use for illus-
tration (Fig. 10). Our suggestion is that these fea-
tures (D and C of Fig. 10) are simply the high-
field manifestation of two competing mechanisms
already outlined. Thus D, the sudden upswing to-
wards a marked domination by holelike carriers,
arises when w7 for the clover-leaf orbit (i.e.,
around the shaded area of Fig. 2) approaches
unity. (We described in Sec. IV how in the model
calculations w7 for this orbit passes through unity
in the interval between 8 and 12 °K.) When this is
so, any completed segment on the orbit is long
enough so that inevitably several of the clover
leaf’s tips (H of Fig. 2) are traversed during the
electron’s lifetime, so that the contribution to o,
from the orbit’s strongly electronlike segments
(E of Fig. 2) are outweighed. In other words, as
the temperature is reduced and the completed or-
bital segment is continuously lengthened, short
electronlike segments like x—=y in Fig. 2 become
very improbable in these circumstances; longer
segments, which encompass several tips of the
clover leaf and are therefore holelike, inevitably
prevail as the high-field limit is approached.

This qualitative argument is supported by the
field dependence observed for the transverse
magnetoresistance (Fig. 3). At 2.0 T in the tem-
perature range down to about 34 °K the magneto-
resistance shows the quadratic field dependence
associated with the low-field condition. Then in
the approximate range 11-34 °K it shows a roughly
linear field dependence as it passes through the in-
termediate-field region, and finally reverts below
about 10.5°K to the quadratic dependence. This
last behavior indicates” the onset of the prevailing
high-field condition for this compensated metal
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(which has only closed cyclotron orbits in this cir-
cumstance; the breakaway from this quadratic be-
havior below about 5.5 °K seen in Fig. 3 is a separ-
ate effect connected with the high-field appearance
of interpiece scattering that is discussed below).
Reference to Fig. 2 shows that when B=2.0 T,
10.5°K coincides closely with the onset of what

we propose is the high-field contribution from the
trifoliate surface. Thus our argument is supported
by the separate and empirical criterion for high-
field behavior which the magnetoresistance pro-
vides. Furthermore, when the same comparison
is made between the data of Figs. 2 and 3 obtained
at other field strengths (viz., 0.2-1.5 T), the
same agreement is found; that is, the onset of the
high-field condition indicated by Fig. 3 occurs in
each case®? at a temperature close to that seen in
Fig. 2 which marks the swing to pronounced hole-
like behavior.

Finally, there remains the feature C of Fig. 10.
This behavior is the manifestation of the “inter-
sheet scattering” in the high-field condition, as
previous authors have already emphasized.?-”
Briefly, as the clover-leaf orbit in a given plane
perpendicular to B is rendered to the high-field
condition so that a representative point makes
numerous complete revolutions of it in the elec-
tron’s lifetime, so those points which choose the
alternative channel (like p =’ in Fig. 2) will be
able to traverse an equivalent path length along
their essentially free-electron orbit formed as
shown dotted in Fig. 2. Thus as w7 for the clover-
leaf orbit is increased, so eventually the high-
field condition will be reached for this giant free-
electron orbit. (For this to happen obviously re-
quires a minimum w7 value sufficient to produce
at least two complete revolutions for the clover-
leaf orbit in the electron’s lifetime, since one
complete revolution of the dotted orbit requires
about six traverses of a leaf’s “face.”?3) Once
the giant orbit attains the high-field condition its
contribution is equivalent to that of a fictitious
electron surface, and the metal’s compensation in
the plane is destroyed. Hence the marked swing
towards electron-dominated behavior in the Hall
effect®~" (C of Fig. 10), and the sharp breakdown
of Kohler’s rule (Fig. 3). As the temperature is
reduced at a fixed field, this tendency seen in the
Hall effect is maintained as long as w7 continues
to increase and the conditions continue to approach
the high-field limit. But eventually the residual-
resistance range is reached and there the balance
between holelike and electronlike contributions
tends to a temperature-independent value (E of
Fig. 10).

It should be noted that where we refer to the
prevailing field condition in an experiment we

have tried to avoid recourse to values of w7 cal-
culated from free-electron theory. (This con-
trasts with other approaches which have been
made.*~®) For a metal like Cd, we maintain that
such numbers, if they are not completely irrele-
vant, are at best misleading. The appropriate
test for a prevailing condition in a galvanomag-
netic effect is an empirical one, such as the be-
havior of the magnetoresistance (Fig. 3) or of the
Hall effect itself (Fig. 2). For example, in a ap-
plied field of 0.1 T and with a residual resistance
ratio (R,,q ox/Ry,ox) of 18500, the free-electron
w7 value of the sample described in Fig. 2 be-
comes® greater than 1 for temperatures below
about 7°K. But obviously this is not a sufficiently
sensitive criterion for high-field behavior, for
there is no evidence at 0.1 T of any significant
contributions from the high-field singular fea-
tures, and in fact there is only slight evidence of
them even when B=0.2 T (which at 4.2 °K gives
wT=13).

We now turn to the implication of our interpre-
tation for the behaviors of p,,(B, T) that had been
reported®~ for Cd containing very small amounts
of solute. In particular we shall consider the con-
clusion by Lilly and Gerritsen? that “intersheet
scattering” cannot account for their observation
that a concentration of Ag of In as low as a few
parts per million by weight will render p,,(7) to
a positive, temperature-independent value at the
lowest temperatures.

From the discussion of Secs. IV and V it is seen
that the effect of progressively adding electron
scattering sources such as foreign atoms, will be
eventually to prevent the clover-leaf orbits from
achieving the high-field condition in the circum-
stances of the experiment. In other words, the
electron’s mean free lifetime will be reduced to
the point that the combinations of applied field
and temperatures which are available will be in-
sufficient to produce the feature D (and hence C,
since a high-field trifoliate surface is a prerequi-
site for a high-field giant orbit) of Fig. 10. For a
sufficiently high solute concentration, a behavior
of the low-field type AF of Fig. 10 will therefore
be observed. This is not to say that the addition
of the solute has either inhibited or enhanced the
amount of intersheet scattering.?~* It simply
means that the high-field manifestation C of the
scattering cannot be made evident during the ex-
periment and we are left simply with its low-field
manifestation, which is embodied in the behavior
AF as explained in Sec. VI.

Since the low-field Hall effect is determined by
a summation involving the electron’s velocity, ef-
fective mass, and anisotropic relaxation time at
every point on the Fermi surface, the actual posi-
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tion of F will depend upon the scattering aniso-
tropy of the dominant scattering mechanism—here
presumed to be the solute. But providing the so-
lute concentration is small enough that effects
such as solute-solute interaction and lattice-pa-
rameter changes can be neglected, the low-tem-
perature Hall effect (as at F in Fig. 10) tends to

a value independent of concentration and tempera-
ture.?*

Although the range of solute concentrations
studied by Gerritsen and his students®** is not
wide enough to establish with certainty the con-
centration-independent value of F (Fig. 10) for
each of the solutes, it is clear from his data that
the most-concentrated alloys give the behavior
AF appropriate to the low-field condition. (How-
ever, it seems safe to predict from the observed
tendencies that the low-temperature value of p,,
will in fact be positive for the Cd-Ag, Cd-In, and
Cd-Zn systems.) This appearance of a constant
p,.(T) at the lowest temperatures when a little
solute is added, which posed problems of inter-
pretation, is seen to be rather the expected be-
havior in terms of our foregoing arguments. In
fact some of the most dilute alloy samples (for
example, CdIn-9 or CdIn-4 of Ref. 4) show the
approach to this low-field behavior AF of Fig. 10
as the features C and D are progressively re-
duced. Since these features are competitive con-
tributions to p,,(7), and since they are not neces-
sarily extinguished at the same rates as solute
is added, it is clear that the net behavior of p,,(T)
for extremely dilute samples is not necessarily a
monotonic dependence upon the solute concentra-
tion. For example, Lilly and Gerritsen® find for
a Cd-Ag series of alloys that upon the smallest
addition of Ag the temperature-independent value
of p,, is first sharply increased to a positive value
but then subsequently decreases as further solute
is added. (We would maintain that this decrease
is the approach to the concentration-independent
low-field value.) This is said to be incompatible
with intersheet scattering, but it is clearly possi-
ble in terms of our interpretation. If the effect of
the electron scattering by Ag is more pronounced
for the giant electron orbit than for the clover-
leaf ones, the feature C of Fig. 10 will initially
be extinguished more rapidly than D. Eventually
when enough solute is added, D will also be ex-
tinguished, but the net effect for the region F will
be the dependence upon solute concentration seen
by Lilly and Gerritsen. Indeed, this dependence
could turn out to be the normal behavior of p,, (T)
at low temperatures, for the range and spacing of
the different concentrations studied in the Cd-Zn
and Cd-In systems®'” are insufficient to rule out
with certainty this possibility.
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APPENDIX

The path-integral calculations follow closely
the method already outlined by Douglas and
Datars'? that, in turn, is based upon the matrix
approach of Falicov and Sievert.!* At the heart
of the calculation is the fact that the magnetocon-
ductivity tensor 0;; arising from a cyclotron orbit
divided into pieces in the manner of Fig. 4 can be
written in terms of certain integrals. The differ-
ential form of this is

doi;(k;) _ _mge?
dk' 41r3h2w0 all orbits  all

> BipDi+CH,

pieces
(A1)

where 0;; is defined with respect to a right-handed
set of axes having the applied field B along the z
direction, and dk, is the thickness of the slice con-
taining the plane k,=const in which the orbit is
located in K space. B!, D), and C!/ are the piece
integrals [Egs. (2)-(4) of Ref. 15] of the gth piece.
Each orbit piece is divided into N circular arcs.
The general pth arc is specified by the following
six arc-dependent parameters's (refer to Fig. 11).
First, a, and 8, are the initial and final values of
the geometrical azimuth variable y over the arc.
For convenience, y has replaced the phase vari-
able’ 4 in the standard expression for the conductivity
tensor®®; thus 6 =a,y, where a, =7k} /myv?. a,isthus
related to the radius of curvature &} of the pth

B

ky Ky

PLAN ELEVATION

FIG. 11. Geometrical parameters described in the
Appendix that are used to specify a general arc of a
circular cyclotron orbit in phase space. ¥y is the geome-
trical azimuth phase that varies between its initial and
final limits, o and B. ¢ is the colatitude angle, and is
m/2 in the case of our cylindrical Fermi surface. v ¢ is
the Fermi velocity.
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arc in the plane k, = const of K space (Fig. 4).
Second, ©¥ and vf denote, respectively, the com-
ponents of the Fermi velocity that are perpendicu-
lar and parallel to the applied field’s direction ﬁ,
with a similar convention for the electron’s wave
vector k. Finally, b, defines the anisotropy of

the relaxation time from arc to arc. Thus 7(k)

on the pth arc is 7b,, where 7 is a parameter that
characterizes the relaxation time for the orbit
containing the arc. The ratio a,/b, is written ¢,
by Douglas and Datars'? and is called the “trans-
port anisotropy.” Throughout the present work
this ratio was fixed at unity for all arcs. Written
in terms of these parameters, the 15 arc integrals
for the pth arc are (where i,j=x,v, 2)

) By
Ay(woT) =a, f dy vi(y) expl(y = By)c,/woT],
%

(A2)
Bi(w,7) =4, J;B' dyvi(y) exp[(a, = ¥)cp/woT],
(A3)
Cilw,T) = [’B’ dy J;y dy’ vi(¥)v,(y")
’ xexpl(y' = ¥)cp/woT] .
(A4)

Because the arc is circular, the evaluation of
Egs. (A2)-(A4) for any arc is straightforward. It
is recalled from Fig. 11 that v (y)=v, cosy, v,
=v, siny, and v,(y)=v,. Substitution into Egs.
(A2)—(A4) reduces each of the 15 expressions to a
standard analytical integral having a known solu-
tion.

The calculation takes the following steps. For
the gth piece of the orbit [such as A- B in Fig.
4(a)], that is itself divided into N arcs, the 15XN
arc integrals of Egs. (A2)-(A4) are determined
from their analytical forms. The corresponding
piece integrals for this gth piece arc then deter-
mined from the recursion relations!® (where pis
again the arc index, p=1,2,...,N, and A,, etc.,
implies the value of the quantlty evaluated up to
the end of the pth arc):

AL=A}_ exp[- (B, — a,)c,/w,T] +AL, (A5)
By=B;_, +Bexp(~ ¢;_,/w,T), (A6)
Cif=Cyl,+Cy+BjA}_,, (AT)

Gp=p_1 +(Bp— ap)c, . (A8)

At this point the piece integrals A, B, and C}/
have been determined for the orbit piece in ques-
tion. B! and C¥ appear directly in the conductivity
[Eq. (A1)] while Af, is required to calculate the re-
maining piece integral D: in the conductivity. This
integral accounts for the electron’s previous his-
tory'2+!5 before it arrived on the current piece of
orbit, and so includes the interpiece scattering
effects. It can be shown'® that if the cyclotron or-
bit consists of n pieces then D} is related to the
piece integrals A! by

Dy '
D: Al
=@ -ME)"M | - (49)
D, Ayl
D; Al
- C "

where I, M, and E (which are all #X»n matrices)
are, respectlvely, the identity matrix, the inter-
piece transition probability matrix (defined in Sec.
III), and the diagonal matrix having elements

Eqr =0 ,exp(— ¢4/w,T)
—éq,exp<z —EL-—QL——> (A10)

With B}, D, and C}/ evaluated for each piece,

the summation of (Bf D} +Ci/) for all n pieces
around the orbit is taken [Eq. (A1)] to give the
orbit’s contributions to the nine components of

the differential conductivity. If there are other
contributing orbits in the same plane &, =const,
then the process must be repeated and the summa-
tion made over the whole plane. Finally, unless
the Fermi surface is cylindrical and has its axis
collinear with B (so that the colatitude angle ¢
=7/2 in Fig. 11—as it was throughout our calcula-
tions), the process must be repeated and summed
over all appropriate planes k,=const in the
Brillouin zone. The accumulated magnetoconduc-
tive tensor is then inverted to give the magneto-
resistive tensor.
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