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Ground state of liquid helium in the Kirkyrood superposition approximation*
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We calculate the ground-state energies and pressures for 'He and (normal} 'He using radial distribution
functions which are solutions of the Born-Bogoliubov-Green-Kirkwood-Yvon (BBGKY} integral equation
with the Kirkwood superposition approximation (KSA} used for the three-particle distribution function. We
compare the BBGKY-KSA results with those obtained from the hypernetted chain equation, molecular
dynamics, and experiment. We conclude that the BBGKY-KSA yields poor results for He but at the lower
'He densities oAers a reasonable approximation to the molecular-dynamics results. The 'He energies are
obtained by means of the statistical cluster expansion of Wu and Feenberg and we discuss the convergence of
the series. Further, we show that the familiar parametrized power-law form used for the pair function yields
pressures consistent with the virial theorem.

I. INTRODUCTION

In the variational approach to the problem of
calculating the ground-state energy of an interact-
ing boson system a useful approximation to the N-
body wave function is the product of pair functions:

N

|)Is= Q exp[-,'u(r, ,)J. (1.1)
g&i~

In Refs. 1-6 we cite some representative art:icles
from the extensive literature pertaining to the use
of g~ in the He problem. The articles basically
fall into two categories: those which introduce an
explicit parametric form for u(r), ' ' and those
which seek to determine u(r) as the solution of an
Euler-Lagrange equation. 4 ' The evident attrac-
tion for the form g~ lies in the formal coxrespond-
ence between the distribution functions which are
generated by p~ and the distribution functions in
the canonical ensemble of classical statistical
mechanics. That is, those techniques originally
developed for the solution of the classical physics
problem can be borrowed for application to the
quantum-mechanical problem. In particular, the
probabilistic Monte Carlo and molecular-dynamics
methods and the solution of approximate integral
equations have found the greatest utility.

If one multiplies )P~ into a Slater determinant of
plane waves and spin functions, one obtains an
overall antisymmetric function suitable for a vari-
ational description of the (normal) ground state of
a strongly interacting fermion system. Ne define
this function (J~ by

QgQ 8 i i( ~ A2i)
i "1

where 8 is t e a tisyr metrizer a d ~,. are spin
functions. P~ is expected to be an adequate de-
scription of 'He for temperatures above the super-
fluid transition 4'-2 mK) but considerably smaller
than the Fermi energy (-5'K). Feenbergv has
estimated that the quasiparticle picture of Landau
for 'He is only valid at temperatures less than
-'70 mK.

The expectation value of the Hamiltonian with
respect to pl~ requires knowledge of the fermion
distribution functions. These distribution functions
have no classical analog; however, Iwamoto and
Yamada' and %u and Feenberg' developed a
cluster-expansion technique for calculating the
distribution functions and, in general, those ex-
pectation values taken with respect to P~. This
expansion is known as the statistical cluster ex-
pansion since it is the antisymmetrizer of Eq. (1.2)
which is approximated. Ineach order of the cluster
expansion the product of pair functions is. kept in-
tact. Thus, order by order one requires only the
boson distribution functions. In particular, by
truncating the cluster series for the energy after
the third term and using approximate forms for
the three-body distribution function one can write
the fermion energy as a functional of the associ-
ated boson two-body distribution function only.

Thus, both boson and fermion energies are de-
termined by the two-body distribution functions
generated by lpt~. In this paper we shall discuss
distribution functions obtained by solving the Born-,
Bogoliubov- Green-Kirkwood- Yvon" (BBGKY) in-
tegral equation with the Kirkwood superposition
approximation"' (KSA) closure and compare them
with distribution functions obtained as solutions of
the hypernetted-chain (HNC) integral equation' and
the molecular-dynamics results of Schlff and Ver-
let. ' In Sec. II we write down the equations which
we shall use and review the method of calculation.
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II. METHOD OF CALCULATION

We consider N particles in a box of volume Q in
the limit that N, 0 —~, while the number density
p=N/0 remains a constant. The system is de-
scribed by a Hamiltonian, 8, where

N

H= — V',.+ p x,~

i =l j&i=1

and the two-body interaction is taken to be a
I ennard-Jones form with the DeBoer-Michels
parameters

(2.1)

and

v(r) = 4~ [(o/r)" —(o/r)'J,

& = 10.22 'K, 0 = 2.556 A .

(2.2)

(2 8)

It is useful to use reduced units, denoted by an
asterisk, where energies are measured in units of
& and lengths are measured in units of cr. Then the
reduced Hamiltonian, H*, is written

1 g g +2+ P g(rg) (2.4)

In Secs. III and IV we discuss the results obtained
for 'He and 'He, respectively, and Sec. V is then
devoted to a discussion of the results. In Appendix
A we discuss the details of the numerical solutions
of the BBGKY-KSA and HNC integral equations. In
Appendix B we discuss a point with regard to the
statistical cluster expansion of the fermion num-
ber density and in Appendix C we give some num-
erical results of the effect on the BBGKY-KSA
energy of adding zero-point phonons to the wave
function.

g„(R;D) —„dft,1 D 1

D, x
(2.11)

I 5, t'dR"=-~x ~f 1 " f a%it dR

end in Particular (f/N)n s= 5(1/R') . The g (R;D)
are Bose or spin-averaged Fermi radial distribu-
tion functions defined by

g„(R„;D)=, ", ' " . (2.18)
~(~ 1) f t)2dR, dR„

lg„l'dB, ' ' 'dR

The fact that the energy can be written in the
form of Eq. (2.10) ha. s the important consequence
that pressures calculated by differentiating F. ~

with respect to volume:

(2.14)

are consistent with the virial theorem. " This is
simply shown by differentiating Eq. (2.10) with
respect to 0 at constant D. Then, using the chain
rule and the fact that b is a variational parameter
one finds

It is straightforward to show that the averages
one needs for the energy E* are functions of D and
the particular statistics only. Thus the energy
can be written in the simple form

4E*(p* q 5) = —— +-
y2 ~ yl2 pl2 y6 g6

D, x D, x D~x

(2.10)

where g stands for Bose or Fermi. The angular
brackets represent averages defined by

7J —= g /B1&(7 (2.5) P*=
~ P (&Kz ~6+ (2.15)

r*=r/o (2.6)

where P* is given by Eq. (2.14) and we have sep-
arated the energy into its constituents:

The quantum parameter q is 0.240S for 'He and
0.1815 for 'He.

We chose the pair function u(r) to have the par-
ametric form

&, = (4/5') (1/R')„„
e |2=( 4b/")(1 /R"), D.

(2.16)

(2.17)

(2.18)

u(r) =-(ho/r)' =-(sir*)'
in both Bose and Fermi systems. For a pair
function with this simple power-law form and a
pair potential which is just a sum of simple
powers, a. scaling procedure is available which
greatly simplifies the calculation of the minimum
energy expectation values. This property was
first used by McMillan' in his study of 'He and can
be simply presented by introducing lengths scaled
in units of bg:

+ Z"'(R D)+ ~ ~ ~
129 ) (2.19)

where

The right-hand side of Eq. (2.15) is the virial-
theorem pressure

The fermion kinetic energy and radial distribu-
tion function are calculated approximately by
using the statistical cluster procedure of %u and
Feenberg. 9 Thus, for gr(R;D) we have

gr(R„;D) = g~(R„;D) + Z '2'(R„;D)

R = r/bo =r*/5, (2.8) Z"'(R,~;D) = ~g g~(R, 2;D) f (y,2), (2.20)
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Dt (R"„;D) g=(R ;D„)( D—f g (R„;D)[h(R ;D„)J l (Y'ld„R, e Dl—(Y„)f g (R ;D„)

X [h(R„;D)] I(Y„)l(Y23) dR
(2.21)

and we have defined the following quantities:

h(R) =g(R) —1,
I(Y„)= 3[sin(Y») —Y» cos(Y»)]/Y»,

Yy2 kg Ry2

k, = (3v'D)' ".

(2.22)

(2.23)

(2.24)

(2.25)

(t/N)n F = 5(1/R )n F+E,F+ERF. +ERF+

where

= 3 2
1F 10' &

(2.27)

(2.28)

1

ERF =20E,F u(2k~)(l —Rx+ 2 x')x dx, (2.29)
0

3
3F 3 1F 8

x 12 (x 12k13) ( 23 D) u(x13 D)

x dx, dx, dx3 y
(2.30)

The nth term in Eq. (2.19) represents the contri-
bution to gF(R) coming from n-particle exchange
in the Slater determinant. In order to evaluate
Z"' the Kirkwood superposition approximation
(KSA) has been used for the three-particle dis-
tribution function; i.e.,

px(33)„(1,2, 3) =D gs(R, 2;D)ga(R, 3;D)ga(R D23) .

(2.26)

The series in Eq. (2.19) is truncated after the
third term. The one-parameter form chosen for
u(r) thus allows us to calculate a single set of
ga(R)'s as functions of D alone. These can then be
used at an arbitrary density with a variational
parameter, b, given by Eq. (2.9).

The cluster expansion for the fermion kinetic
energy yields

A quadratic approximation to S(k)'3 was employed
in order to evaluate E,F (the integrations a.re over
unit spheres).

The boson g(R)'s were obtained by solution of the
BBGKY and HNC integral equations. The BBGKY
equation is given by

v,g(R„;D) = v,u(R„)g(R,2; D)

+D '3 '
V,u(R„)dR, ,

k(R) =C(R)+D dSC(S)h(~R- S ~)

together with the direct correlation function,

C(R) =h(R) —ln[g(R)/e"' ']

(2.34)

(2.35)

The details of the solutions of these equations are
discussed in Appendix A.

In Table I (II) we show the Bose and Fermi
averages as defined in Eqs. (2.11) and (2.12) for
the BBGKY (HNC) g(R)'s. The averages are
smooth and monotonic and slowly varying over a
large range in D. We can thus fit these averages
as cubic polynomials in D rather accurately and
obtain explicit expressions for the Bose and Fermi
energies as functions of p*, q, and b. The equa-
tions of state will be obtained by analyzing tne
curve-fit polynomials. We define the polynomial
coefficients as follows:

(2.33)

and is obtained by applying the gradient operator to
the definition of g(R) [Eq. (2.13)]. The KSA approx-
imation, . [Eq. (2.26)], has been used for the three-
body distribution function. The HNC equation is
defined by the Ornstein- Zernike equation:

and

(k) g(k) —1 Df e"' h=(R;D=)dR. (2.31)
D i +~ (y. Dj

N O, r j2X
D, x j =1

(2.36)

Following Wu and Feenberg, we have used the con-
volution approximation for the three-particle dis-
tribution function in E,~, where

p"„'(1,2, 3) =D [1+h(R„;D) + h(R„;D) + h(R„;D)

+ h(R„;D) h(R„;D)

+h(R, 2;D) h(R„;D)
+ h(R„;D) h(R„;D)]

(-.').., =j .'
yj xD',

with

2.v(-,'&)'1', ~=a
02 X

0, x=B

(2.37)

(2.38)

(2.39)

+D h(R, R;D) h(RRR;D) h(RRR;D) dRR.

(2.32)

In the fermion kinetic-energy term we have sep-
arated off E» the average independent-particle
kinetic energy which is independent of b.
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TABLE I. Components of E* for SHe and ~He for the BBGKY-KSA data. Averages are de-
fjgeQ in Eqs. (2.11) and (2.12); (t/Ng = (t/~&~--,',I,'.

&z-'), 8 "&a

0.050
0.100
0,150
0.200
0.225
0.250
0.275
0.300
0.325
0.350
0.375
0.400
0.425
0.450
0.475
0.500
0.550
0.600
0.625
0.650
0.675
0.700
0.725
0.750
0.775
0.800
0.850
0.900
0.950
1.000
1.050
1.100

0.268
0.646
1.113
1.665
1.972
2.299
2.64 7
3.015
3.404
3.812
4.241
4.690
5.159
5.648
6,156
6.685
7.800
8.991
9.615

10.258
10.918
11.597
12.292
13.005
13.733
14.478
16.014
17.606
19.251
20.942
22.673
24.437

0.076
0.180
0.304
0.445
0.522
0.603
0.688
0.776
0.869
0.965
1.065
l.168
1.275
1.386
1.500
1.618
1.864
2.123
2.258
2.395
2.536
2.680
2.827
2.977
3.129
3.284
3.603
3.931
4.268
4.613
4.966
5.326

0.044
0.109
0.195
0.302
0.364
0.433
0.507
0.588
0.676
0.770
0.872
0.981
1.097
1.221
1.353
1.493
1.798
2.135
2.317
2.507
2.705
2.912
3.126
3.349
3.580
3.819
4.319
4.846
5.398
5.970
6.557
7.151

0.404
0.884
1.443
2.080
2.429
2.797
3.185
3.593
4.021
4.468
4.935
5.422
5,928
6.454
6.999
7.562
8.747

10.005
10.661
11.335
12.026
12.734
13.459
14.199
14.955
15.726
17.310
18.947
20.631
22.356
24.114
25.898

0.101
0.220
0.354
0.504
0.585
0.669
0.758
0.850
0.945
1.045
l.148
1.254
1.364
1.478
1.595
1.715
1.965
2.228
2.365
2.504
2.646
2.791
2.939
3.089
3.242
3.398
3,716
4.043
4.378
4.720
5.068
5.421

0.066
0.151
0.257
0.385
0.458
0.537
0.623
0.716
0.816
0.923
1.037
l.159
1.289
1.427
1,573
1.727
2.059
2.426
2.622
2.826
3.038
3,259
3,488
3.725
3.969
4.221
4.745
5.295
5.867
6.455
7.054
7.656

III. RESULTS FOR 48c

Z*(q* b) = P u"(qb 'n —4b-'P -+4b-"~ ) {3 1)

The variational parameter 5 is determined by

=0=b ' g D"[(3n —2)b ~o.
9$

—12(n —2)b 'P„

+12(n- e)b-"~„].

Using EQ. (3.1) the pressure ls given by

(3.2)

P*(p~) = p* g na" (qb 'n„4b 'p„+ 4-b "y-„)-. (3.-3)

In this section me shall calculate the energies
and pressux'es for ~He using the data of Tables I
and II. The integral-equation results grill be com-
pared to the molecular-dynamics (MD) results of
Schiff and Verlet (SV) and experiment.

If we use Eels. (2.10) and (2.36)-(2.38), the 'He
(@=0.1815) energy can be written

The coefficients n„,P„,y„(n = 1, 2, 3) were obtained
by means of a Chebyshev curve fit" of the data. in
Tables I and II. These coefficients are displayed
in Tables III and IV for the BBGKY and HNC data,
respectively. For the ~He data there are hvo sets
of coefficients in Tables III and IV corresponding
to separate cux ve fits over a lorv-density and a
high-density intexval. This eras found necessary
in order to maintain three significant figure ac-
curacy.

The enexgies and pressures thus obtained are
shogun in Figs. j. and 2 and are displayed in
Tables V and VI. The distinctive feature of these
curves ls ho% "soft" the BBGKY eguatlon of state
is relative to the HNC and MD results. HNC re-
sults fox' 4He &&ere previously reported by Murphy
and Watts' (MW) (our present results are in ex-
cellent agx'cement arith MÃ: the energies differ by
approximately 0.005& 'K in the density range
shown in Fig. 1). The crosses in Fig. 1 are the
"experimental" energies calculated by M% by
numer ical integration of the experimental pressure
data of Boghosian and Meyer. " It is clear that for
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TABLE II. Components of E~ for 3He and 4He for the HNC data. Averages are defined in
Eqs. (2.11) and (2.12); (t/+)& = (t/&)&- -,',a~2.

0.050
0.075
0.100
0.125
0.150
0.175
0.200
0.225
0.250
0.275
0,300
0.325
0.350
0.375
0.400
0.425
0.450
0.475
0.500
0.525
0.550
0.582
0.600
0.625
0.650
0.675
0.700
0.725
0.750

(&/w &&

0.269
0.449
0.655
0.885
1.141
1.421
1.726
2.057
2.414
2.796
3.204
3.639
4.101
4.590
5.106
5.650
6.221
6.821
7.449
8.106
8.791
9.720

10.238
11.0 10
11.8 12
12.644
13.5Q5

14.397
15.320

0.076
0.126
0.1S2
0.243
0.309
0.381
0.457
0.538
0.624
0.714
0.810
0.910
1.015
1.125
1.240
1.359
1.483
1,612
1.745
1.883
2.026
2.218
2.324
2.48 1
2.642
2.808
2.979
3.154
3.334

0.044
0.075
0.111
0.154
0.202
0.257
0.320
0.390
0.469
0.556
0.652
0.759
0.876
1.004
l.144
1.296
1.461
l.640
1.834
2.043
2.267
2.582
2.760
3.035
3.329
3.643
3.977
4.332
4.709

«/»a

0.405
0.640
0.896
1.175
1.478
1.805
2.156
2.532
2.933
3.359
3,812
4.290
4.795
5.327
5.885
6.471
7.085
7.726
8.396
9.094
9.820

10.801
11.347
12.159
13.000
13.871
14.772
15.703
16.664

0.102
0.160
0.222
0.289
0.361
0.437
0,519
0.604
0.695
0.790
0.890
0.995
1.104
1.218
1.336
1.459
1.587
1.720
1.857
1.999
2.145
2.341
2.450
2.610
2.774
2.943
3.117
3.295
3.478

(g - 12)

0.067
0.108
0, 1.55
0.208
0.267
0.334
0.409
0.492
0.583
0.685
0.796
0.918
1.051
1.196
1.353
1.524
1.708
l.907
2.121
2.351
2.597
2.941
3.135
3.435
3.754
4.093
4.453
4.835
5.240

p*2 0.4 the BBGKY-KSA energies are loaves than
experiment. In Fig. 2 we have plotted pressure as
a function of the difference in density from the
zero-pressure density, po. The crosses are the
experimental data of Boghosian and Meyer. The
HNC pressures are clearly superior to the
BBGKY-KSA. Further, it appears from inspection

of Pig. 1 that the MD results should give rather
good pressures as the slopes seem to be in good
agreement with HNC at a higher density. In Fig.
3 we show the optimal variational parameter at
each density as determined by Eq. (3.2). (The differ-
ence in energy across the gaps of the two curve-fits
for the HNC and BBGKY data are 0.0003 and

TABLE III. Coefficient for the polynomial fits to the BBGKY-KBA averages given in Table I.
The coefficients are defined in Eqs. (2.36)-(2.39).

Coefficient 0 26~pg ~Q
'He

0.34 ~p* ~ 0.50
3He

0.15~p*~0.40 '

Qg

Pg
P2
P3
7f
'y2

73

7.04 1
16.743
—1.143

1.859
3.398

-0,510
0.995
4.115
1.605

6.529
18.476
-2.591

1.810
3.564

—0.647
0.532
5.679
0.303

4.785
18.090
—1.828

1.464
4.028

-0.956
0.734
3.472
2.062

These coefficients mere determined by fitting the data in the interval D & f0.40, 0.65] in
TaMe I.

b Same as above with D & [0.50, 0.90).
~ Same as above with D & t0.20, 0.60].
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TABLE IV. Coefficients for the polynomial fit to the HNC averages given in Table II. Co-
efficients are defined in Eqs. (2.36)-(2.39).

Coefficient 0.21~ p+& 0 ~ 36'
4He

0.29 ~ p* & 0.42
3He

0.12 ~ p + ~ 0 30 '

A)
Q'2

Q3

P)
Pp
P3
Yf

72
'y3

6.923
18.504
2.487
1.817
3.882

—0.172
1.181
3.041
6.180

6.972
18.305
2.682
1.839
3.793

-0.084
1.391
2.188
7.021

4.601
19.865
1.385
1.391
4.648

—0.937
0.776
3.024
5.478

These coefficients were determined by fitting the data in the interval D e [0.30, 0.60) in

Table II.
Same as above with D e [0.40, 0.75j.' Same as above with D e [ 0.15, 0.45].

0.001m 'K, respectively. ) The cross in Fig. 3 is
the value of b found by SV at the zero-pressure
MD energy.

In Fig. 4 we compare the radial-distribution
functions of the BBGKY-KSA, HNC, and MD cal-
culations. The good agreement between the HNC

and MD g(r)'s is evident and was noted by MW.
The BBGKY-KSA is obviously the odd-man-out.
In the important region around the initial rise it
lies significantly under the HNC and MD curves.
It then peaks too far out and returns to 1.0 too
slowly. The KSA overcorrelates; it is too good
at keeping the particles out of their neighbor's
repulsive cores.

0.25

0.20

O. I5

D

LIJ
IK

-0.50

I I I I
l

I I I I
l

I I I I
l

I I I I
l

I I I I

He

w~0~0
'D
O
LIJ
lL

0.05

-0.60

BGKY

-0.70—
I

0.25

X

I I I I I I I I I I I I I l I I I I l I I I

0.30 0.35 0.40 0.45
DENSITY

I

0.50

0.0
0.0 0.02 0.04

P Po

0.06 0.08

FIG. 1. Energy as a function of density for 4He

comparing the BBGKY-KSA, HNC, and molecular-dy-
namics results. Arrows locate the minima in the
curves. Crosses are the "experimental" energies as
calculated by Murphy and Watts. All quantities are
measured in reduced units. Line through the MD
points is a guide to the eye.

FIG. 2. Pressure as a function of the density as
measured from po, the zero-pressure density, for He.
We compare the HNC and BBGKY-KSA results with
the experimental data of Boghosian and Meyer (crosses).
All quantities are measured in reduced units. po (expt. )
=0.3648, po (BBGKY-KSA) =0.43, po (HNC) =0.29. Unit
reduced pressure is equivalent to 84.5 bar.
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TABLE V. Energies and pressures for 4He calculated
from the BBGKY-KSA data. Energies are in units of e
and pressures are in units of e/0 3. I. I 8

12

0.27
0.29
0.31
0.33
0.35
0.37
0.39
0.41
0.43
0 45
0.47
0.49

-0.569
—0.597
—0.621
—0.642
-0.659
—0.670
-0.679
—0.685
—0.687
—0.686
—0.681
—0.672

1.153
1 157
1.160
1.164
1.167
1.170
1.174
1.178
1.182
1.185
1.188
1.191

0.778
0.872
0.972
1.076
1.186
1.303
1.427
1.556
1.690
1.829
1.973
2.121

—2.239
—2.459
—2.687
-2.921
—3.164
—3.413
—3.663
-3.920
—4.184
-4.454
—4.730
-5.011

0.892
0.990
1.094
1.203
1.318
1.440
1.558
1.680
1.807
1.938
2.075
2.217

-0.105
—0.109
-0.109
—0.103
-0.092
—0.072
—0.056
—0.034
-0.006

0.030
0.074
0.128

I. I7—

I.I6

0.25 0.30 0.35 0.40
OENS IT Y

0.45

IV. RESULTS FOR 3He

In this section we calculate the energies and
pressures for 'He using the statistical-cluster
technique of Wu and Feenberg as discussed in
Sec. II.

If we use Eqs. (2.10) and (2.36)-(2.39), the 'He

(g =0.2409) energy is written

Ep(p*;b) =E,*++ p D"(rIb 'a„—4b p„+4b '2y„),
n=l

(4.1)

FIG. 3. 4He variational parameter at each density as
determined by the HNC and BBGKY-KSA equations. As
incidated in Tables III and IV, two curve fits were used
to cover the density range. Cross is the value of 5 that
po (BBGKY-KSA) =0.273, po (HNC) =0.21. Unit reduced
pressure is equivalent to 84.5 bar.

The pressure is given by Eqs. (4.1) and (2.14),

Pz(p*) =P,*++p*p nD" (qb 'n„—4b 'p„+4b ' y„),
n =1

where

E,~~=2.7( w) 3'qp* =qb 'E (4.2)

where

1F 3J 1F

(4.4)

(4 6)

Since E,*~ is independent of b, b is once more de-
termined by Eq. (3.2),

D[(3n —2)qb 'n„—12(n —2)b 'P„
n =1

+12(n —4)b "y„J=0. (4.3)

The 'He Q. , P, and y coefficients determined by
fitting the data in Table I and II are shown in
Tables III and IV for the BBGKY-KSA and HNC,
respectively. Because of the lower density of 'He
one set of coefficients is sufficient to cover the
density range of interest.

In Figs. 5 and 6 we show the energies and pres-
sures for 'He as calculated with Eqs. (4.1)-(4.5)

TABLE VI. Energies and pressures for 4He calculated
from the HNC data. Energies are in units of e and pres-
sures are in units of e/0. .

I I

f
I I I I

[

I I I I

]
I I I I

J

I I I I

4He

6 I 0—

0 ~ 21
0.23
0.25
0.27
0.29
0 ~ 31
0.33
0 ~ 35
0.37
0.39
0.41

—0.441
—0.466
—0.484
—0.495
—0.499
—0.494
—0.480
—0.455
—0.420
—0.371
—0.309

1.147
1.151
1.155
1.159
1.163
1.166
1.170
1.173
1.176
1.179
1.182

0.570
0.659
0.756
0.860
0.971
1.091
1.219
1.355
1.496
1.648
1.811

—1.687
-1.905
—2.133

2 \372
-2.621
—2.880
-3.150
-3.429
—3.725
—4.027
—4.340

0.676
0.781
0.894
1.017
1.151
1.295
1.451
1.619
1.810
2.008
2.220

—0.061
—0.057
—0.047
—0.028

0.003
0.046
0.105
0.182
0.291
0.420
0.577

0.5— BBGKY

HNC

~ ~ ~ MD

00 I

0.5 1.0 l.5
I I I I I I I I I I I

2.0 2.5 3.0

FIG. 4. Radial distribution functions for He at the
experimental ground-state density = 0.3648/0. A
Molecular-dynamics result is compared to the HNC and
BBGKY-KSA g~(x*)'s at D =0.60.
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—o.p5 0.20

'He

—O. IO 0.16—

—O. I 5 0.l2
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-p ap
O. I5 0.20 0.25 0.30

DENSITY

0.35

D
0.08

a
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K

I"IG. 5. Energy as a function of density for He com-3

paring the BBGKY-KSA, HNC, and molecular-dynamics
results. Arrows locate the minima in the curves. Line
through the MD points is a guide to the eye. All quan-
tities are measured in reduced units. Experimental
energy is — 0.245m 'K at a density of 0.2730.3 A 3 and

zero pressure.

0.04

0.0
0.0 0.02 0.04 0.06 0.08

and in Tables VD and VIII we display the data.
In Fig. 5 we see that, as in the case of 'He, the
BBGKY-KSA equation of state is "softer" than
either the HNC or MD equations of state; however,
the disagreement among them is far less severe.
The improved agreement is a result of the lower
densities under consideration. As the density
becomes smaller, the integral equations become
more accurate and the results will be closer to
MD. The 'He pressure curves of Fig. 6 should be
compared with the 4He pressure curves of Fig. 2.
The agreement between the integral-equation
pressures for 'He stands in marked contrast to
their disagreement for 'He; however, neither
integral-equation results compares well with the
'He experimental pressures tabulated by Wheat-.

ley. " P,*z (the pressure in a system of noninter-
acting fermions) is displayed in the last column
of Tables VII and VIII.

p" p,"
FIG. 6. Pressure as a function of density as measured

from pp, the zero-pressure density for He. We com-
pare the HNC and BBGKY-KSA results with the experi-
mental data compiled by Wheatley (crosses). All quan-
tities are measured in reduced units. p p (expt. ) = 0.273,
pp (BBGKY-KSA) =0.273, pp (HNC) =0.21. Unit reduced
pressure is equivalent to 84.5 bar.

In Fig. 7 we show the variational parameter b as
a function of density for the BBGKY-KSA and HNC

data. These results are qualitatively similar to
the He results. At a given density the HNC equa-
tion minimizes the energy with a slightly larger
value of the variational parameters than the
BBGKY-KSA. The effect of Fermi statistics is to
reduce the size of b since the antisymmetry acts
like an effective repulsion and helps in keeping the
particles out of each other's strongly repulsive
cores. (The b values for a Bose 'He system can

TABLE VII. Energies and pressures for 3He calculated from the BBGKY-KSA data. En-
ergies are in units of e and pressures are in units of e/a 3.

12

0.19
0.21
0.23
0.25
0.27
0.29
0.31
0.33
0.35
0.37
0.39

—0.127
—0.141
—0.151
—0.158
-0.162
-0.161
-0.155
—0.144
—0.128
—0.105
—0.0756

1.110
1.113
1.117
1.120
1.123
1.125
1.128
1.130
1.132
1.134
1.136

0.229
0.244
0.260
0.274
0.289
0.303
0.317
0.330
0.344
0.356
0.369

0.704
0.801
0.903
1.010
1.123
1.242
1.367
1.497
1.633
1.774
1.922

—1.360
—1.553
—1.755
—1.966
—2.186
—2.414
—2.651
—2.896
—3.148
-3.408
—3.675

0.529
0.612
0.702
0.798
0.901
1.012
1 ~ 129
1.254
1.387
1.528
1.678

—0.026
—0.026
-0.023
—0.017
—0.005

0.013
0.039
0.074
0.120
0.178
0.250

0.0290
0.0342
0.0398
0.0457
0.0520
0.0586
0.0655
0.0727
0.0802
0.0879
0.0960
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TABLE VIII. Energies and pressures for 3He calculated from the HNC data. Energies are
in units of e and pressures are in units of c/a 3.

E5

0.15
0.17
0.19
0.21
0,23
0.25
0.27
0.29

-0.0846
-0.0976
-0.106
—0.110
—0.107
-0.0970
-0.0786
-0.0508

1.106
1.110
1.113
1.116
1.119
1.122
1.124
1.127

0.195
0.212
0.229
0.244
0.260
0.274
0.289
0.303

0.5426
0.6343
0.7327
0.8380
0.9504
1.0703
1.1977
1.3330

-1.0185
-1.2053
-1.4037
—1.6134
—1.8343
-2.0661
—2.3085
—2.5614

0.3913
0.4734
0.5647
0.6656
0.7767
0.8987
1.0322
1.1776

-0.017
—0.016
-0.011
—0.001

0.016
0.044
0.084
0.14

0.0195
0.0241
0.0290
0.0342
0.0398
0.0457
0.0520
0.0586

E~~ =E~+E2+E3+ ' ' ', (4.6)

where E (o.'~ 2) represents the contribution from
o.-body exchange in the Slater determinant of g~,

I I I I

[
I I I i

i

I I I I

be obtained by shifting the curves in Fig. 7 upward
by an approximately constant additive factor of
0.015.)

The fermion radial-distribution functions, gr(r*),
for the BBGKY-KSA, HNC, and MD calculations
at the 'He experimental (reduced) density, 0.273,
are shown in Fig. 8. The gr(r*) are calculated by
the statistical cluster expansion as given in Eqs.
(2.19)-(2.21). As already implied by the energies,
these gz(r*)'s are in much better agreement than
the ga(r~)'s for 'He. The BBGKY-KSA gr(r*) has
the same problems as the ga(r*) from which it
is generated: it rises too slowly and peaks too
far out. The HNC gr(r*) shows good agreement
with MD.

In the spirit of the statistical cluster expansion
we write the ground-state energy as

[Eg. (1.2)]. Thus we have for the first term in the
cluster expansion

Ei =E~*z+Ea

where E~ is the energy generated by just the $3
portion of $~. We note that this is not the same
ordering as used by Woo" or SV. SV placed E,*~

in the second term of the cluster expansion, E,.
Woo used a slightly different wave function, in
principle, by choosing tI)~ to be an eigenfunction of
a, fictitious 'He Boson system. Then E~ is the
eigenvalue of (~ and there are no other contribu-
tions from integrations over the potential energy.
The two-body and three-body terms are given by
Eqs. (2.29) and (2.30). Thus, the series as ordered
by Woo is

E =E,+E,+E,+E, , (4 9)

Eo =E~, E, =E,~~, E~ = 2qb E2p, E3 = 2q5 E3~.

(4.9)

In the ordering scheme of Eq. (4.7) the first ap-
proximation to the fermion wave function is given
by P~ times a product of plane waves and spin fac-
tors, (a correlated Hartree), whereas SV and Woo

I I I I

f
I I I I

t
I I I I

t
I I I I

f

I I I I

I,Q—

II0 I I I I I I I I I I I I

0.I5 0.20 0.25
DENSITY

0.50
Q Q I I I I I I I

O.O 0.5
I I

2.5

FIG. 7. He variational parameter at each density as
determined in the BBGKY-KSA and HNC approximations.
Arrows locate the zero-pressure densities.

FIG. 8. Radial-distribution functions for He at the
3 '-3experimental ground-state density = 0.273/03A 3.

Molecular-dynamics result of Schiff and Verlet is com-
pared to the BBGKY-KSA and HNC g&(x*}'s at a=0.40.



TABLE lX. 3He energies for the BBGKY-KSA data
arranged order by order in the statistical cluster ex-
pansion as defined in Eqs. (4.6), (4.7), and (4.10).

0.0
I I I

I

I I I I
]

I t I I

)
I I I I

E(+ Q2 E EgE -0.05—

0.19
0.21
0.23
0.25
0.27
0.29
0.31
0.33
0.35
0.37
0.39

-0.048
-0.048
-0.045
-0.038
-0.026
-0.010

0.012
0.038
0.070
0.108
0.152

-0.067
—0.079
-0.093
-0.106
-0.120
—0.135
—0.149
—0.165
-0.180
-0.196
-0.212

-0.115
-0.128
-0.137
-0.144
-0.146
-0.144
-0.138
-0.126
—0.110
-0.088
-0.060

-0.014
-0.014
-0.015
-0.015
-0.015
-0.016
-0.016
-0.016
-0.016
-0.016
-0.015

0.20
0.18
0.16
0.14
0.13
0.12
0.11
0.10
0.09
0.08
0.07

-o.Io—

-0.(5—

I t t I t 1 ( I ( t l t ) I ( I I I l I

0.10 O.I5 O.ao O, Z5 O.&0
DENSITY

0.55

with Ir =2, 3, 4. . . . The XI~I(r") and E ~ for
o. =-2, 3 are defined in Eels. (2.20), (2.21), (2.29),
and (2.30) also

tt(r) =t(r) ——,
' IIV'u(r) . (4.11)

In Fig. 8 we show the 'He energy components E„
E„and E, for the BBGKY-KSA data. Further,
in Tables IX and X the E„E„andE, for both the
HNC and BBGKY-KSA are listed. Figure 9 and its
tables show the very important result that the
'He energy minimizes at a density close to the
density at which E, tends to vanish. Thus, at the
zero-pressure density 80 jg of the total energy is

use ps alone. We prefer E, of EII. (4.7) for two
reasons: (i) it has the correct noninteracting limit
(in the spirit of the cluster expansion) and (ii) it
has the correct low-density (Hartree) behavior.
This is especially evident for systems with small
values of q wherein E,*~ is the dominant contribu-
tion to the energy. Thus, E, is a fermion system
in approximation and not just a boson system.

The succeeding terms in the cluster expansion
are given by

FIG. 9. 3He energy vs density for the BBGKY-KSA
data with each order of the statistical cluster expansion
displayed separately.

contributed by E2, the two-body exchange contri-
bution. When the energies of Woo and SV are or-
dered with the correlated Hartree, E„as the first
term in the cluster expansion similar results are
obtained. In Fig. 10 we show the ratio of E, to E,
as a function of density. We note that this ratio
is quite small and that as the density increases
E, will change sign. In Tables XI and XII we re-
solve the cluster energies, (E„E„andE,) into
their kinetic-energy and potential-energy parts,
It is interesting to note that when the potential
and kinetic energy are viewed separately the clus-
ter expansion for each part appears to be rapidly

I I I I
I

I I I I
I

I I I I

TABLE X. 3He energies for the HNC data arranged
order by order in the statistical cluster expansion as
defined in Eqs. (4.6}, (4.7), and (4.10).

O. I

0.15
0.17
0.19
0,21
0.23
0.25
0.27
0.29

-0.028
-0.027
-0.021
-0.009

0.010
0.037
0.073
0.119

-0.046
-0.059
-0.073
-0.089
-0.105
-0.123
-0.142
—0.162

-0.074
-0.086
—0.095
-0.098
-0.096
-0.086
-0.069
-0.043

-0.011
-0.012
—0.012
-0.012
-0.011
—0.010
—0.009
—0.007

0.24
0.20
0.16
0.13
0.11
0.08
0.06
0.05

oo I I I I I I I I I I I I I I

O. l5 0.20 0.25 0.30
DENSITY

FIG. 10. Ratio EQE2 of the ~He cluster components
for both the BBGKY-KSA and HNC energies as a function
of density. Arrows locate the zero-pressure densities,
Cross locates the ratio for MD at its zero-pressure den-
sity.
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TABLE XI. 3He cluster terms resolved into kinetic-energy and potential-energy components
for the BBGKY-KSA data. Thus E =e(tea)+e(") + et)ot), n =1, 2, 3.

-0.129
-0.141
—0 ~ 153
—0.164
-0.176
-0.187
-0.199
-0.210
-0.221
-0.233
-0.244

0.19 0.805 0.028
0.21 0.910 0.031
0.23 1.021 0.035
0.25 1.137 0.038
0.27 1.258 0.041
0.29 1.385 0.044
0.31 1.518 0.048
0.33 1.656 0.051
0.35 1.800 0.054
0.37 1.949 0.058
0.39 2.104 0.061

-1.507
-1.706
-1.914
-2.130
-2.354
-2.586
—2.827
-3.075

3 ~ 331
-3.595
—3.867

0.223
0.237
0.250
0.262
0.274
0.285
0.297
0.307
0.317
0.327
0.336

-0.077
-0.085
—0.092
—0.099
-0.106
-0.113
-0.119
-0.126
-0.132
-0.139
-0.145

0.654
0.748
0.848
0.956
1.070
1.192
1.321
1.458
1.602
1.754
1.915

—0.161
—0.175
—0.190
-0.204
-0.218
-0.233
—0.247
-0.262
-0.276
—0.291
—0 ~ 305

0.036
0.039
0.043
0.046
0.049
0.052
0.055
0.059
0.062
0.065
0.069

conver ging.
The term-by-term convergence of the statistical

cluster expansion, with the correlated Hartree
energy as the first term, is not as methodical as
in the ordering schemes of Woo and SV. From
Tables VII-X one obtains the fact that ~Ea*

~

&E,*~

& iE, i
at p,* and thus it is clear how a different

position for E,*~ can result in a more system-
atically appearing convergence in the cluster ser-
ies.

Finally, we would like to discuss the statistical
cluster series for the fermion number density.
The fermion radial distribution function can be
written

and the n-body statistical cluster correction,
Z (r), for n =2, 3 has been written down in Eqs.
(2.20)-(2.21). The number density is independent
of statistics, thus we must have

(4.15)P p(u) 0

In Appendix B we discuss Eq. (4.15) with respect
to a rigorous result due to Feenberg pertaining to
the p- . In Fig. 11 we plot the ratio of p„' to p~'

and the normalization, Ia, for the Boson ga(r)'s
as a function of density for both the BBGKY-KSA
and HNC data where we have defined,

(4.12) I, = p+ g, r*)-1 d r*. (4.16)

p~ '=p~ Z' ' r dr, (4.14)

where ga(r) is the boson radial distribution function
and Z(r) are the statistical cluster corrections.
If we subtract unity from both sides of Eq. (4.12),
integrate over r, and use the sequential rela-
tions, "we find

N—=1+ g p"' (4.13)
Pg

where

In Tables XIII and XIV we list I~, p~, and p~ as
a function of D for the BBGKY-KSA and HNC
g(r)'s. Figure 11 shows that in the range of 'He
densities Eq. (4.15) is very nearly satisfied by
the first two terms in the series. Also there
seems to be a definite correlation between I~ and
the ratio pz~')/p~z ) (this is especially evident in

Tables XIII and XIV). Naturally, simply because
pr' ' and pr3' alone seem to satisfy Eq. (4.15), does
not ensure that pz~') will be small [for example,
Eq. (4.15) could be an alternating series].

TABLE XG. 3He cluster terms resolved into kinetic-energy and potential-energy components
for the HNC data. Thus, Ea = ego)3+ eI~) + e~)~2, n =1, 2, 3.

0.15 0.628 0.022
0.17 0.730 0.026
0.19 0.838 0.030
0.21 0.953 0.034
0.23 1.075 0.038
0.25 1.204 0.043
0.27 1.341 0.048
0.29 1.486 0.053

—1.156
-1.352
-1.559
—1.776
-2.004
—2.243
—2.493
-2.754

0.199
0.217
0.235
0.252
0.269
0.286
0.303
0.320

—0.063
-0.072
-0.080
-0.089
-0.098
—0.108
-0.117
-0.126

0.499
0.595
0.700
0.814
0.940
1.076
1.225
1.387

—0.137
-0.155
-0.173
-0.192
-0.212
—0.233
-0.254
—0.277

0.029
0.034
0.039
0.044
0.049
0.054
0.060
0.066
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I I I

I
I I I I

I

I I I TABLE XIII. Normalization integral and the cluster
corrections to the fermion number density as defined
in Eqs. (4.14) and (4.16) for the BBGKY-KSA g(r)'s.

—0.8— (2) pf3) p)3)gpss)

-I 0—
p (3)

( &'&a& ) BBGKY

V. DISCUSSION

The KSA is clearly a poor approximation to MD
at 'He densities. The BBGKY-KSA density at zero
pressure, p,*, is 30%%up higher than MD while the en-
ergy is 15% lower. In fact, the BBGKY-KSA pass-
es below the experimental 4He energies before
reaching zero pressure.

Massey and Woo" have reported a solution of
the BBGKY-KSA equation for 4He with the poten-
tial of Eqs. (2.2) and (2.3). Massey and Woo
chose, however, to parametrize g(r), rather than

u(r), and use the BBGKY-KSA to obtain u(r).
Their results are in far better agreement with
MD than ours. For example, at zero pressure,
their energy is —0.593m K at a density of 0.383/o'
A . The important difference in variational tech-
niques makes a quantitative comparison between
Massey and Woo's and the present results impossi-
ble. It is interesting to note, however, that the
Massey-Woo u(r) rises much faster than the u(r)
of Eq. (2. t) which probably accounts for the good
agreement between their g(r)'s and those of MD.
In that respect it would be interesting to know
what MD energies the Massey-Woo wave functions
would generate.

Using a result of Abe" it is possible to make
systematic corrections to the KSA. Namely, for
a wave function which is a product of pair func-
tions, Abe showed how the three-particle distri-
bution function, g ' (r», r», r,y) can be written ex-

I I I I I I I I I I I I I I

O. l 5 0.20 0.25 0.30
OE NS ITY

FIG. 11. Ratio of the three-body to two-body statis-
tical cluster corrections for the ferrnion number den-
sity and Ia, the normalization of the boson gz(r)'s for
the BBGKY-KSA and HNC data.

0.050
0.100
0.150
0.200
0.225
0.250
0.275
0.300
0.325
0.350
0.375
0.400
0.425
0.450
0.475
0.500
0.550
0.600
0.625
0.650
0.675
0.700
0.725
0.750
0.775
0.800
0.850
0.900
0.950
1.000
1.050
1.100

-0.338
-0.535
-0.667
—0.757
—0.791
—0.820
—0.844
—0.864
-0.880
-0.894
—0.905
—0.914
—0.921
-0.926
—0.931
—0.935
-0.942
-0.948
-0.952
-0.957
—0.962
—0.968
—0.975
-0.982
—0.990
—0.999
—1.020
-1.042
—1.067
—1.092
-1.117
—1.142

-0.746
—0.601
-0.559
—0.540
—0.536
—0 ~ 534
—0.533
-0.532
-0.530
—0.528
—0.525
-0.521
-0.517
-0.512
-0.507
-0.502
—0.490
—0.480
-0.475
-0.470
-0.466
-0.461
—0.458
-0.454
—0.451
—0.447
—0.442
—0.436
—0.431
-0.426
-0.420
-0.414

0.292
0.343
0.423
0.465
0.478
0.489
0.497
0.504
0.510
0.515
0.521
0.525
0.530
0.534
0.539
0.543
0.550
0.557
0.560
0.562
0.564
0.566
0.567
0.568
0.568
0.569
0.567
0.564
0.560
0.554
0.547
0.539

—0.391
0 570

—0.757
-0.862
-0.893
—0.915
-0.933
—0.948
-0.962
—0.976
—0.991
—1.007
—1.024
—1.043
—1.062
—1.081
-1.121
—1.160
-1.178
—1.195
—1.211
—1.226
—1.239
—1.250
-1.261
-1.270
—1.284
—1.293
—1.298
-1.300
—1.301
—1.301

actly in terms of the radial distribution function:

(5.1)

where the 5 „are cluster integrals. For exam-
ple,

54 = h(r14) h r,4) h(r34) d r4, (5.2)

where h(r) =g(r) —1. In a "perturbative" sense,
Sim and Woo" calculated the effect of 54 on the
KSA energy. They used a solution of the BBGKY-
KSA to calculate a small change ing(r) due to the
inclusion of the 54(r„,r„,r3J) term in the BBGKY
equation. They found that this raises the energy
by approximately 10% which is the right direction
to bring the BBGKY-KSA results into agreement
with MD. Neither the density dependence of the
54 correction nor the impor tance of higher terms
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TABLE XIV. Normalization integral and the cluster
corrections to the fermion number density as defined in

Eqs. (4.14) and (4.16) for the HNC g(&)'s.

(2)PF p(3)PF p(3)/p(2)

0.050
0.075
0.100
0 ~ 125
0.150
0.175
0.200
0.225
0.250
0.275
0.300
0.325
0.350
0.375
0.400
0.425
0.450
0.475
0.500
0.525
0.550
0.582
0.600
0.625
0.650
0.675
0.700
0.725
0.750

-0.326
-0.433
-0.516
-0.581
-0.634
-0.677
-0.713
-0.743
-0.767
—0.788
-0.806
-0.821
-0.834
-0.846
-0.857
-0.866
-0.875
-0.884
-0.892
-0.900
-0.907
-0.916
-0.920
-0.926
-0.931
-0.936
-0.940
-0.943
-0.946

-0.622
-0.625
-0.604
-0.581
-0.564
~j
-0.548
-0.545
-0.544
—0.544
-0.545
-0.544
-0.544
-0.542
-0.540
-0.537
-0.533
-0.529
-0.525
-0.521
-0.517
-0.512
-0.509
-0.506
-0.503
-0.500
-0.497
-0.495
—0.493

0.184
0,271
0.333
0.376
0.406
0.428
0.444
0.456
0.466
0.476
0.484
0.492
0.500
0.508
0.515
0.522
0.529
0.535
0.540
0.545
0.549
0.553
0.555
0.556
0.557
0.557
0.556
0.555
0.553

—0.296
-0.433
—0.551
-0.647
-0.720
—0.773
-0.810
—0.837
—0.857
—0.873
-0.888
—0.903
-0.919
—0.936
-0.954
-0.972
-0.991
-1.010
-1.028
-1.045
-1.061
-1.079
-1.088
-1.099
-1.107
-1.113
-1.117
—1.120
-1.120

in the series is known.
The fundamental problem of too much correla-

tion in the KSA has been seen in the classical
I.ennard-Jones system by Broyles, Chung, and
Sahlin. " There are at least two systems, hom-

ever, for mhieh the BBGKY-KSA has given accept-
able results. These are tmo-dimensional" 'He
and the purely repulsive "homework" potential. "
The agreement achieved between the BBGKY-KSA
and MD in two-dimensional 'He is due to the rela-
tively small equilibrium density. As the density
is raised, the disagreements become more pro-
nounced and the results resemble those in the
bulk. " In a system with a purely repulsive inter-
action, like the "homework" neutron matter prob-
lem, the particles mill try to ma»m&~e their rela-
tive interparticle spacings and thus "overcorrelat-
ing" might not be an important fault.

In Appendix C me consider the effect of the
Chester-Reatto" pair function with the zero-point
phonons on the BBGKY-KSA energies.

At 'He densities the BBGKY-KSA appears to be
an acceptable approximation to MD. The effective
repulsion due to antisymmetry may help mask the

KSA overcorrelation and thus statistics could be
a factor which would increase the agreement with

MD. It would be interesting to see if the disagree-
ment between MD and BBGKY-KSA is as manifest
for "'He fermions" as it is for bosons.

As discussed in Sec. IV, at p,*, E, and E, a,re ap-
proximately the same size and E, contributes 8%/q

of the ground-state energy. There is no numeri-
cal problem raised by this large F., since it is eal-
eula, ted without approximation. The problem ap-
pears in the enhanced role being played by F, and
the specter of thereby needing some estimate for
E4 E, is calculated mith both the KSA and convolu-
tion approximation (CA) for g~'~. There is very
little known about the error introduced by the CA
in a calculation such as this. However, the use
of the CA was confined to the F., term mhich it-
self is only a small part of the three-body contri-
bution tothe kinetic energy, for example, using
the HNC data at p~ = 0.2, g,F = —0.006, out of total
three-body kinetic energy, c„'„), of 0.034. Thus,
the major error in E, is due to the KSA. We can
obtain a crude estima, te of this error by compar-
ing our BBGKY-KSA energy with the MD energy
for the mass-three boson system. At a density
of p*=0.237, SV find E~ = —0.286, whereas the
BBGKY-KSA yields E*= —0.310, an error of about
10%%uo. ft is clear from Fig. 10 that changes in E, of
this order of magnitude mill make very little dif-
ference in the relative size of F, to F, This is a
good sign in so far as the question of rapid con-
vergence of the cluster expansion is concerned;
however, it is clear that some reliable estimate
of E~ mill have to be made before anything more
definite ean be stated.

The fundamental difficulty with the statistical
cluster series is that with no naturally appearing
expansion parameter it is difficult to choose
among any reasonable schemes for ordering the
terms of the series.
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equations.
Both equations mere solved interatively in the

form:

APPENDIX A

In this appendix we shall discuss the numerical
solutions of the BBGKY-KSA and HNC integral

g (R) eu(R&+e(R)

where for the BBGKY-KSA equation

(Al)

Hssoxv(R) = — u'(S) g (S) f(s' —R')[W, (R+ S) —W, (R S)] + 2R[W2(R+ S) W, (R S)]
0

—[W3(R+ S) —W, (R —S)]].d S, (A2)

and for the HNC equation

W (~)= [g(~F~)-I]& dy.
0

(A4)

The direct correlation function in Eq. (A3) is given

by

H„„c(R)= SC(s)[W,(R+S) —W, (R —S)]dSHNC

(A3}

and we have defined

for both HNC and BBGKY-KSA equations and ob-
tained convergence to (rms) one part in 10' in

from 8 to 12 iterations. From this point on we
proceeded in steps of 0.10 in D using the solution
at one step ast the initial guess for the next step.
For D a0.60 we had to decrease the step size to
0.05. We found that an iteration of the HNC equa-
tion takes approximately 3 the time of an iteration
of the BBGKY-KSA.

APPENDIX B

C(S) =g(S) —1-}n[g(S)/e""']. (A5) In Sec. IV me considered the fermion radial-dis-
tribution function in the form:

We note that the functions W (x) can be calculated
consecutively with the integrations over S and thus
both integral equations are numerically onefold.
The derivation of the form Eq. (A2) for the BBGKY-
KSA equation can be found in Hill" and has pre-
viously been used by Broyles" to investigate the clas-
sical Lennard- Jones (6 —12}system. A straight-
forward derivation of the HNC equation using func-
tional techniques can be found in Ref. 28.

It was convenient to solve the HNC equation in

r space rather than the usual momentum repre-
sentation because this form emphasizes g(R) and

avoids the question of the small-k behavior of
s(r }.

The solutions of Eq. (A1) were obtained by itera-
tion for which the iterative scheme of Ng was
found to be more convenient and efficient than the
usual method of linear combinations of input and
output. " Briefly stated, Ng noted that for the case
of linea~ operators one could determine the opti-
mum linear combination of outputs from previous
iterations to form a guess for the input to the next
iteration. The BBGKY-KSA and HNC equations
are certainly nonlinear; however, if the input
guess is not too far from the solution, the integral
equations seem to act like some linear operator
(over a small set of iterations). For the details
of the procedure see the paper by Ng, Ref. 29.

For D~ 0.20 we used e"' ' as the initial guess

and me showed thai

(B1)

Z(r) dr=0,

because the number density is independent of
statistics. One way to interpret Eq. (B2) is to say
that the normalization of gr(r) is completely de-
termined by gs(r) It is natur. al to ask how trun
cating the cluster series affects this relationship.
Feenberg considered this question" and following
him we introduce the generalized normalization
integral, m(p), where

(B3}

In Eq. (B3}the angular brackets are an N body-
expectation value and K(r) is an arbitrary func-
tion. &o(p) has the property that

=N — gzx Kr dr. (B4)

Now let us develop Eq. (B4}in a Van Kampen clus-
ter expansion:
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[In(g(p)] —Q tlltl + Q mtlP + o ~ ~ (B5)
dp m&n mn m&n&p mnP

TABLE XV. Effect of including zero-point phonons in
the wave function on the BBGKY-KSA energies at p~
=0.3648.

(u' ((1+1+ 1)e"e8'e8'} ((1)e~')
(Plglegl} (e51) (B6)

We see that the exponentials in Eq. (B6) can be
factored out of the expectation values, since they
are now constants, to yield

~~nd~ no=3 —3=0 ~

where the u „... are the usual multiplicative ap-
proxirnants and the primes denote derivatives with
respect to p. Examining the three-body term in

detail, where we have set the arbitrary function
K(r) equal to unity:

(A)

100
50
20
15
10

8

7
6
5

E(~)-E(A.)
(' K)

0.0
-0.0005
-0.0012
-0.0015
-0.0012
-0.0002
-0.0001
+0.0010

0.0036
0.0049

Feenberg notes that by definition of the w „~...
every term in Eq. (B5) of third order and higher
will vanish identically in the manner of Eq. (B'I).
In terms of Eq. (B2) this result can be written

(B8)

There is an apparent contradiction between Eq.
(B8) and the results for the pr'

' [Eq. (4.13)] re-
ported in Tables XIII and XIV which are certainly
nonzero. The problem is resolved by noting that
the Z' ' in Eq. (4.13) have been obtained after the
a& „... denominators of Eq. (B5) have been expanded
in powers of 1/N Thus, Fee.nberg's result is
violated to O(1/N). One way to see this is to note
that the p~

' are O(1), whereas the integra. l of g(r)
over all r is O(N). Another more interesting way
to understand this is to note that Feenberg's re-
sult is true for bosons as well as fermions since
it only depends on the general form of the multi-
plieative approximant.

In lowest order of cluster expansion we have for
the boson radial-distribution function

f'(r}
[p/(N-I)] Jf'()d ' (»)

where f'(r) =e"'"'. The demoninator of Eq. (BB) is
1+ O(1/N) and is usually simply replaced by 1. If
this is done, the integrals over the left- and right-
hand sides of Eq. (B9) will differ by a factor of
relative O(1/N) If the denom. inator is kept inta, ct,
then the integral over the left-hand side is equal

to the integral over the right-hand side as deman-
ded by Feenberg's theorem.

The p~
' of Eq. (4.15) have been previously used

by Woo" to examine the ordering scheme of the
cluster expansion.

APPENDIX C

In this appendix we report the effects of includ-
ing zero-point phonons in the wave function, in the
manner of Francis, Chester, and Reatto, "on the
BBGKY-KSA energy. The Chester-Reatto long-
range wave function is given by

u«(r) = —(ge/v'p*)[I/(r-'+ &')],

where A is a momentum cutoff left arbitrary in the
theory. Francis, Chester, and Reatto calculated
the energy for 4He using the composite wave func-
tion u»+ u~a [where u, » the short-range part, is
given by Eq. (2.7)] and treated X as a va.riational
parameter. %'e have repeated their ealeulation
using the BBGKY-KSA equation, at the 4He experi-
mental density 0.3648/a' A '. We held constant
the optimum b (for X=~) and then varied A to ob-
tain the results shown in Table XV. The data in-
dicate a possible weak minimum in the energy at
about A. =15 A and a definite rise in the energy for
small X. Francis, Chester, and Reatto found an
0.5 'K decrease in the energy with X = 2 A using
their PY2XS integral equation.
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