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A kinematical and a dynamical theory of the Okorokov effect are developed by time-dependent perturbation
theory. The peak profile of the coherent resonant excitation is calculated in detail for Het ions. We show that
the peak profile changes very strongly for the various channeling conditions. In almost all cases the half-width
of the peak is comparable with the difference of the higher harmonics position in the Okorokov condition.

I. INTRODUCTION

In recent years, there has been a growing inter-
est in what is called the “Okorokov effect,” that is
a coherent resonant excitation of the electrons
bound in the ion by the periodic Coulomb interac-
tion with the crystal lattice. The ion moving with
velocity v along the atomic row of lattice constant
d is excited at the condition

W, =270v/d

where 7w, is the excitation energy of the ion.

Experimentally, Okorokov’s group' and Lyon’s
group® have reported that a few peaks appear in the
radiation yield emitted from the excited He" ion.
However, few other groups3 have given negative
conclusions. They could not detect any peaks near
the Okorokov condition.

On the other hand, Okorokov et al.' have devel-
oped a theory of the coherent excitation by ordinary
diffraction method. Kondo® has given an expression
of the excitation probability by Bloch’s theory of the
band calculation.

However, at this moment, we have no exact ex-
pression for the peak profile of the coherent ex-
citation. Especially, it will be pointed out that the
coherent excitation probability depends strongly on
the impact parameter, then the channeling condition
could contribute very strongly to the peak profile.

Here, we give a kinematical and a dynamical
theory of the Okorokov effect for ions in a channel-
ing condition. We use the time-dependent pertur-
bation theory with a two-state approximation.

II. KINEMATICAL THEORY

We expand the static (periodic) Coulomb potential
V(R) in Fourier series with the reciprocal-lattice
vector §,

VR)=) VR -R)
1

=Z V exp(- i2718-R), (1)
z

where V,(R - R;) means the Coulomb potential due
to the atom at the position ﬁ The coordinate of
the incident ion is assumed to be determined by the
classical trajectory,

R,(1)=b+7t, bL¥, R=R,(t)+F, 2)

where ¥ is the ion velocity and |b - R,.| means the
impact parameter which is independent of ¢ [see
Fig. (1)].

The coordinate of an electron bound in the ion is
given by R = ﬁo(t) +T which is inserted into (1), and
we obtain
W(R,(¢)+T) = Z Z Vi e exp(-i2ng, * b)

SJ_' &z
x exp(— i2ng,vt) exp(- i278+T),
(3)
where g, and g, are transversal and incident-beam
direction components of §, respectively, (see Fig.
1).

If we consider a periodic atom in the z direction

with spacing d, g, is represented as g,=m/d (m

=0,1,2,...), and we may obtain from (3)
.2mmo
(m)
V= zfz mim exp< p >, (4)
where

1 -
) =— -> (3 = .
Fer 7 Z VgL-Ewm/anp( i21g, *b)

g1
xexp(— 218, T, - i2mmz/d). (5)
+
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FIG. 1. Indication of passing through of He* ions
along the periodic static potentials with lattice spacing d.

3929



3930 S. SHINDO AND Y. H. OHTSUKI 14

Now, we calculate the excitation transition prob-
ability P(t) from the O state to the nth excited state
with the energies E, and E,, respectively;

2

P(t) = hj Vmexp<z—aft)dt , (6)

where V,, is the matrix element of (4) for this ex-
citation. Inserting (4) and (5) into (6), we obtain

~ expli(wy— 2mmo/d)t| =1 | ®
Pl = E Woo— 2mmu/d F"°
m
=Z ng.(T)Iztzéw,,o.va/m (M

where w,,=(E, - E,)/%, and F{™) means the matrix
element of (5).
From (7), we get the Okorokov condition,

W, =(2mm /d)v. (8)
We note that P(f) does not give any condition like
W = (210/d)(1/m) (9)

which is used, for example, by Okorokov et al.
and Lyon’s group.®

When we consider the thermal vibration, F{™) in
(7) is replaced by

F) =Fg) e, (10)
where the Debye-Waller coefficient M is given by
=5 (2mm /d)XuZ); (11)

(u2) being the thermal average of squared displace-
ment in the z direction.

III. DYNAMICAL THEORY
We start from the Schrodinger equation
Y
ﬁ—a%:(H°+V)¢, (12)

where H, and V are the unperturbed and the inter-
action Hamiltonians, respectively. The explicit
expression for V is given by (4).

The wave function y is expanded by

YD) =3 a0, expE,L/R),
R

(13)
Hy = Eydy-
Inserting (13) into (12), we obtain
d .
E(l"=z > FGm explie (M Hay, (14)
R m
where

€)= (B, - E,)/T - (21v/d)m (15)

First, we take a “two-state approximation,”
which means that we may consider only 0 and »
states,

(m)

d
—a,=F{™ exp(ie(m

dt Da,

(;lta" F(m ™ exp(—ie(™) Ha,,

Solving (16), we can get excitation probability at
the initial condition a,(0)=1,4,(0)=0

1
T+ |eCmP/ 4| Fim ]2

=|a,)]*=

xsin?[5(|e{™) |2 + 4|F{m) %)/ %t].

(1)

In the case of very small £, (17) coincides with
(7), the kinematical excitation probability. Fur-
ther, (17) corresponds to the expression first given
by Kondo® by the formal Bloch theory. However,
we note that the matrix element F(,,{,") is different
from that of Kondo, which we show in more detail.

IV. CALCULATION OF THE MATRIX ELEMENTS

We calculate the matrix elements in detail for the
He" ion excitation from the 1ls state to the 4p state,
which corresponds to Okorokov’s experiments. We
take an assumption that electron orbit-range is
smaller than the lattice constant, and

exp(—i278-F)=1-4278-T. (18)

Inserting (18) into (15), the matrix element be-

comes
) dz]

Ff,gl”):%%[ f (b, z)exp< 2mm

Xfwﬂzwod?, (19)

for the s —p (m =0) transition, and
(m)_L 8 lf <-2ﬂm )
Fo h';g[d V(b,z)exp | i 7 %) &

< [ u.5.9,dF, (20)

for the s —p (m =+ 1) transitions, where m is the
magnetic quantum number. Thus we obtain

'F(M)Iz

FOP 1P+ |Fg1 (21)

For the Bohr potential, (21) is rewritten as
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e () (oo () ()]
B[ )1 e b

on the other hand, for the Moliere potential

-2 (2 ()] 5o

In above, a, and a are the Bohr’s screening length
and Thomas-Fermi radius, respectively, (+-*)
means the dipole moment, and (z)*={(x)>+(y)?>. The
coefficients o;, 8; in (23) are the constants appear-
ing in the Moliere potential. K, and K, are the
modified Bessel function of the second kind, and

(ev) “—_;om ’ ,h V)
He'— Ag<100>
100[
Moliere
potential
1.0
BoBkertial
01r

| |
0.5 1.0
\ bmax
b(A)
FIG. 2. Impact-parameter dependence of the matrix
element FY) for the two model potentials.
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r
b,=|b,-R,,|.

In Fig. 2, we show the matrix element F(}) for
a different impact parameter 4. We note the ma-
trix element changes one or two orders of magni-
tude.

V. CHANNELING CONDITION AND NUMERICAL
CALCULATIONS

For axial channeled particles, the impact param-
eter b is limited by b > b,,;,, Where b, is decided
as Ulbmn) =E@*=E,, ¢ beind the angle between
atomic string and ion trajectory. U is the Lind-
hard’s continuum potential. When E, is conserved,
the impact-parameter-dependent physical quantity
f(b) is averaged along its trajectory by®

1 bmax

E—'-: 77(bma\2 - bmmz)

2 F®)v(b)ab, (24)

dmin
where v(d) is assumed as 27b for the axial channel-
ing case, and 7,2 = (Nd)~' (N is the average num-
ber of atoms per unit volume).

Here we consider the transition probability P(?)

He™Agaon 19y <P,

o

0
ER—EI'( keV)

FIG. 3. Peak profile of the coherent resonant excitation
(P(t)),;l for various channeling conditions (i.e., incident
angle ¢ =0°, 0.8°, and 0.44°) in the case of He*

— Ag(100). E; is the incident energy and E, is the res-
onant incident energy strictly corresponding to the
Okorokov condition; in this case E, =526 keV.
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for various channeling conditions. Then we obtain

1 dmax

P, = P(t)27b db. (25)
T

(b max2 - bmi.nz) dmin

In Fig. 3 we show the E - dependent transition
probability (P(t) B, for various channeling condi-
tions. It is worthy to note that the transition prob-
ability (P),, depends strongly on the channeling
condition. For example, the half-width of (P) e,
changes for one order, which may include so many
higher harmonics (i.e.,m =2,3,...).

VI. CONCLUDING REMARKS

A kinematical and a dynamical theory of the
Okorokov effect were developed by time-dependent
perturbation theory. The peak profile of the coher-
ent resonant excitation was calculated in detail for
He" ions in Ag(100). The calculated peak profile

is comparable with the difference of the higher-
harmonics position in the Okorokov condition.

Our results suggest that the dynamical effect pre-
vents finding the Okorokov peak for very “good”
single crystals. So we have to use “bad” single
crystals, for example, polycrystals. Another good
means of detecting the Okorokov peaks is to take a
hyperchanneling condition or semichanneling con-
dition with the long impact parameter, in single
crystals.
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