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The role of anharmonicity of the phonon spectrum in superconductivity is discussed. The anharmonic phonon-
electron coupling is calculated under quasiharmonic approximation. A procedure for calculating this coupling
from the neutron data is outlined. The superconductivity in metal-hydride (deuteride) systems is discussed in
the light of aforementioned anharmonic phonon-electron coupling.

I. INTRODUCTION

In the recent past the author has formulated a
phenomenological theory of superconductivity
and opposite isotope effect in PAH(D) systems
based upon a simple three-square-well-potential
model.! In contradistinction to many other theo-
ries?™ the three-square-well-potential model
takes into account the participation of relatively
soft optic-phonon modes in BCS-type® coupling
in palladium hydride (deuteride) systems. It was
also pointed out that the anharmonicity emanating
from the large zero-point amplitude of the hydro-
gen motion, relative to that of deuterium, is the
main cause of the observed opposite isotope ef-
fect. I would like to point out, in passing, that the
aforementioned explanation of the opposite isotope
effect, which is based on tha anharmonic phonon
spectrum, is basically distinct from the explana-
tion of Miller and Satterthwaite,® which takes into
account only the diffevences in the electvonic den-
sities of states in PdH compared to PdD and thus
has nothing to do with the role of ankarmonic
phonons in the superconductivity of these systems.
Recent tunneling experiments’™ prove decisively
that the optic phonons are participating in the
electron-phonon coupling in these systems. More-
over, the tunneling experiments of Dynes and
Garno® found the ratio of hydrogen to deuterium
optic-mode frequencies to be 1.5 instead of V2,
the latter value is expected from a harmonic theo-
ry. The most recent neutron scattering experi-
ment'® shows the shift of the optic mode in PdH,_ ¢,
well beyond a factor of V2 of PdD,_g,, indicating
a strong anharmonic optic phonon in PdH. These
experimental results prompt us to reiterate the
statement that the major contribution to the op-
posite isotope effect is the change in the phonon
spectrum due to anharmonicity leading to a dif-
ferent electron-phonon coupling and no? primarily
due to the purely electrvonic density-of-states
change as proposed by Miller and Satterthwaite.®

Superconductivity in palladium-noble-metal—

hydrogen (deuterium) systems has been reported*!
and the highest T, attained is about 17°K. The
mechanism of enhanced superconductivity and
other related observations has been discussed
qualitatively by the author in a recent publication.'?
It was pointed out in that paper that since the
Griineisen constant of the optic mode, as calcu-
lated™ from the pressure dependence of T, in
PdH(D) systems, is quite small the effect of lat-
tice expansion by noble-metal addition may have
little effect on the position of the optic mode. How-
ever, heat-of-absorption experiments' suggest
different energies for hydrogen bonding to the
lattices of these alloy systems compared to pure
palladium and this may result in the changes in
the position as well as the widths in the optic-
mode spectra in noble-metal alloys. The neutron
scattering experiment on the Pd-Ag-H system!®
shows a broad bandwidth of the optic mode.

The role of anharmonicity in the theory of super-
conductivity was neglected in the past because
the phonons in most of the superconductors can
essentially be described by the harmonic approx-
imation. Moreover, the isotope mass, which re-
sulted in a change of 1 in hundreds of mass units,
affected the phonon frequencies but did not violate
the harmonic approximation. The situation is
drastically different in the metal-hydride (deu-
teride) systems. Because of the large zero-point
amplitude of hydrogen compared to that of deu-
terium and the large relative changes in the iso-
tope mass, one must take into account appreciable
anharmonic effects in the theory of superconduc-
tivity. The purpose of this paper is just that, that
is, to incorporate the anharmonic phonon-electron
interaction in the Eliashberg formalism of the
theory of superconductivity. It will also be shown
that the effects of anharmonicity on the electron-
phonon coupling A can be calculated from the
available neutron scattering information. A quan-
titative calculation of A for the PdH(D) systems is
postponed until a future publication while the form-
ulations and the procedures of such a calculation
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will be discussed in Sec. II. The paper is organ-
ized in the following way: In Sec. II we describe
briefly the relevant modifications of the Eliash-
berg!®-McMillan'’ theory of superconductivity due
to anharmonicity in the phonon spectrum. The
anharmonic phonon Green’s function and the cor-
responding spectral weight function are described
in Sec. II. In Sec. IV the superconductivity in the
metal-hydride (deuteride) systems is disucssed
in light of the theory and the procedure for calcu-
lating the anharmonic phonon-electron coupling
constant using neutron data is described.

II. ANHARMONICITY AND ELIASHBERG-MC MILLAN
THEORY

In the Eliashberg’s formalism of the theory of
superconductivity the normal and the supercon-
ducting electronic self-energies involve the elec-
tron-phonon interaction function o?(wy)F(g, w,).
This function can be expressed in terms of the
phonon spectral function® ! and the electron-
phonon matrix element as

P(0)F@, 0 = D Lien A, wgbl€g),  (2.1)

where gi;., is the electron-phonon matrix element,
AQq, w,) is the spectral weight function of the pho-
non spectrum, and k’=k+3. In the deformation-
potential approximation the electron-phonon matrix
element is given by

n vz oo,
Sy = <2MVNwa> gv(k’ k'), (2.2)
where §, is the well-known electronic overlap in-
tegral for phonon polarization vector v between
electron momentum states k and K’. The & function
on the final state ensures that the final state is
onthe Fermisurface. The averagingof az(w;)F(w;)
over the Fermi surface is given by

Zign 0w F(wg)d(eg)

a?(wF(wy) = (2.3)
¢ Eiué(iiu)
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(2.4)

The electron-phonon coupling constant X is given
by the integral

A=2 [ dwg@?(wpFlwy)/w; (2.5)
For harmonic phonons the spectral function
A(G, wy) is merely a 5 function, given by
A, wg) =0(w - wy). (2.6)
Substitution of (2.6) into (2.4) readily gives

[ dwzse(@F(o -NORGRY/2M,  @2.1)
0

where (92) is the Fermi-surface average of the
electronic overlap integral. One can use (2.7)

in order to integrate (2.5), leading to the McMil-
lan expression'” for X\:

A=NOE)/M (), (2.8)
where
2y _ fd“"q wza? (wa)F(w;)
o [ dwia?(wF(wg)/w; (2.9)

It is customary to assume &?*(w;) to be independent
of the isotopic mass. However, in the PdH(D)
systems, because the amplitudes and the frequen-
cies of H and D vibrations are quite different, the
values of o*(wz) should differ.

For anharmonic phonons one has to calculate the
spectral function A(q, w;) in order to calculate
a?F(w) from Eq. (2.4). For anharmonic crystals,
since the phonons are no longer independent nor-
mal modes of the system, the electron-phonon ver-
tex is very complicated. Physically, the virtual
phonon emitted by an electron at the Fermi sur-
face couples with many phonons in the phonon bath
through the anharmonic coupling. In this situation,
to the author’s knowledge, the modification of
Eliashberg’s formalism is not known. In what fol-
lows, we will restrict ourselves to the quasihar-
monic approximation in which the third-order and
the fourth-order anharmonicity will lead to the
shift and broadening of the phonon modes keeping
them independent normal modes of the crystal.
The calculation of the phonon self-energy giving
shift and broadening parameters is the subject of
Sec. III.

IIl. ANHARMONICITY AND PHONON SPECTRAL
FUNCTION

The spectral function A(q, wg) is given in terms
of the phonon Green’s function D(q, w3) by the rela-
tion

A(ﬁy “"&)=—(1/7T)ImD(-‘i, wa)° (31)

The calculation of the phonon Green’s function for
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the anharmonic crystal is summarized as follows:
The Hamiltonian of the anharmonic crystal inclu-
sive of third- and fourth-order anharmonicity is
given by?°

H,= Z éh’ﬂ;(a;a; +a; az), (3.2)
q

HP= 30 V@EGE)A; 43, A, 3-3)
h,%,%

HP= 3 VELLLA; A, A5 Az, (34)

Q,92,9,9%

where Az=az+a¥, a* and ag being phoénon creation
and annihilation operators and

- 1 - -
V(6,8:8) = gxr7z 80+ +3,)

1/2
x(——i——> sGELE),  (3.5)
8(231S2325233
- 1 - - - -
V(8,8:059,) = 557 4@, +% + 5, 4
4
x<——i—>¢(alazﬁsﬁ4). (3.6)
8523152§2$253S234

Here H, is the harmonic Hamiltonian, and H$’
and HY are the third- and the fourth-order an-

12 -
AGH w) = + Z V(-4474, - q.z)(2na1 +1)
94

18

harmonic Hamiltonians, respectively. Qg is the
harmonic frequency of the crystal and &’s are
Coulomb coefficients defined by Born and Huang.
A functions conserve the total crystal momentum.
If the harmonic phonon frequencies of the system
are known one can calculate the anharmonic ef-
fects by switching on the anharmonic interaction
and calculating the third- and fourth-order poten-
tials from (3.5) and (3.6).

The self-energy contributions from the third-
and fourth-order diagrams are given by°

2@ =188 37 3 V(-GLIVEA -8, - %IG (G, iwy,)
ae M

X G1(@,, i(w, ~ w,,)), (3.7
ZW=-126 303 V(-G0E, - §)C (G, iw,),
qy n

(3.8)

where G;’s are matrix elements of the thermo-
dynamic Green’s functions. The total self-energy
can be expressed in terms of Hermitian and anti-
Hermitian parts as

Z(q4’ w) = p7A (G4’ w) + ipAT (GF' w), (3.9)

where

4,9

and

- .Z V(-44,8,)V(@ - 4,5,) ((w+ &, + )7 + @, 0=y + o

TG w)= -1—:—-” Z: V-8, G)VE - § - &A- (na1 +ng + 1)[8(w+ R + Qae) - 8(w- R - Qm)]

a9

ny’s are Bose-Einstein distribution functions and
P refers to principal-value summation. For an
external probe of frequency 2, the A and I' can
be calculated if the harmonic analogs of the sys-

nG +ng+1 ny +ngp+1 ng, — NG (3.10)

- (ng, - n3 )[8(w - 95 - ) - 8w+ - Q) [} (3.11)
land thus the spectral function is

A, w) = % (Q%- w2+§g:£)2+49%1’2 : (3.13)

tem are known.?° Once the self-energy of the an-
harmonic phonon is known the phonon Green’s func-
tion corresponding to anharmonic crystal can be
written as

2Q;

D@, w)= [T TR Y (3.12)

The anharmonic phonon spectral function can now
be used in Eqgs. (2.4) and (2.5) in order to calculate
the anharmonic phonon-electron coupling constant
M. Note that for small w the A(g, w) is independent
of w whereas I'(g, w) is linear in w.
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IV. ANHARMONIC PHONON-ELECTRON COUPLING
AND SUPERCONDUCTIVITY IN METAL
HYDRIDE (DEUTERIDE) SYSTEMS

Since the spectral function for the anharmonic
phonon spectrum is no longer a 8 function the in-
tegrals involved in calculating the a®F(w) and the
coupling parameter A are nontrivial. However,
one can make use of the following identity to carry
out the integral:

.m dw _ D("I’w:o)
- Alg,0)=- —H5—". (4.1)

Identity (4.1) is valid for any spectral function A.
The static phonon Green’s function for the anhar-
monic phonon is given by [cf. Eq. (3.12)]

D(g,w=0) _ Q5
2 T 95+2Q:4(w=0)

(4.2)

The static anharmonic frequency 2, is defined by
- 02 _
Qi—QE+2$25A(w—0). (4.3)

If we assume that the electron-phonon coupling
parameter g is inversely proportional to the static
anharmonic phonon frequency and use the well-
known sum rule

f dw wA(§, w) = g, (4.4)
0

then the first moment of a®*F(w) is independent of
the phonon parameter and only dependent on the
electronic parameter P, of the system:

° 2 — Pe
j(; dw wa?F(w)= o7 (4.5)
This leads to the well-known'” expression for the
electron-phonon coupling parameter with the only
difference that the harmonic phonon frequencies
have to be replaced by static anharmonic fre-
quencies 4, i.e.,

A=P,/M(Q3). (4.6)

It is interesting to note here that, under the quasi-
harmonic approximation, neither phonon lifetime
effects nor the dynamical frequency shifts enter
into the anharmonic phonon-electron coupling.

The effect of anharmonicity on X is totally governed
by the static shift A(Q=0) of the phonon mode from
its harmonic position.

Let us now discuss superconductivity in the
metal-hydride (deuteride) systems in light of the
anharmonic phonon-electron coupling. It was
pointed out early in this paper that the hydrogen
vibrations in the palladium cage are much more
anharmonic than that of deuterium. Let us as-
sume also that the phonons in PdD are the har-
monic analog of phonons in PdH except for the

mass factor of 2. Moreover, we will assume

that the electronic parameters of PdH and PdD
are not drastically different. The latter assump-
tion is supported by the fact that the lattice con-
stants in PdH and PdD are almost identical and
the densities of states at the Fermi surface are
not much different. Under these realistic assump-
tions one can write

Apap M (S5 (PdH)) .

Xean M (%(PdD)) ’ %))

where A(PdH) is the static anharmonic phonon
frequencies in PdH, and Q. (PdD) the harmonic
phonon frequencies in PdD. Now £ (PdH) can be
written in terms of harmonic frequencies of PdD
and the static frequency shift A(2=0) as

Q34 (PdH) = 2sz§(PdD) +2V2 Q3(PdD)A(w=0). (4.8)

Substituting (4.8) in (4.7) and decoupling the av-
eraging scheme for two terms in Eq. (4.8) one gets

thD o [1 + "/_2- <A(w = 0)/Qa(PdD)> ]APdH. (4.9)

Equation (4.9) indicates a reduction in the elec-
tron-phonon coupling due to anharmonicity if the
static anharmonic phonon frequency shift is posi-
tive, i.e., A(2=0)>0. This will imply a stiffen-
ing of the force constant by anharmonicity. As
mentioned earlier the tunneling data and the neu-
tron data do indicate a stiffening of the force con-
stant between Pd-H compared to that of Pd-D.
Equation (4.9) in conjunction with available neutron
data and Born-von Kidrman analysis provides us
with a prescription for calculating the change in
A from the PdD to the PdH system. A numerical
calculation of that sort will be attempted in the
future.

In conclusion, we have attempted to demonstrate
the effect of anharmonicity in the theory of super-
conductivity in metal-hydride (deuteride) systems
using existing ideas on anharmonic phonons?° and
a general spectral-function representation.’® We
have indicated a simple procedure for calculating
the change in the electron-phonon coupling param-
eter X due to anharmonicity using available neutron
data and their analysis. The theory outlined above
clearly shows that for a positive static shift of the
harmonic phonon modes, the anharmonicity will
lower the magnitude of the coupling parameter.
This result is in qualitative agreement with the
opposite isotope effect in PdH(D) systems, and the
tunneling and the neutron scattering data indicating
a stiffening of the force constant in PdH compared
to that of PdD. However, a quantitative calcula-
tion of the change in X and thus the superconduct-
ing T, for PdH(D) systems will be the real test of
this theory. Finally, there are a few assumptions
in this theory, viz., the assumptions that the
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electronic parameters are equivalent in PdH(D)
systems, that the PdD phonons are almost har-
monic, that the anharmonicity is not so important
for Pd vibrations, and that there is no optic-
phonon-induced anharmonicity in the acoustical
phonons. In view of experimental information

on lattice constants, densities of states at the
Fermi surface, changes in the acoustical-phonon
spectra from neutron data on PdH(D) systems

we feel that the assumptions are realistic and
will not change the physics of the situation in a
qualitative way.
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