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On the basis of an analysis of transport-coefFicient data for dilute solutions of 'He in superfluid 'He, Kuenhold
and Ebner found evidence that the interaction between 'He quasiparticles depends on the concentration of
'He, We have estimated the size of concentration-dependent contributions to the efFective interaction,
assuming the zero-concentration form of the interaction to be known. These contributions vary as x '", ~here
x is the concentration of 'He atoms, and are appreciable even for concentrations of a few percent. We find
that the theoretical estimates of the spin-diffusion coefFicient and thermal conductivity in the low-temperature
limit are generally reduced by the concentration-dependent contribution to the interaction. For a simple form
of the zero-concentration interaction the experimental data on these transport coefFicients for 1.3- and 5-at.%
solutions can be fitted significantly better if the concentration-dependent terms are included than if they are
neglected.

I. INTRODUCTION

A wide range of properties of dilute solutions
of 'He in superfluid 'He can be accounted for rather
well on the assumption, that the interaction be-
tween 'He quasiparticles is independent of con-
centration. "Recently, however, Kuenhold and
Ebner' have shown that the experimental low-
temperature thermal. conductivity and spin-dif-
fusion coefficient data can be fitted much better
if the effective interaction between 'He quas ipar-
ticles is assumed to depend on concentration.
From their fits they find that the long-wavel. ength
effective interaction for 5-at.% solutions is 1.3
times the value for the potential that fits best the
experimental data for both 1.3- and 5-at. /o solu-
tions.

In this paper we investigate theoretically finite-
concentration contributions to the effective 'He
quasipa. rticle interaction. The dimensionless
parameter which gives a measure of the magnitude
of the concentration-dependent terms is &(0)V(0),
where N(0) =m ~Pz/w'S' is the density of 'He quasi-
particle states of both spins at the Fermi sur-
face (m* is the quasiparticie effective mass and

P~ is the Fermi momentum) and V(0) is the long-
wavelength He quasiparticle interaction. With
V(0) given by the Ba.rdeen, Baym, and Pines"
expression

V, ,(0) = —a'm, s'/n„

where + is the relative excess molar volume of
an 'He atom in liquid 'He, m4 is the mass of an
'He atom, s is the velocity of sound in 'He, and

n4 is the number density of 4He atoms, this di-
mensionless parameter at the vapor pressure
is 1.3x'~', where x is the fractional concentration
of 'He. Thus, because of the x&' dependence,
this parameter is large even for rather small
concentrations: it is = 0.5 for 5-at.fo solutions,
and for a concentration as small as 1.3 at. k the
parameter is 0.3. In retrospect then it is hardly
surprising that the effective interaction is found
to depend on concentration.

To make quantitative estimates we shall assume
the "bare" interaction, that is the zero-concen-
tration form of the effective interaction between
quasiparticles to be known and will use pertur-
bation theory to evaluate concentration-dependent
contributions. This is described in Sec. II, where
we evaluate the effective interaction to second
order in the bare quasiparticle interaction. , one
which we take to be independent of velocity. The
calculation of the transport coefficients in the low-
temperature limit is described in Sec. III, where
we also fit our results to the experimental data.
The magnitudes of the various concentration-de-
pendent contributions to the effective interaction
are compared. The long-wavelength interaction
is found to be enhanced by about 10% for 1.3-at.%
solutions and by about 40% for 5-at.% solutions.
The results are discussed in Sec. IV.

II. EFFECTIVE INTERACTION

Landau Fermi-liquid theory has proved to be
a powerful way of parametrizing the properties
of strongly interacting Fermi systems at low
temperatures. In this one expands quantities in
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FIG. 1. Contributions to the concentration-dependent
interaction of second order in the zero-concentration
interaction.

terms of the deviati«of the quasiparticle dis-
tribution function from its value in the ground
state. For dilute solutions of liquid He in super-
fluid 4He at low temperatures one can use a vari-
ant of Landau theory in which one treats as the
expansion parameter the 'He quasiparticle dis-
tribution itself, and not just its deviation from
the ground-state value. Bardeen, Baym, and
Pines' have discussed in detail the terms in this
expansion up to the second-order term, which
takes into account the interaction of a pair of
'He quasiparticles in pure 'He. At finite con-
centrations of 'He the effective interaction be-
tween quasipartieles differs from the zero-con-
centration interaction as a consequence of the
modification of the scattering processes by the
presence of the filled Fermi sea of quasiparticles.
One class of corrections is represented diagram-
matically in Fig. 1. These processes are ones
in which the zero-concentration interaction, de-
noted by the dashed line, acts twice. Figure 1(a)
represents a screening of the bare interaction,
and Figs. 1(b) and 1(c) represent vertex cor-
rections. Figure 1(d), an exchange correction
to the simple screening, is the same as Fig. 1(a),
but with exchange interactions in place of the
direct interaction. Finally, Fig. 1(e) is the modi-
fication, due to the Fermi sea, of the repeated
scattering of two quasiparticles. In evaluating
these terms one must be careful to remove all
contributions which are independent of concen-
tration, since these are (implicitly) included in
the bare interaction. What this amounts to in
practice is that all contributions which are not

V = —V
d3P n p+g —n p

g)3 e(l p2 pl)
p+q p

(4)

dp np —np$
(2' )' ~- —e

x VB(l p| - pl ) Vs(l p - p, +ql ),

d p n +.n
V, =— Pj+ P2 P

(2vA) t +E' —e —e
P1 P2 P P1+ P2 P

&(I p, —pl) v, (I —p, + p+ ql),

(6)

(6)

proportional to at least one power of the 'He quasi-
particle distribution n

p
must be discarded. The

contributions from all the processes 1(a)-1(e)
are of order N(0) V(0)- x'~' relative to the bare
zero-concentration interaction.

A further class of corrections comes from
higher-order terms in the Landau expansion. The
simplest of these is the intrinsic three-quasi-
particle interaction, which wil. l give rise to a
contribution to the effective interaction between
pairs of quasiparticles. This term is of order
x relative to the bare interaction, and can there-
fore be neglected relative to those shown in Fig.
1. A further contribution which is of relative
order x and hence can be neglected comes from
the fact that for the solutions the Landau expan-
sion is usually made keeping p, 4, the 'He chemical
potential, fixed, whereas experimentally one
usuall. y compares results for different concen-
trations at fixed pressure. Thus the leading finite
concentration contributions to the effective inter-
action between pairs of quasiparticles come from
the processes represented in Fig. 1. We further
note that for calculating transport coefficients
at temperatures well below the Fermi temper-
ature, only scattering of pairs of quasiparticles
is important.

For calculating low-temperature transport
properties one needs the scattering amplitude
only for initial and final quasiparticles very close
to the Fermi surface, and therefore in evaluating
scattering amplitudes we shall put the momenta
of all quasiparticles in initial and final states
equal to P~. Consider first the scattering of two
particles with opposite spins. Using the standard
rules for evaluating contributions from Feynman
graphs, one finds the following expressions for
the various contributions to the effective inter-
action:

V -2V'~ &

d'P nP+q -n
8 Q%7J

(2 @)3 p+g p

V = —V
d p n p n p g

6
p

—E
q
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where &- is the 'He quasiparticle energy, q isP

the momentum transfer, k=-p, —p, —q is the mo-
mentum transfer for exchange scattering, . and
Va is the bare (zero-concentration) quasiparticle
interaction. For simplicity we assume the volume
of the system to be unity.

To evaluate the integrals in (3}-(6)one needs
an explicit form for the bare quasiparticle inter-
action. We shall follow most previous workers
in assuming that this depends only on the momen-
tum transfer, and is independent of the center-
of-mass velocity of the pair of quasiparticles.
The term depending on the total momentum must
be of order v z/s' - x ~', where vz is the Fermi
velocity, times the other terms, and therefore
it is not important in the low-concentration limit.
We further note in passing that one velocity-de-
pendent contribution, that coming from the usual
dipolar interaction between quasiparticles due
to exchange of longitudinal current fluctuations,
must vanish identically for processes in which
the initial and final quasiparticles are on the
Fermi surface. This follows immediately from
the fact that in such a process the energy of a
quasiparticle in unchanged, and therefore, from
the equation of continuity, creates no longitudinal.
current.

In the limit &-0 one may put the bare interaction
equal to V(0), since all momentum transfers then
tend to zero. However for the 1.3- and 5-at.%
solutions the q dependence cannot be neglected
since the phenomenological interactions for q
-2P~ differ appreciably from their valuesat q=0,
even though the q-dependent terms are formally
of order x@' relative to the q-independent ones.
To estimate the integrals in (3)-(6}analytically
we shall take the bare potential to be of the quad-
ratic form

Va(q) = Vo[ 1 —2f (q /2Pz)'],

which, for suitable choices of f, is a rather good
approximation to the phenomenological potentials
commonly used. "' The choice of f will be dis-
cussed in Sec. III. Since approximation (7) is
made only in the integrals in the concentration-
dependent terms it is unlikely to l.ead to serious
errors ~ A compar is on of this approximate po-
tential with the Bardeen, Baym, and Pines' (BBP)
potential will be given in Sec. III.

At zero temperature, n
p

is just a step function
at the Fermi surface, and the integrations in (3)-
(6) may be carried out straightforwardly. The
details of the integrations are somewhat lengthy,
and are given in the Appendix. We find

V, (r})= -&(0)Vs(n)X(q),

V, (n)+ V, (n) =&(o)V&(ri)V. (X(n) —4f [I+3X(n)(I -0'))),

V, (rl, 8) =-.'X(0)V', &-f +f'(1 ——, f.
' —~l')+X(t)[2 —3f(1 —&')+f (1 —

& )( (1

(8)

(9)

(10)

1 4 2 0 2 46 14 2 6 2 ~ 6
V, (r}, 8) =N(0) V', —+f ——+cos' — +f' ———cos' —+ —cos'—

2 3 2 45 9 2 3 2

f 8 f, 8 . 8 I+sin~8
+ ——+—sin' ———sin' — sin —ln 1

4 2 2 3 2 2 1 —sing 8

4 cos' —,'8 sin'-, 8 1 +sin —,8
+ 'q' ——+ + ln

Here q = q/2', q =
( p, —p, ( being the momentum

transfer, $ = k/2Pr, k =
( p, —pJ being the mo-

mentum transfer in the exchange channel, and
t}r is the angl. e between p, and p, . p, and p, are
the momenta of the quasiparticles in the final
state. Note that for quasiparticles on the Fermi
surface

+q' = sin' —,'6) (12)

and we may therefore express quantities in terms
of q and 8 alone. X(q} is the Lindhard function,
normalized to unity at long wavelengths, which
has the form

X(q) = — 1+ ln
1 1-g' g +1

2r] q —1 (13)

= Va(n)(1 —&(0)Va(n)X(n)

+ &(0)v. I x(n) 'f [ I 3x(n+)(I n'}]-)-)-
+ V~ (r}, 8, x) + V, (q, 8, x). (14)

Adding (8)-(11)and the bare interaction one finds
for the total effective interaction between quasi-
particles of opposite spin to second order in the
bare interaction

V,„(q, 8, x)
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There are a number of points to note about this
result. First, V,« is velocity dependent; it de-
pends on the total momentum as well as the
momentum transf er, even though the bare potential
depends only on the momentum transfer. Second, in
the low-concentration limit Vs(q) tends to Vs(0) since
all momentum transfers tend to zero, and f tends to
zero. V,« is then identical with Abrikosov and Kha-
latnikov's' result for a dilute Fermi gas of particles
of mass m, if one makes the identification

V, = (4vh '/m) a, (15)

where a is the scattering length. Note that in this
limit the screening and vertex correction con-
tributions V, , V, , and V, cancel each other iden-
tically. Third, V,«diverges logarithmically as
0 tends to m, or equivalently the total momentum

~ p, +p, ~
tends to zero. This is of course the same

singularity that gives rise to the instability of a
normal metal in the presence of a weak attraction
between electrons, as in the theory of supercon-
ductivity. "As far as we are concerned the sin-
gularity is not important, since all the averages
of V,«we need for calculating transport coef-
ficients converge. It should also be pointed out
that for a repulsive interaction the singularity
is removed when repeated scattering of two quasi-
particles is taken into account, and for an at-
tractive interaction (as in the dilute solutions)
repeated scattering will presumably give rise to
superfluidity at sufficiently low temperatures. At
temperatures close to the superfluid transition
temperature the repeated scattering could affect
the transport coefficients appreciably, as Emery'
has pointed out, but we are concerned here with
temperatures large compared with T, , where
the effects of repeated scattering are small.

III. TRANSPORT COEFFICIENTS

The spin-diffusion coefficient D and the thermal
conductivity K of dilute solutions of 'He in 'He
have been measured for concentrations of 1.3
and 5 at.%. ' In this section we calculate the
transport coefficients in terms of V,«and com-
pare experimental and theoretical values. The
quasiparticle Boltzmann equation has been solved
in the low-temperature limit by Brooker and
Sykes" and by Hifjgaard Jensen, Smith, and Wil-
kins, "who find

1++~ is the susceptibility enhancement factor,
and n, is the number density of 'He atoms. The
relaxation times 7 in (16)-(18)are given by

2v+1
v' „=... v(v+1)[ v(v+1) —2Ax]

12 —n2 12 2v+ 1
+ —A,

w~ x v2(v+ 1)2

1
X

v(v+ 1) —2Ax '

(19)

and

7n 2 2v+1
v' „.. . v(v+ 1)[v(v+ 1) —2AD]

1 4 2v+1—+ —A,
6 v' „.. . v'(v+ 1)'

X— 1

v(v+1) —2X~ ' (20)

~7 2 2v+1
v', ~~3, v( v+ 1)[ v(v + 1) —2A. ~]

1 4 ~ 2v+1= —+ —A.

X
1

v(v+ 1) —2A. „'
with the characteristic time given by

8m~A 6 1
m*'( W(8, Q, x)/cos —,'8) hs2T'

(21)

(22)

Wii (8, @,x) =(2v/h )i V,«(q, 8, x)i', (23)

W)t (8, Q, x) = (2w/h)( Vff(q, 8, x) —V,f($, 8, x)~2.

The symbol ( .) denotes an angular average;
8 is the angl. e between p, and p„Q is the angle
by which the plane containing the final quasipar-
ticle momenta p, (=p, —q) and p~(=p, +q) is rotated
relative to the plane containing the initial mo-
menta p, and p„and k~ is Boltzmann's constant.

The effective interaction for quasiparticles of
opposite spin is just V«(q, 8, x), and for quasi-
particles of the same spin both direct and ex-
change terms must be included, so the effective
interaction is V«(q, 8, x) —V,«(t', 8, x). Thus the
corresponding transition probabilities are

and

K= 3cyv p T~~
2

D = —,'(1 + F ', )v 2r 7D,

(16) (24)

The usual spin -averaged trans ition pr obab ility is

W(8 Q x) —g W$f (8, Q, x) + —,W)) (8, Q, x). (25)
1 g 2

q = 5 +,m*v~7„,

where c~ is the specific heat per unit volume,

(18) The parameters ~~, ~D, and ~„, are defined as
follows:



(W(8, g, x) cos&/cos&8}
( W(8, Q, x)/cos~ &)

{Wig (8, &P, x) sin'28(l —cosP)/cosg&)
( W(8, @,x)/cos~ &}

(27)

( W(8, P, x) sin' —,'&sin'Q/cos&8)
{W(8, P, x)/cos&8}

f = (8/+)ll'0'rig', (3o)

and a plot of the quadratic form with this value
of f is also shown in Fig. 2. In our calculations
we have used this value for f. Throughout we
have assumed Vo= Vs(0).

The spin diffusion coefficient, thermal con-
ductivity and viscosity fox' 1.3- and 5-at.% solu-

The purpose of this paper is to explore the size
of the concentx'ation-dependent contributions to
the effective interaction, so we use the simple
two-parameter form of the bare interaction sug-
gested by BBP,

V&(e) = V. «»(Pe/I )

More-complicated expx'essions for the potential
have been used, such as polynomials, '" but here
we choose a simple form since our aim is tain-
vestigate concentration-dependent effects rather
than to obtain the best possible fit to the data.
Nevertheless, as we shal. l see, even with the two-
parameter bare potential one can, allowing fox
concentration dependence, fit the transport-co-
efficient data much better than with a concentra-
tion-independent potential with a larger numbex"

of adjustable parameters. '~

In evaluating the concentration-dependent terms
in Sec. II we assumed that in integrals the bax e
interaction may be replaced by the quadratic form
( I). For low concentrations, clearly the appropri-
ate choice for f is P2P2z/I2, which gives correctly
the q' term in the BBP potential. However for
concentrations of 1.3 or 5 at.Q this is a poor ap-
proximation, as one can see by inspecting Fig. 2.
There we show the BBP potential and the quad-
ratic form which agrees with it for q-O. The
values of 2', the maximum momentum transfex'

tt gp tl t p t
indicated. The range parameter I3 is taken to be
3.16 A, the value which gives the best fit to the
transport coefficient data (see Table I, column C).
A Dluch bettex' fit to the BBP potentlRl ls GbtRlned
over the range of momentum transfers of interest
if the quadratic form passes through zero for the
same momentum transfer as the BBP potential. .
This choice ls equlvRlent to taking

0

-0.06

0.

FIG. 2. Comparison bebveen the BBP potential, the
quadratic expansion of Vggp aboUt f 0 y aIld the quadratic
approximation Isee Eqs. (7j and (30)). The parameters
chosen ax'e Vo —-- 0.067m4s2/n4 and /=3. 16 A.

tions have been calculated from Eqs. (16)-(28)
for various values of Vo and P. . The integrals
over the angles 8 and Q were carried out numer-
ically. For m* we used the experimentally mea-
sured values at the two concentrations. ' In the
calculations reported below we put Vs(q) in the
expressions for V, , V, , and V, [Egs. (8) and
(9)] equal to the full BBP potential. One might
argue that for consistency one should replace
+g by the quRdx'Rt1c Rpproxlmatlon used 1n cRl-
culating the integral. s; however, the two pxe-
scriptions give x'esults for the transport coef-
ficients which differ from each other by less than
or of the order of 1%, and thus the difference
is unimportant.

First to see how important the concentration. -
dependent terms are we have calculated the trans-
port coefficients using the BBP potential that fits
the data best when the concentration-dependent
terms are neglected. To determine the best values
of Vo and P one shouM, in principle, minimize

However, since the errors on the experi-
mental values ax'e not well determined, and the ex'rox's
on the various measux'ements are probably not too
different from each other we determined the param-
eters by minimizing the mean-squax e deviation of
the theoretical values of D and ~& for 1.3- and 5-at.%
solutions from the experimental values. In the set of
x esults in part A of TaMe I we show the results for
this potential. The first column of part A shows
the values of the tx'3nsport coefficients calculated
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FIG. 3. Vc«and VBgp for a &.3-at.% solution for Vp
=—0.67m4s /n4 and P=3.16 A.. The contributions from
various second-order terms are also shown.

using V,«calculated to second order in V~, while
the third column of part A shows the results for
the same V~, neglecting concentration-dependent
corrections. The difference between the spin-
diffusion coefficients calculated with and without
concentration-dependent terms is less than 5%
for both concentrations. However, the thermal
conductivity changes by 11% for a 1.3-at. /p so-
lution and by 32% for a 5-at. /p solution. The large
change in the thermal conductivity shows the im-
portance of the concentration-dependent terms.

In calculating the results in the first column
of part A, marked I V«I', we have retained
all contributions to V,«of second order in V~.
This is equivalent to retaining in W all terms of
second and third order in V~ and some, but not
all, of the fourth-order terms. To calculate all
the fourth-order terms in W one would have to
calculate V,«to third order in V~. Some idea
of the importance of the fourth-order terms in
8' may be found by comparing the results given
above, which include some of the fourth-order
terms, with those obtained using only the second
and third-order contributions to W. The latter
are given in the second column of part A. As
may be seen from Table I, the fourth-order terms
give a very small contribution, never greater
then 5$, which gives one confidence in the neglect
of higher-order terms.

Next one may ask if the inclusion of the con-
centration-dependent terms enables one to fit the
experimental. data better. In part B of Table
I we show results for the potential which gives
the best fit if one calcul. ates 8' using the square
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FIG. 4. V,«and Va~p for a 5-at.% solution for Vo
= —0.067m4g /n4 and P =3.16 A. The contributions from
various second-order terms are also shown.
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FIG. 6. Vz vsq/f for a. 5-at.% solution for various
angles 8 between the two incoming quasiparticles. The
parameters used are V0= —0.067m48'2/n4 and P= 3.16 A.

of V,«, and in part C are the results for the
potential which gives the best fit if one includes
only the second- and third-order terms in W'.

First one notes that the concentration-dependent
terms ax"e just as important as for the potential
considered in part A. Second, the rms de-
viation between theory and experiment is sig-
nificantly better than in part A. By way of
comparison we remark that for Ebner's" best
eoneentration-independent potential, which has
five parameters, the rms deviation between theory
and experiment is 11.3%.

The viscosity of dilute solutions has been mea-
sured by Kuenhold, Crum, and Sarwinski. " The
data do not define a T ' dependence, but by fitting
the data assuming the relaxation time to have T '
and constant terms they find qT' = 0.28 pP K' at
low temperatures. This agrees quite well with
the values calculated using the concentration-de-
pendent interaction.

%e note that the quadratic approximation used,
with f given by (30), agrees quite well with V»p
for small q, but for 5-at.% solutions the difference
between these two potentials when q = 2P~ is about

O.OI
e=o

'

8= ~/3
8= ~/2

x = l.3%

30%. Other choices of f which give quadratic
forms which are reasonable approximations to the
BBP potential in the xange of momentum transfexs
of interest here give rise to changes in the trans-
port coefficients of the order of a few percent at
most.

The rms deviation between theory and experi-
ment doubles if J3 is changed from its best value
by 6% or Vo is changed from its best value by 4%.
The change in the rms deviation produced by
changing both Vs and P simultaneously by 3% is
of a comparable size. For future reference, we
quote the values of ~ obtained from (26)-(26) using
V,«as in Table I, column B. For a 1.3-at.% so-
lution, A.z—- 0.36, A,+=0.33, and A. „=0.33; and for
a 5-at.% solution ~~ =0.81, ~X=0.30, and ~„=0.58.
If concentration-dependent terms are ignored,
As=0. 32, Ar =0.52, and ~, =0 37 for a.1.3-at.%
solution, while ~~ =0.75, ~~=0.32, and X„=0.54

O.O05

O.O03

s=m/s

8=~
8=o.em
4 l

0.4
q/n &A-')

I

X = l.)o/o
ITl S("".' )

-0.02—

0.2
I l

04
q/5 (A )

1

0.6

FIG. 5. V~ vs q/h for a 1.3-at.% solution for various
angles 8 between the two incoming quasiparticles. The
parameters used are V4-—-0.067m4s /s4 and P =3.16 A.

FIG. 7. V, vs q/8 for a 1.3-at.% solution for various
angles 8 between the two incoming quasiparticles. The
parameters used are Vo= —0.067m4& /n4 and P =3 16 A, .
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—
g

n~ -001
(9 =0.8vr-

-0.05

I IG. 8. V~ vs q/K for a 5-at.% solution for various
angles 8 bebveen the incoming quasiparticles. The

parameters used are Vo ———0.067m4g2/pg4 and P= 3.16 g.

fV. DISCUSSION

for a 5-at.% solution.
It is interesting to compare V,ff and VQ This

is done in Figs. 3 and 4, where we show these
potentials for concentrations of 1.3 and 5 at.%
as a function of momentum transfer, and for
various allgles 8. For q = 0 and 8 = 0, Vqff/Vs is 0.92
for 1.3-at.% solutions and 1.15 for 5-at.g solu-
tions. The large concentration-dependent term
for 8=0.9995m is due to the proximity of the
singularity of V, at 8=v referred to earlier.
The contributions from various terms in V,«are
also shown in the same figures for comparison.
V, is always negative, as may be seen from (2).
The sign of contributions to V~ and V, depends
on the relative signs of Vs(q) and Vs(~ p, - p~). For
1.3-at. /0 solutions and for the values of f of in-
terest here V~ is always negative for momentum
transfers less than 2P~, and therefore V, and

V, are positive. For 5-atgq solutions V~ and V,
are positive for small. q, but negative for larger
q. V is positive for q=0, as is obvious froID
(5), and for the 1.3-at.% solution is always posi-
tive, again because for the potentials we use
Vs(q) is negative for q ~ 2Pz. V, can be negative
for a 5% solution at large q. .Both V„and V,
depend not only on the momentum transfer but
also on the angle 8. We plot these two contribu-
tions to V,« in Figs. 5-8 for the two concentrations.
Vz js relatively small for all angles. For q = 0, V,
is positive for small values of 6) but becomes
negative for large values of 8. V, decreases by
a substantia1. amount as 6 approaches m due to
the singularity mentioned before.

interaction are large, and must be taken into
account in making a detailed comparison between
theory and experiment. A second point is that the
low-temperature transport-coefficient data can
be accounted for better if one takes into account
the concentration dependence of the effective in-
teraction than if one neglects it. However one
must bear in mind that the uncertainties in the
experimental measurements of D and A are prob-
ably comparable with the rms deviations between
the experimental. values and the theoretical ones
ca1culated using the BBP potential. s that give the
best fits. Consequently, the improvement of the
fit when concentration-dependent contributions
are taken into account is a weaker argument for
the importance of these contributions than is the
direct estimation of their magnitude.

It is interesting to compare the values we obtain
for V(0) by fitting the transport coefficient data,
with the theoretically calculated values. Baym"
has recently ca1cu1ated the correction to the BBP
result (1.) to second order in the 'He-'He mass
difference, and finds

V(0) = —(n'+ I')m, s'/n „ (31)

ACKNOW LEDGMENT

where the correction term I' is estimated to be
= 0.01 at zero pressure. Since experimental1y
o. = 0.285,"one expects V(0) = —0.091 (m, s'/n, )
This is considerably more attractive than the
values we find by fitting transport coefficient data
(V(0) = —0.066m, s'/n, ). The reason for the dis-
crepancy between the V(0) values is unclear. Con-
ceivably it could be due to the simple way in which
we have parametrized the bare potential. One
shoul. d note, however, that since small momentum-
transfer processes are relatively ineffective in

degrading fluxes, transport coefficient measure-
ments are not particularly good for pinning down

V(0). We did carry out a fit to the transport co-
efficientdata, forcing V(0) tobe —0.091m,s'/n, .
The best fit was obtained for P =3.27 A, and the
rms deviation between theory and experiment was
very large, about 50%. More experimental. mea-
surements and more detailed calculations should
be helpful in resolving this discrepancy.

The concentration dependence of the effective
interaction will affect other properties of the
dilute solutions, such as the osmotic pressure
and the superfluid transition temperatures. These
effects are now being estimated, and results will
be reported elsewhere.

The main conclusion of our work is that the con-
centration-dependent contributions to the effective

We are grateful to Professor Gordon Baym for
a number of helpful. conversations.
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APPENDIX

To evaluate the second-order terms, we rewrite (2)-(6) in the following form by changing the variable
of integration and using the step-function property of n p.

(A2)

(A 1)
1 pI &&r p p~ p+q

~ p V&(Ip, -pI) Vs(lp, -p-il)
(2 h)' e-dt pI &P p p-q p+g p

,d J V, (lp, -p+ql) V, (Ip, -pl)
(A3)(2vh)' e- —e--J) pI gP p p & p+q p

V. (lp, -pl)V. (lp p, kl) V, (l-p -p, l)V. (IP, -p- I)

V, (I p, -pl) V, (l p+q- p, l)+Vs(l p-p. l) Vs(l p. -p+al)
(2' )'

pt cpg pg p~ p pg+ p2- p

where &
&

=P'/2m*. The integral. in (Al} is very easy to calculate and is proportional to the I.indhard func-
tion defined in (13). Therefore, we have V, (q) = —N(D)V2s(q)x(r)), where )7=—q/2p» is a dimensionless mo-
mentum-transfer variable.

The other four integrals involve Vs(y) or Vs(y) in the integrands. In order to obtain analytical forms
for these integrals, we substitute the quadratic form V,(l —2fy ) for Vs(3)) wherever it appears in the
integrands of (A2)-(A5), as discussed in the text.

In the vertex correction terms V~ and V, , we separate the integrands into two parts, the first of which
involves I/(e

&
—e

& q) —I/(e z+q —e z), which is an even function of P q, and the second of which is pro-
portional to I/(e- —e

z ~)+1/(e z+~ —e z), which is an odd function of P q. Using the symmetry properties
and the fact that p, 'q=-p, q =&q' for 'He quasiparticl. es on the Fermi surface, the integrals may be
simplified and we find

V =V, = —V (q), „V 1 — „,(P +P»)

d3p V~f
s(q)

(2 ~), F2 (p q),
wt plgp w

p p & p+& p

That V, and V, are equal follows from the fact that all quasiparticles in initial and final states are on

the Fermi surface. The angular part of the integral is easily performed if one chooses the ~ axis to be
along q. Vfe are then left with only a single integral over the magnitude of p:

)' (n)&(0))'. ' f . a )3 )' (n)))(0)v.f '
* n p

)5 dp 1 ——1+p') p ln + dp —2p'+ pq ln
0 —p

(A7)

where the dimensionless variable p is P/P».
To evaluate V„, we follow the same procedure as we used in calculating the vertex correction terms,

since the denominator in (A4) has the same form as the denominator of the previously calculated integrals,
except that the momentum transfer q is replaced by k, the momentum transfer in the exchange channel.
Again we decompose the energy denominators in V~ into parts which are even and odd functions of P' &.

Then we use the symmetry properties of the integrands and the facts that q k =0 and p, k = —p, k =&k

for 'He quasiparticl. es on the Fermi surface. %'e obtain

6 p 2
V2 ] p2 ~p2 ~ p2+p2 2+2 kep 2+4 pep po p

1 1

p p~ p+k p

2- k
(2 g) 2& 4P (P P ) ( P )

) p)~P PT p p-k p+k p

The angular part of the integral is performed by choosing the z axis to lie along k and the radial part
is expressed in terms of the dimensionless momentum variable p =P/P». The result is



V, = " dp 1-f(1+p')+ —(1+p') pin
&(0) V'. ' . f' . 5+p

4t 0 4 $-p

+ l dp 2$ +II —eos —2p +$p ln + p In

+ '
~

dp f+-—(1+p') 2p' —Fp In
N(0) V',

i

' f', , g+p
"a 2

The Integrals over p in E((ls. (A7) and (A9) for V» V, , and V(( are of the «rill

(A9)

J dp p'"" ln = + + ~ ~ ~ +a'""+ —(I -a'"")ln
g -p m+1 2n+1 2n —1 2

Suhstituting (A10) into (A7) and (A9) with appropriate values of II and s, we»tat«he e"pressions shown
in (9) and (10).

The denominator in the expression for V, hasadifferent form from alj. the others. It is convenient to
calculate the integral. by working in terms of the total. momentum of the incoming pair of quasipartieles
P =p, +p, . The integral. ean be simplified by again using the fact that p, .q =-p, 'q=&q for 'He quasi-
particles on the Fermi surface, and is given by

N{0)V2
( l 1

4&Py 4t pt gp 2P~ —P —2p +2p' P

2 2 Py+P —p P + g P +Py 2 P +P~ p' P +2 p'p~ +2 p p2

-2(( t()(( (I -i.l&). (A 11)

After one chooses P as the s axis the angular integration is lengthy but straightforward and me are l.eft
with

N(0) V', " {,) f'{,), p'+ 2p eos-,'8+cos8
4cos&8 pa —2p cos-,'8+ cos8

f'{,), p'+cos8 p' +2p cos-, 8+ eos8
2 4cos@8 p' —2p cosg8+cos8

&(0)V',f', ,&8 2
„', p'+2pcos-,'8+cos8

8eos&8, , p' —2p eos-, 8+cos8

f(j'(0)V&f2, 8,8, ' » (P'+eos8)' P' +2P cos-,'8+cos8

(A12)
which contains integrals of the form

p +2p cosg8+cos8I„= I dpp" 1n
p —2p eosy8+ cos81

8 sin~8 1 +sinq8
2 2 1 —sing 8

8 5, 8 sin28 1+sin&8 cos&8sin &8 1+cos&8I, = 2 cos ———eos' —— 1n . , — l,n
2 3 2 2 1 slng8 2 1 -cosp8

{AI2)

8~&31 2 2 8 4 ~ 8 8 . 2 8 1 +cos&8
I2 = 2 cos —

I.
———cos ———cos ——cos —sin —l.n

2 j15 9 2 3 2 2 2 1 —eos&8

1 2 28 . 28 . 8 1+Sin~8—cos 8 in s ln hl
2 3 2 2 2 1 —sing 8

Wltil the llelp of (AIS)—{A15)» we okltaln tile filial forlll fol V(( sllowll ln (11).

(A15)
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¹teadded zn proof. The viscosity of 5-at.%
solutions has also been measured by D. J. Fisk and
H. E. Hall [Proceedings of the Thirteenth Inter-
national Conference on l.ow Temperature Physics,
edited by K. D. Timmerhaus, W J. O' Sullivan,

and E. F. Hammel (Plenum, New York, 1974),
Vol. I, p. 568]; and D. J. Fisk [thesis (University
of Manchester) (unpublished)]. The measurements
are in good agreement with those of Ref. 14.
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GP 40395 and NSF DMR75-22241.
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