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Electron-phonon interaction in cubic systems: Application to niobium*
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To a good approximation the electron-phonon coupling parameter X, which determines the superconducting
transition temperature T, and the electron-phonon mass enhancement, may be written as the product of two

factors: one which depends upon the phonon frequencies, (M(m )) ', and a purely electronic factor q. This
latter quantity is determined by the band structure and the electron-phonon matrix elements. In this paper we

develop a method of calculating q from first principles making only the rigid muffin-tin approximation to
describe the electron-phonon coupling. As an illustration we evaluate q for Nb and discuss the significance of
the calculation with regard to the validity of describing the electron-phonon interaction in transition metals by

the rigid muAin-tin approximation. %'e also attempt to isolate those features of the band structure which

appear to have the strongest effect on T,.

I. INTRODUCTION

In a metal, an electron near the Fermi surface
can be scattered by the thermal vibrations of the
lattice, and it can also emit and absorb virtual
phonons. The first of these processes gives rise
to electrical resistance and ultrasonic attenua-
tion. The second is responsible for a slowing down

of electrons near the Fermi surface, i.e. , mass
enhancement. It also leads to an effective attrac-
tive force between pairs of the electrons via ex-
change of phonons. This is the pairing force which
at sufficiently low temperatures leads to super-
conduc tivity.

In order to understand quantitatively these phe-
nomena one needs a propex description of the elec-
tron-phonon interaction. Ever since the pioneering
work of Bardeen' this has been one of the central
themes in the theory of metals. ' For simple
metals one can introduce a weak pseudopotential
to describe the interaction between the ions and

electrons and therefore, this part of the problem
can be treated in perturbation theory. Then the
only difficult task is to find an adequate way of
taking into account the electron-electron inter-
action, namely, the screening. Thanks to much
work in the field this problem appears to be
reasonab1y we11 understood. ' Qn the other hand,
for transition metals where the electron-ion inter-
action potential is in no sense weak, such first-
principles theory does not exist. Most work in the
past concentrated on the qualitative features of the
problem like the temperature dependence of the
resistivity, and used the electron-phonon matrix
elements as adjustable parameters. ' Under this
circumstance it did not matter much what one
took to be the electron-phonon vertex.

Recently it has been suggested'' that in transi-
tion metals the electron-phonon interaction may be
described by the rigid muffin-tin approximation.
That is to say that one may assume that when one
atomic nucleus is displaced while the others are
held fixed, the total potential change seen by an
electron is proportional to the gradient of the muf-
fin-tin potential which appears in the Schrodinger
equation of band theory.

This construction simplifies the evaluation of the
electron-phonon matrix elements enormously,
since it eliminates the necessity for explicit tres, t-
ment of screening. ' Therefore, establishing its range
of validity, if any, would be a significant step towards
under standing the electron-phonon interaction in
transition metals. However, even after such dras-
tic simplifications it is still not easy to make suf-
ficiently accurate calculations of physical observ-
ables to test the model. Calculation of the electri-
cal resistivity, for example, requires a solution
of the Boltzmann equation, ' and traditional tech-
niques for solving this equation introduce addition-
al uncertainties which make the assessment of the
results difficult.

Fortunately, due to recent advances in theory
and experiments, ' " it now appears to be the case
that superconductivity is not only a sensitive probe
of the electron-phonon interaction, but the manner
of its probing is relatively amenable to theoretical
analysis. In particular, the electron mass en-
hancement parameter X and its electronic com-
ponent q are now known for many materials, "and
these quantities are rapidly becoming accessible
to accurate calculations. ~ " Thus it is now rea-
sonable to hope that such calculations will provide
a quantitative testing ground for the rigid muffin-
tin approximation.
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As was shown by Gaspari and Gyorffy, ' the eval-
uation of the electronic factor g is particularly
easy. By making use of the rigid muff in- tin ap-
proximation they have derived a simple but ap-
proximate formula for q in terms of quantities
which could be obtained during the course of a
fairly standard band-structure calculation. Early
approximate evaluations of this theory were en-
couraging in that they gave a good semiquantita-
tive picture of the trends in the superconducting
transition temperature T, of transition metals,
and som e of their compounds, without fitting pa-
rameters. Subsequently, the formula was evalu-
ated more accurately by Klein and Papanconstan-
topoulos~ ' for a variety of systems such as V,
Nb, NbC, TaC, PdH, V,Si, and metallic H. While
these calculations demonstrated that the theory
gives a useful guide to T„among the most in-
teresting superconductors, they brought to light
some s ignif icant disc repanc ie s between theor y and
experiment for V, Nb, and Ta. Even though not
all of the elements of the puzzle are fully under-
stood at the present, it now seems that a suffi-
ciently accurate evaluation of g will allow a very
direct quantitative comparison between the conse-
quences of the rigid muffin-tin approximation and
experiments. As we have argued above, such con-
frontation between theory and experiments would
be an important step in establishing an adequate
foundation for the theory of electron-phonon inter-
action in strong-scattering systems.

With the above comments in mind we have gen-
eralized the theory of Gaspari and Gyorffy, making
the expression for q virtually exact within the rigid
muffin-tin approximation. Furthermore, we have
developed a rapid and very accurate method for
evaluating the new formula using the constant-en-
ergy search formulation of the Korringa-Kohn-
Rostocker (KKR) band theory due to Faulkner,
Davis, and Joy. We illustrate the method by
evaluating q for Nb. We then discuss the signifi-
cance of the new terms in our expression for g,
and compare our results with experiments and
other calculations. Finally, we make some general
remarks concerning the physical significance of
the quantities which enter the expression for g,
and list some of the conditions necessary to obtain
a high value of g.

II. PHONON EN, IANCEMENT OF THE ELECTRONIC MASS

As a formal background to our calculation we
shall now briefly review the way in which A. arises
in the theory of the electron-phonon interaction. '"
Consider an electron with Bloch energy E~ near
the Fermi energy EF. Due to its interaction with
the phonons, this electron will acquire a self-en-

((u) -1.04(1 + X)

1.2 P
X —p, *(1+.62K)

(2.1)

where (&u) is an average phonon frequency defined
in Ref. 16, and g* is an electron-electron inter-
action parameter.

Little is known rigorously about p* except that
it should be small, due to the retarded nature of
the electron-phonon interaction, " and that it
should not vary very much from one metal to
another. " Tunneling and isotope effect measure-
ments indicate that g* is approximately Q. ]. to
0.15 for mo s t supe rconduc tor s.'"

Evaluating d ReZ(E)/dE at E =E~ yields the fol-
lowing expression for A. (in atomic units) 'o

x5(E, . —E~),

(2.2)

where 0 is the volume of a Wigner-Seitz cell,
V(E~) is the Fermi energy density of states of
one spin, and g,', is the electron-phonon matrix
element for scattering between Bloch states k and
k' due to a phonon of mode number v, frequen-
cy co„', , and polarization vector e,', The elec-
tron-phonon matrix element can be written in
terms of an operator VV, defined so that u. VV is
the change in crystal potential when an atom ex-
periences a displacement u:

&'r y.*(r)~l ." &&0'(r) (2iif~l ) '.

(2 3)

ergy Z(k, E) N. eglecting the imaginary part of this
self-energy, the renormalized energy of the elec-
tron will be the solution to the equation E —E,
—ReZ(k, E) =0. It turns out that Z(k, E) aoes not
depend very much on k, and therefore, for E -E~,
it is customary to replace it with its average val. ue
over the Fermi surface Z(E). Measuring all en-
ergies from E~, we are interested in Z(E) for
small E. Thus we write ReZ(E) = XE,-where X is
defined by the relation A =-Id ReZ(E)/dE]z ~ .
Clearly, the renormalized electron energy is E,
= E„/(I +X). For a free-electron-like band, this
means E~= k'k'/2m*, where m~/m = 1+X. Hence
the name mass-enhancement parameter.

The interest in X stems from the fact that it
appears directly in a number of expressions for
physical observables. For instance, the electronic
specific heat is given by c = m'k sTN(E~) /3(1 +X),

and the superconducting transition temperature
T, is well approximated by'
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(u 'n'(td)F(td} d(o, (2.4)

The wave functions in(2. 3) are normalized to unity

over the Wigner-Seitz cell A.
A. may also be written in terms of the phonon

density of states F(u) as

X = q/M(td'},

where (aP) is defined by

((tt ) = tttot Fd

and q is defined by

(d Q Fd(dy

(2.8)

(2 8)

where o'(td) is a measure of the coupling of pho-
nons of frequency e to the electrons. The function
ot'F(td} can be obtained from an analysis of tun-
neling data for many superconductors.

Evidently, X depends upon the lattice dynamics
and upon the electronic band structure. Clearly
it would simplify the analysis if we had to deal with

only one aspect of the problem at a time. There-
fore we follow McMillan" and Hopfield" and write

q =2M cuba'F des. (2 7)

These somewhat artificial definitions turn out to
be useful because it is found experimentally that
(at') depends only weakly upon n', and thus is
primarily determined by the phonon density of
states. On the other hand, q is rigorously inde-
pendent of the phonons, and depends only upon the
Fermi-energy electronic structure.

The electronic factor q is given by"

0
ti =, d'k d'k' tf'r d'r' VV(r) V'V(r')P,*(r)P, , (r)g;, (r')t}t,(r')5(E„—Er}5(E,, —Er). (2.8)

2tt 'N Er

Gaspari and Gyorffy' obtained a very simple
expression for g,

where

2 g (l +1)(Vt, t+i)'TttTt+i, t+i t
Fl

(2 9)

V,
' „,= r'dr R, (r) —R„,(r),aV

(2.10)

and

r'R', (r)dr =(v E~/tt)nta/n;". (2.11)

V,
' „,=sin(5t —5„,). (2.12)

Equation (2.12) assumes that the radial wave func-

.ttta in (2.11) is the fth-partial-wave contribution
to the band-theory density of states at the Fermi
energy, n," is the density of states at the Fermi
energy of a single muffin-tin potential in a zero-
potential backgroun:-l, and R, is the regular solu-
tion to the radial Schrodinger equation. n, and

n,' may be evaluated either within a muffin tin
or within a Wigner-Seitz sphere.

Equation (2.9) follows from the assumption that
the wave functions P, (r) which enter (2.8) have an
angular variation in k space appropriate to spheri-
cal bands. We shall derive below an expression
for q which avoids this approximation. Gaspari
and Gyorffy also showed that if one assumes that
V is given by the rigid muffin-tin approximation,
then (2.10) may be evaluated exactly in terms of
the phase shifts.

tions are normalized so that for r greater than the
muffin-tin radius, R, (r) =jt cos5t —n, sinf't„where
j, and n, are the spherical Bessel and Neuman
functions, and 5, is the phase shift for scattering
with angular momentum l from the muffin-tin po-
tential V which was used to determine 8, . Note
that Eq. (2.12) differs by a sign from the original
expression of Gaspari and Gyorffy. This sign
error in the original expression does not affect q
since the matrix elements always enter bilinearly.
In the following we shall retain the rigid muffin-
tin approximation for V7

Although Gaspari and Gyorffy assumed spherical
energy bands in deriving (2.9}, it was observed
by John" that (2.9) is an exact evaluation of (2.8)
for cubic systems with one atom per unit cell if
there are no contributions for which l+1 in Eq.
(2.9) exceeds 2. Recently, Boyer et al." have used
the Gaspari-Gyorffy formula to estimate X for V,
Nb, and Ta. The most surprising result of their
calculation was that they found the i+1 =3 (d-to-f
scattering) term in (2.9) to be dominant, so that in

fact, the correction terms due to nonspherical
bands must be considered.

In view of the fact that their results for q seem
to disagree with experiments, we thought it de-
sirable to develop an alternative method for eval-
uating q. Apart from checking whether their sur-
prisingly large n , /n~," is ind. eed correct, we also
sought to investigate all possible corrections to
Eq. (2.9) within the rigid muffin-tin approximation.
As is clear from Eq. (2.10), one should not expect
to find significant contributions from going to l's
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higher than 3 in E(I. (2.9), since the phase shifts
are known to be small for l&2. Therefore, we at-
tempted to remove the assumption of spherical
bands. In fact, we have obtained a generalization
of Eq. (2.9) which is exact for systems in which all
atoms sit at sites having cubic symmetry. Like
E(I. (2.9), the new expression contains the matrix
elements (2.10) which in the rigid muffin-tin ap-
proximation are expressible in terms of phase
shifts. However, the coefficients analogous to
(2.11) no longer have the simple interpretation in
terms of partial densities of states. Neverthe-
less, there are only a few of these which are im-
portant, and we tabulate them for angular mo-
mentum values as high as l =3.

To evaluate ll we first express (2.8) in terms
of the density matrix p(r, r', EF). In the following
we shall omit vector notation except where neces-
sary to avoid ambiguity. Thus we write

g A,'„,.„,(E, I )C,',„,(E, u) =0,
ltpt

and from the requirement that the wave functions
be normalized to unity over the signer-Seitz cell.
7",„',.„.is a Brillouin-zone average of products of
C's:

(2.17)

(2.18)

p(r, r';E ) = Q g i' 'R, (r)R, ,(r')
l pt l'll 't'

"%'5(&)&)„(f")Tt„', „,
(2.16)

where B, is the regular solution to the radial
Schrodinger equation, and E,'& is a cubic harmonic
of orbital quantum number / and row g of irredu-
cible representation t. C,'& and T,'„',.„.are real
coefficients. The wave-function coefficients Ctq
are determined from the symmetrized KKR equa-
tions,

xvv(r). v'v(r')p(r', r; E,),

(2.13)

p(r, r'; E~)=, d 515)j)f(r) (I)5(r') 6(E, —
E p) .0

(2.14)

h„ is a so lution to (2.17) for E =Er. If the Ferm1
surface has more than one sheet, the integral is
carried out over each and then the summation in-
dicated in (2.18) is performed.

Clearly the diagonal part of the density matrix
p(r, r; Er) is just the density of states per unit
volume at point r, and must therefore have cubic
symmetry. Imposition of cubic symmetry on the
products of Kubic harmonics in (2.16) leads to
the requirement that

%e find it convenient to expand the wave functions
and density matrix in terms of Kubic harmonics. 20

tt' tTl p, l'jf ' Tl l '~jitf'~ t t' (2.19)

(j),(r) = Q i'R, (r)Ct„(k}E'(„(i), (2. iS)
In fact, (2.16) may be written through terms with

1=3 as

(2.20)

The angular terms F)1,.(P, i") are defined by

p(r r) .E ) —T(l)E(1)(il +~ )R (5)R (rI ) +T(15)y(15)(p pi)R (+)R (+i ) + [T
(55')Eh5 l(g gr ) + T(15'(15)(p i)) )jR (r)R (r) )

+[7 "»Ft'»(r- ~ )+7 ('»F~'"P i )+7 '"E&"(i i )]a (r)R (~ )

T(15)pt15)(g i)s)R (5 )R (+r) T(15)E(15)(g f z)R (5,)R (+s)

(2.21)

Explicit forms are listed in Table I.
Substituting (2.20) into {2.13), and writing the gradients as

sv(r) sv(5") xx'+yy'+zz'
gr rr' (2.22}

1l=v(E )-' ~ ~T'1 7'5 V' V' i(1 '5i'5 '56'1-"(I I,-I I)F ~ ~ l lip lsl4 l yl4 lgl3 1 & 3 4
ll/2lsl4 tits

(2.23)
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TABLE I. Angular functions appearing in the expansion of the density matrix for cubic systems E»g(r, r').

3(xx' +yy'+ zz') /rr '

15(yzy'z'+xzx'z' +xyx'y') /r 2r '~

Q(X2X I 2 +y 2y I 2 + Z 2Z / 2) / r 2r l" 2 5
2 2

P [xx'(z —y )(z' —y' ) +yy'(x -z )(x' —z' ) +zz'(x -y )(x' -y' )[/r r'
1 [X(XR 3r 1)XI(X52 3 r 52} +y( y1 3 r 2)yi( y&2 3 2 ~2) ~g(22 3r 2)gt(g52 $5 IR) j/r Rr I 2

5 5 5 5 5

105(xyzx'y'z') /r 'r '
2

—-5~21 [xx'(x'2- 3r ') +yy'(y'2- &r '2) +zz'(z'2- &r '~) j/rr '3
5 5 5

—-'~21[x{x'-&r ')x'+y(y'- &r ')y'+z(z'- 3r ')z' j/r 'r'

(2.24)

2N(E }
—1fT (1)T (15)y i 2 + 7 (15'l [5 rg (25') + 5 T (12 )] (r i 2 + 1 [20T (25 )T (25) + l8Zr (259T (15) ~ l 5T (25' ) T (2' ) + l 57 (13)T(25)

F L 00 11 01 ll 5 22 5 22 12 35 22 33 22 33 22 33 22 33

2~T(12)T (15)] lr»

+ 12~3 [T(15)T(25') T(15)T()2) ]y i ~i t
13 22 13 22 12 233 (2.25)

Equation (2.25) can be written so as to show explicitly the corrections introduced by the assumption of
cubic rather than spherical symmetry.

These integral. s have been evaluated and are listed in Table II.
Because of cubic symmetry, the coefficients T,', are diagonal in E and l' for I and 1' less than 3. For l

and I' less than or equal to 3 only one off-diagonal term enters, 7,3". This coefficient determines the
amount of electronic density which arises from the product of wave functions having I'» symmetry for both
the /= l and /=3 orbital quantum numbers. Note also that /, and /5, and / and /, must differ by +l if
f'1'2(/, /„ /, /, ) is to be nonzero

Using the explicit results for the angular integral. s listed in Table II, we have

1 2+(EP) Q (/ l) ~ 1+ 1)Tl 1Tl+ 1. l+ 1 35~23 [T22 TRR ][T33 T33 2T33 ]
1 =0, 1, 2

(2.26)

TABLE II. Angular integrals appearing in the expansion of q for cubic systems,
P t gf 2{/ pl 2, l 374)

11
15

22
I'25

31
115

0 0 I'i

I"15

0 0

0 0

Q 6 q3/7

0 ——v' 3/7
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(x}
~00 ~00

~11 ~ll (2.27)
Z, 1(2T(25') +2Z, (u))

The first ter m ln (2.26) ls equivalent 'to (2.9).
The two correction terms involve d-to-f scatter-
ing and P-to-d-to-f scattering. These nonspherical
terms can in principle be quite large, especially
since the l =2 term tends to be the dominant one.
For example, if the density of I states at the
Fermi energy were pure I"» and the f states were
pure I'... the nonspherical correction would be
-100/& of the d-to-f spherical contribution. %e
will show, however, that for Nb the two correc-
tion terms are small and of opposite sign so that
the total correction is less than 1% of the total
contribution. Calculations on other 4d transition
metals indicate that these nonspherical corrections
are generally on the order of 10'~/o or less for the
cubic elements. It is likely, however, that they
will be larger for compounds.

We then take (2.25) as the basis for our calcula-
tion. If the phase shifts at the Fermi energy are
known, the matrix elements, V,'„,are easily cal-
culated from (2.12). The density-matrix coeffi-
cients g' ~ however, must be obtained from an
integral over the Fermi surface (2. 18). This in-
tegral is the subject of Sec. III.

III. FERMI-ENERGY DENSITY MATRIX

In the spirit of our previous remarks we now

want to evaluate Eq. (2.25) with as few computa-
tional uncertainties as possible. Some years ago
Faulkner, Davis, and Joy" demonstrated that the
(KKR) band theory technique can be used to calcu-
late constant-energy surfaces very efficiently. In
these calculations, the KKR determinant D(E, k) is
generated for some energy g and a number of k's
along a set of directions emanating from the center
of the Brillouin zone. The k's such that D(E, k) =0
are the radii of the constant-energy surface. The
volume within the constant-energy surface gives
the number of electronic states having energy less
than E [t.e. , the integrated density of states M(E)J.
The Fermi energy is that energy for which M(E) is
equal to the number of conduction electrons per
atom in bands which are not completely filled.

Typically, a transition-metal Fermi surface will
consist of several sheets. These sheets usually
form fairly simple surfaces, however, they may
be centered about points other than the center of
the Brillouin zone. In Nb, one has a hole surface
centered at I' (Fig. 1), a multiply connected sur-

FIG. 1. Computer-generated perspective drawing of
I centered hole jack in niobium.

face (Fig. 2) which may be taken to be centered at
P (in which case it is an electron surface), and a
hole surface centered at N (Fig. 3). We found it
necessary to modify the constant-energy search
progarms to allow for searches emanating from
points other than the zone center, in order to
generate a sufficiently dense set of points over the
entire Fermi surface to allow accurate evaluation
of (2.18).

ln addition to M(E), we obtain V(E) directly
from each constant-energy search. For this rea-
son the determination of the Fermi energy usually
takes only two or three constant-energy searches.
Thus for Nb our initial guess was E~ =0.62 Ry. A

I IG. 2. Computer-generated perspective drawing of
jungle-gym surface. The search was along rays cen-
tered at the point P.
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Q A ~ ))(E,k)C, . (E, k) =0,
t'm'

(3.1)

integrate over angles to obtain unsymmetrized
density matrix coefficients,

T, ,
=

)s Q dkk'„C, (k„)C,,„,(k„) (k V)E), ),
n

(3.2)

constant-energy search at that energy yielded M(E)
= 2.4695 states/spin and N(E) = 11.11states/Ry spin.
A linear extrapolation yielded EF =0.623 Ry, which
was in error by only 0.000 17 Ry.

Typically, we search 561 directions in —,',th of
the zone. This corresponds to 26066 directions in
the full zone. We also calculate the wave functions
for each point on the surface. Typical search
times range from 3 to 12 min (on an IBM 360/91),
depending upon the value of l at which the KKR ma-
trix is truncated, and whether or not prior knowl-
edge of the Fermi surface is used to narrow the
search range. The fact that this technique allows
one to concentrate all of his calculational effort
at one energy, combined with the numerical effi-
ciency of the KKR method when operated in the
constant-energy mode, allows us to calculate
Fermi-surface properties with greater speed and
accuracy than previous techniques.

We do not actually use a symmetrized KKR pro-
gram as indicated in (2.17). We solve the usual
KKR equation,

scheme which makes it unnecessary to calculate
V„E~ in (3.2). We find it more convenient to nor-
malize our wave functions so that

(})„*(r) P~ (r ) d 'r = II (k V„E) (3.3)

where the integration is over the Wigner-Seitz cell
and Q is the volume of the Wigner-Seitz cell.
Bars distinguish quantities having the new normali-
zation. This normalization costs very little in
computational time and does not require calcula-
tions at another nearby energy. The details are
described in the Appendix. With our new normali-
zation, (3.2) becomes

48~ 0T1l' d ~ Tl m l'm'Qmm'
t mm'

(3.5)

where d, is the dimensionality of irreducible rep-
resentation t. The matrices Q"" are listed in
Table III and were obtained from the transforma-
tion matrices that relate real cubic harmonics to
real spherical harmonics,

By taking advantage of the cubic symmetry of the
system, the integrals Eqs. (3.2) or (3.4) can be
restricted to the irreducible —,', th of the Brillouin
zone. If T', „,. ~ is an unsymmetr ized coeff ic ient
but with the domain of integration restricted to the
irreducible —,',th of the zone, then

and finally symmetrize these coefficients in a
manner to be described below.

In addition, we have developed a normalization by

If „(t)= Q y, (r)u"„ (3 6)

rt't ~ u
Qmm' Z & mp'~ m'p ~ (3.7)

The integration was performed using a trapezoidal
scheme with Romberg refinements for the closed
surfaces.

In order to calculate the density of states from
a single constant-energy search one must integrate
the density matrix for equal arguments over the
Wigner -Seitz e ell,

N(E) = d 'r o(r, r; E) = g T,', p,', , (3.8)

where

o(). = r ' dr R (r))R (r)}dQ; F((.(r, r}. (3.9}

FIG. 3. Computer-generated perspective drawing of
distorted ellipsoid centered at N.

The angular integral in (3.9) is complicated by the
fact that the limits are a function of r since the
integration must be confined to the polyhedral
Wigner-Seitz cell.
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TABLE III. Matrices relating symmetrized and un-

symmetrized density-matrix expansion coefficients,
(Blank entries are zero. )

TABLE IV. Expansion of E,'& (r, &} in I
&

Kubic har-
monica [all entries should be multiplied by (4m} ].

, I'25t22

m m -2 -1

0 1 2

0 1 2

0 0 I&

1 1 I')5

2 2 I 25

12

3 3

3 3

3 3

1 3

fi

—-'v 21$1

-90/11~26

50/11 ~26

40/11~26

The angular integrals in (3.9) are then determined
in terms of three integrals

Q, I'2)
-2

w'() fun-=z"y) i=a 4 s.
0„

(3.iS)

--,'v15

-8 ~15

@33

m m'

3
», , r, .=a, ~, ~

——,'~15

These integrals can be performed analytically for
most values of r, but we found it necessary to
evaluate them numerically when i is restr icted to
the corners of the cell. Once the functions W'(r)
are known, only a set of one-dimensional integrals
remain.

Qur potential was generated by using the over-
lapping charge-density technique suggested by
Mattheiss. " The atomic charge densities for Nb
in the 4d'5s~ configuration were obtained from a
Herman-Skillman program. " An exchange multi-
plier, a, of 1.0 was used. The lattice constant
was 6.2294 a.u. We shall call this potential V, to
distinguish it from a second potential which was
made available to us by Klein and Papaconstanto-
poulos. " This potential was calculated self-con-
sistently for e =0.704. The lattice constant for this
potential which we shall call V2 was 6.2486 a.u.

IV. RESULTS

-1
0
1
2
3

Fortunately, Ff, , (t", f') has full cubic symmetry
and can therefore be written as the sum of Kubic
harm onics of the one-dimensional irreducible
representation 1 x. Thus

F' (f f) =A "Z'"(t)+A "Z'"(r)+A"Z'"(~)

(3.10)

where the coefficients A,'," are given in Table IV.

Figures 1-4 show the three sheets of the Nb
Fermi surface calculated for the potential V,.
We emphasize that each mesh point is generated
from first principles using a maximum orbital
quantum number of 3. The Fermi surface for the
V2 potential is quite similar, and drawings similar
to Figs. 1-4 for this potential would hardly be dis-
tinguishable from those shown.

Table 7 gives, for V„ the density-matrix ex-
pansion coefficients, and the enclosed volume for
each of the three surfaces S, (hole jack at I'), S,
(multiply connected surface of Fig. 3), and S,
(distorted ellipsoid centered at N). Also given is
pI, , [defined in Eq. (3.9)]. We list the contribution
from within the muffin tin separately in order to
make contact with the augmented-plane-wave eal-
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FIG. 4. Irreducible portion of Brillouin zone showing
all three surfaces.

culations of Boyer et al. '9 The final column gives
N, ',., the total contribution to the density of states
from a particular irreducible representation and
set of orbital quantum numbers

x7&"»' »'P»' .

All numbers are in program units and may be
converted to atomic units by multiplying T», by
2w/a and p,', , by (a/2m)', where a is the lattice

parameter. For V„a/2m is 0.99144.
Table VI gives the density-matrix expansion

coefficients and wave-function integrals for the
self-consistent potential (V,). This potential was
calculated for a slightly different lattice param-
eter so that a/2m is 0.994 50. The agreement be-
tween the Fermi-surface properties of the two po-
tentials is quite gratifying.

Several observations can be made from Tables V
and VI. By comparing the contribution to p,', , from
within the muffin tin to its total value, one can ob-
tain a feeling for where in the cell the various com-
ponents of the density of states are situated, For
comparison, the ratio of the volume within the
muffin tin to that within the full cell is 0.68.
Thus the s electrons are rather uniformly dis-
tributed, the p electrons are slightly more dense
in the interstitial region, the d electrons are
largely confined within the muffin tin, and the f
electrons are largely outside the muffin tin. The
f states with I', . symmetry are an exception to
the last statement. This is no doubt due to the fact
that the K,' Kubic harmonic is proportional to xyz,
and vanishes at the corners of the cell. All of this
is as expected from our knowledge of the spatial
variation of the radial wave functions and Kubic

armonlcs.
Consider now the results for the coefficients

T~», . It is instructive to compare these results
with those one would obtain for a single scatterer
in a zero-potential medium, namely,

(4.2)

Thus the 8 coefficient ls approximately the single-
scatterer value, whereas band effects enhance the
p coefficient by a factor of about 3, decrease ihe
d coefficients slightly for I'», and greatly for I'»,
and increase the f coefficients by factors ranging
from 3 to 6. These enhancements of the p and f
state density were completely unanticipated in the

TABLE V. Density matrix expansion coefficients for && (E=0.623 By) (du indicates dimensionless program units).

Within
muffin tin

0 0

15
2 2 I25f
2 2 r12
3 3 r25

I
I 2i

is
Volume

E~=0.6228

0.000 0 0.032 4
0.005 5 0.104 8
0.039 4 0.124 0
0.003 4 0.014 3
0.1904 0.639 2
0.032 7 0.560 7
0.032 7 0.871 3

-0.012 8 -0.145 7
0.981 07 -0.226 55

By (extrapolated)

0.1891
0.610 5
0.042 0
0.055 5
0.814 1
0.142 2
0.307 3
0.247 9
0.747 275

0,2215
0.7208
0.2054
0.0732
1,6437
0.7356
1.2113
0.0894
l.5018

1.0827
1.4026

27.866
18.580
0.0561
0.0561
0.0187
0

1.6549
2.5656

30.601
21.366
0.1508
0.1501
0.0285

(x2)(0.1985)
Total

0.367
l.849
6.286
1.564
0.2478
0.1104
0.0346
0.0177

10.476 states/du
10.298 states/By
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TABLE VI. Density matrix expansion coefficients for V2 (E=0.629 Hy) (du indicates dimensionless program units).

Total
Within

muffin tin Total

0 0 F(
F„

2 2 F25
2 2 F)g

3 F25

Fis
3 3 F2
1 3
Volume

Ep- =0.629 54

0.0004 0.0324
0.005 7 0.106 9
0.040 6 0.126 9
0.003 8 0.014 7
0.196 2 0.602 5
0.092 4 0.540 7
0.030 9 0.865 2

-0.012 5 -0.1402
0.975 83 —0.231 04

Hy (extrapolated)

0.1838
0.616 1
0.0432
0.057 0
0.781 7
0.142 1
0.295 1
0.250 5
0.749 69

0.2166
0.7287
0.2107
0.0755
1.5804
0.7752
1,1912
0.0978
1.4945

1.0745
1.4020

25.532
17.022
0.0600
0.0600
0.0200
0

1.6391
2.5524

28.194
19.739
0.1593
0.1586
0.0304

(&2)0.2021

0.335
1.860
5.940
1.490
0.2518
0.1229
0.0362
0.0198

10.076 states//du
9.966 states/Hy

semiquantitative estimates of q, '" but are in
agreement with the results of Klein and Papacon-
stantopoulos, " and of Boyer etal. " %e believe
that an understanding of this effect is a very im-
portant aspect of understanding the origin of the
electron-phonon coupling in transition metals. %e
shall return to this question in Sec. V.

The total Fermi-energy density of states for po-
tential V, (allowing for the 0.1'7 mRy error in
estimating the Fermi energy) is 10.34 states of
1 spin/Hy. The corresponding number for the

V, potential is 10.10. The agreement of these two

numbers is encouraging, however, the experimen-
tally predicted density of states, using a value of
'I 8m J/m. ole ('K)' (Ref. 25) for the low-tempera-
ture specific heat and an enhancement factor (1
+ X) of 1.82 is 12.35 states/(Ry spin). We are not
sure how one should rationalize this discrepancy.
We note that Mattheiss obtained N(Er) =9.89
states/(Hy spin), " and Elyashar and Koelling ob-
tained 9.95 states/(Ry spin). "

Table VII lists the phase shifts and matrix elements

Vf „,for the twopotentials. We note that inEq. (2.12)
the expression sin(5, -5„,) includes a, singular contri-
bution to V', „,which arises from the discontinuity
in the potential at the muffin-tin radius. %e be-
lieve that this contribution should be included in
the rigid muffin-tin picture because it approxi-
mates the effect of extending the potential con-
tlnuoUsly into the interstitial region.

Table VIII lists the contributions to q which
arise from the five terms in Eq. (2.25). The first
three terms are included in the original formula
of Gaspari and Gyorffy. The last two terms arise
from treating the nonspherical natur'e of the en-
ergy bands correctly. The nonspherical terms are
surprisingly small. Calculations which we have
performed on other transition metals indicate that
the nonspherical corrections to the Gaspari-Gyorf-
fy formula tend to be l.ess than 10% for the cubic
elements. This is, however, not a general result,

since we have shown that certain combinations of
the density-matrix coefficients can lead to very
large nonspherical corrections. If one assumes,
however, that T,",' ' —T,',"' is of the same order as
T„, and that T,","-3T,',"'+ 2T,", ' is likewise of the
same order of magnitude as T», we can see that
the third term dominates the fourth, due to the
factor of —,', in the fourth term. The fifth term
tends to be small for a different reason. Contri-
butions to T'„"' are not positive definite so that
some portions of the Fermi surface may give con-
tributions which cancel against contributions from
other portions. The near cancellations between
the fourth and fifth terms seems to be a peculiar-
ity of Nb.

The calculated values for q are V.06 eV/A' for
potential V, and 7.26 eV/A' for potential V,. Our
value for q is only slightly lower than the value
(7.39) quoted by Boyer etal. "for the same poten-
tial. The small difference is not due to the non-
spherical terms but to differences in estimating
the Fermi energy and in calculating the angular
momentum decomposition of the density of states.
Jt should be noted that the calculations for Nb must
be done very carefully. Had we used a Fermi en-
ergy oi 0.62 Ry for V, (lower than the true E~ by

-0.84848
-0.308 04

1.201 9
0.005 83

~l, ~+ &&~g)

-0.514 51
-0.998 15

0.930 59

-0.853 00
-0.31922

1.1794
0.006 66

Vl ~+&~I )

-0.508 79
-0.993 97

0.921 82

TABLE VII. Phase shifts at the Fermi energy and
rigid muffin-tin matrix elements for potentials V& and V2.
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TABLE VIII. Contributions to g in (eV/A ) for poten-
tials V& and V2.

V(

SP
pd
df (spherical)
df (nonsphericalw
p-d-f
Total

0.4059
2.1036
4.5390
0.1752

—0.1656
7.0581

0.4029
2.2392
4.6448
0.1590

-0.1884
7.2575

only 3 mRy), q would have been about 10% higher.
Qnce q is known, A. may be determined from

(2.5) if (u') [(2.8)] is known. Tunneling measure-
ments of o'E(u) have been performed only re-
cently for Nb, and the results are still very con-
troversial. " Several authors, however, have
estimated (&u'). McMillan" obtained (~')'~'
= 230'K by taking the mean of the transverse and

longitudinal peaks in the phonon density of states.
Allen and Dynes" obtained (~')'~' = 183 'K by as-
suming a' to be constant in (2.4). Foulkes and
Gomersall" obtained (m')'~'= 152 'K by means of
an approximation which takes cy' to be proportional
to ~'.

We are inclined to accept the Allen and Dynes
value, since their estimate is quite good for Ta,
where tunneling data is available. The Foulkes-
Gomersall and Allen-Dynes estimates for (a')'~-'
are quite close for V, Ta, Mo, and W. The larger
discrepancy for Nb may be due to the anomalous
behavior of the long-wavelength TA modes. The
McMillan estimates are higher by 20% to 30%.
Use of (&u')' '=183 'K and 7i='l. l eV/A' in (2.5)
yields ~ = 1.28, which may be compared with em-
pirical values ranging from' 0.82 to' 0.95.

V. CONCLUSIONS AND DISCUSSION

We have generalized the Gaspari-Gyorffy formu-
la for q by taking into account the nonspherical
nature of the energy bands. We find the nonspheri-
cal corrections to be negligible for Nb.

We have calculated the Fermi-energy density
matrix very carefully for Nb. We find (in agree-
ment with earlier calculations" ) large enhance-
ments of the p- and f-state densities above the
single scatterer or free-electron estimates.

Using rigid muffin-tin matrix elements, we have
calculated g and X for Nb. It appears that the pre-
dicted value for A. is about 50% higher than the
empirical value. This may be due to one or more
of the following:

(i) (&u')'~'=183'K may be too low. Assumption
of the McMillan value (230'K) yields &=0.81,
which is in excellent agreement with the empirical
value.

(ii) The empirical value of A may be too low. If
one uses p, *=0.2 rather than p, *=0.13 in McMil-
lan's equation relating T, and A. , one obtains X

=1.19. This value for A. is (perhaps coincidentally)
just the value needed to bring the band-theory den-
sity of states into agreement with the low-tempera-
ture specific heat.

(iii) The rigid muffin-tin electron-phonon ma, —

trix elements may be too large. A 20% reduction
in V'. ... due to screening (beyond that already in-
cluded in the rigid muffin-tin approximation) does
not seem unreasonable.

We believe that (iii) is the most likely source of
the disagreement between theory and experiment.
In this regard the recent calculation of Boyer et
al." on Ta is relevant. They find the calculated
X to be larger than the empirical value by about
40/0. In this case, (&u') and p* are known from
tunneling measurements. Since we do not expect
the nonspherical terms to be much more impor-
tant than in Nb, we conclude tentatively by a pro-
cess of elimination that the rigid muffin-tin ma-
trix elements are probably too large for Nb and
Ta.

Leaving aside the problem of the matrix ele-
ments, let us consider the other quantities which
determine q, namely, the density-matrix coeffi-
cients T«, . We consider the enhancement of the

p and f coefficients above their values for the
free-electron approximation or single scatterer
approximation to be of crucial importance. If we
had set T» and T„equal to their single-scatterer
values we would have obtained ri -2.2 eV/A'. The
effect on q of the p- and f-state density enhance-
ments is to increase q by a factor greater than 3.

The p and f enhancements also indicate that the
usual picture of a transition-metal density of
states in which one has a relatively smooth flat
"s contribution'* with a superimposed peaky-dden-
sity of states is not adequate for understanding
superconductivity. Heality is quite different. The
non-d contributions to the density of states are
much larger than the free-electron or single-
scatterer model would predict. In addition, they
are not smoothly varying. Table IX gives the
density-matrix coefficients for the V, potential
at an energy 3 mRy below the Fermi energy. It
is probably not surprising that the total density
of states is higher by 8% since the Fermi energy
in Nb falls just above a narrow peak in the density
of states. The point which we wish to emphasize,
however, is that all of the contributions to the
density of states are changing rapidly. In fact it
would not be a bad approximation to say that the
various contributions are varying at roughly the
same rate.

In order to understand this behavior of the non-d'



BUTLER, OLSON, FAULKNER, AND GYORFFY

TAHI E IX. Density-matrix expansion coefficients (V& potential) E=0.62 By.

I, t' t
gg'

(total } (total} -&
g g

i (0.62) /&
g g

~ (0.623)

0 0

r»,
2 2
3 3 12r
3 3

I ~
ii

1 3 I )5

Volume

0.2443
0.7804
0.2199
0.0815
1.844
0.7719
1.369
0.0962

1.659
2.563

30.53
21.33

0 ~ 1489
0.1482
0.0282
0.1974(x2}

0.4053
2.000
6.714
1.738
0.274
0.114
0.039
0.019

11.30 states/du
ll.ll states/By

1.10
1.08
1.07
1.11
1.11
1.03
1 ~ 13
1.07

components of the density of states lt ls lrnpol'tRnt
to remember that we have defined the angular mo-
mentum decomposition in such a way that all of the
r-dependent state density [p(r, r, Er)] within a
given%igner-Seitz cell is expanded about the cen-
ter of fhn;t cell. Thus the d orbitals centered about
neighboring sites which extend into the central
cell will contribute to the non-d density of states.
This ob861VRtlon Rllows us to make R qualitative
connection between the Gaspari-Gyorffy formula
for g which for transition Inetals involves matrix
elements between if and f or d and p orbitais, all
on the same site, and the tight-binding formula,
for g which involves matrix elements between two
d orbitals on neighboring sites. '"'"

Generally for the transition metals, a high va.lue
of q is to be expected when in addition to having a,

sizeable l= 2 phase shift, the Fermi-energy den-
sity of states is high, and when there is a substan-
tial overlap of the d wave function from one ce1.1
to its neighbors. Moreover, the enhancement of
i) will be proportional to the amount of p- or f-
like symmetry these overlapping d orbitals yield
when expanded about the center of the cell at the
ox'lgln.

APPENDIX: RESIDUE NORMALIZATION OF KKR

V(AVE FUNCTIONS

Our normalization technique is based on the
singular behavior of the @-dependent crystal
Green s function Gi, (r~ r ~ E)i as the energy E ap-
proaches the band-structure value E„, (n is a band
index and k is in the reduced zone). In terms of
Bloch wave functions g„~, we define G„as

(Al)

w'hex'6 E ls undex'stood to have Rn lnflnlteslIIlRl
posltlve lmaglnary part, and t e wave functions
are assumed to be normalized to unity over the
signer -Seitz cell. Evidently the normalized w'ave

functions Rx'6 dlsplRyed ln the residue of Gg Rt One

of its poles

lim (E E„,) G~—(r, r'; E) = P„,(r)g, (r').
ffgf

(A2)

The wave functions P„„are determined (except
for a normalization constant o, (n, k) by the KKR
equa, tions

il~„,(r) = o.(n, k)Q f'c', „(nk)Ei(r)1', (r), (A3)

(fi'~r, 5, &', , ,-, „,)c, (nk) = 0.
g' m'

Here c'g is an unnormalized wave-function coeffi-
cient. For definitness we choose the initial nor-
malization so that cog, ,= ~ for some Eo and ~0.
can be shown that expressions similar to (A3) and

(A4) determine G„,

&(sin5, sin5, .) 'y~(r)y~, (r'), (A5)

where R, (r) is the regular solution to the radial
Schrodinger equation and S,(r) is an irregula, r so-
lution, Rg and S, are normalized so that

Bi(r) —cos5,j i(WEr) —sin5in, (WEr)
(A5)

S,(r) -sin5,j,( Er)

In (A5) we have used I, for the pair f,m. The ma-
trix A», is the inverse of the KKH matrix occur-
ring in (A4),

Substitution of (A3) and (A5) into (A2) yields

~'(nk)c, (n, k)c,, (n, k) f'-'

= lim (E E„„)A~~,(k, E)(sin5,-sin5, , ) '. (A8)

G;(r, r'; E)

=+[A„(k,E)ff, ,(r)ff, , (r )+ 5„,E,(r,)S,(r, )]
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Recalling that c~ was chosen to be unity, we have

tt'(ng)= lim (E-E„,)A~ ~ (k, E)/sin'5, . (A9)
g~Q 0 0

A, , (J,E) =D,,(I,E)/D(I, E).
Here, D(k, E) is the determinant of the KKR ma-
trix

(A10)

D(I, E)=Detif ' A'-i (All)

and D~ is the minor of the {I.„L,) element of the
0

KKR matrix

D~ (0, E)= min [f, ' —A«o(k, E)],
i.e., it is the determinant with the I.,th rom and
column deleted.

Since D(k, E) goes continuously through zero as
E approaches E„~, we may write

(A13)

D(y, E)- (E E„,) D,'-(I, E„,), (A13)

where D' is the energy derivative of the KKR ma-
trix at its zero,

The quantity A~ ~ is a diagonal element of the in-
verse of the KKQ matrix and is therefore express-
ible as the ratio of two determinants

{A4), smce the usual way of solving a homoge-
neous system of this type is to set one C equal to
unity, t»ereby generating a reduced inhomoge-
neous system. The determinant of this reduced
system is then generated in solving for the re-
mainder of the coefficients.

This technique has an additional advantage in a
constant-energy search where one searches along
a ray in k space holding E constant. In this case
the easily obtainable quantity is

,(„) (dD(k, Z)

&=a„(z)
(A16)

~h~~~ &„(E) Is a value of the magnitude of k along
this ray for which E„~ is equal to E. Now

D„'=D'(I" ~,E). (AI'I)

So that if we define n(s, h) by

sin'5, a'(n, k)=Dr, (k„,E)/D~~,

and use a(n, k) as our normalization constant rath-
er than n(n, h), then our wave functions will be
normalized so that

D, (~ E )
BD(k, E)

s & sf' gE
(A14)

Thus the normalization constant is given by

sin'5, a'(nk) = D~ (k, E„,)/Da(k, E) . (A15)

The advantage of this normalization scheme is
that the quantities D~ and D~ are readily obtained
during the normal course of locating the energy
bands and calculating the unnormalized wave-func-
tion coefficients. In a typical band-structure cal-
culation, the determinant of the KKR matrix is
evaluated for a sequence of trial energies at a
fixed k. %hen a change of sign indicates that a
band energy has been crossed, an iteration pro-
cedure is initiated to converge to the root. D'
can therefore be obtained directly as a first dif-
ference. In addition, the minor D~ is usually

0
generated in solving the homogeneous system

which is most convenient for calculating the den-
sity of states and density ma. trix. Equation (A19)
is equivalent to (3.3) if we set g»= MQg~, where 0
is the volume of the signer-Seitz cell.

It is interesting to note that the density of states
using (A19) can be obtained from the KKR equa-
tions evaluated at one energy. The energy deriva-
tives of the phase shifts do not enter explicitly.
They do enter implicitly, however, through the @-
space integrals in (A19). It should be recalled that

mt
ft', (r) r 'dr = — Jt', r 'f

dic
dE

where y, (E) is the logarithmic derivative of E,.
dy, (E)/dE depends upon the energy derivatives of|,(E).
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