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We report measurements of the two mutual-friction parameters B and B' in rotating He II in the
range of temperature from 1.75up to 6 x10 4 K below the A, point. All results are obtained by in-
vestigating the second-sound response of a square resonator. The data previously reported in the
literature reveal some marked discrepancies in the behavior of B and B' as T-T~, in spite of con-
siderable scatter above 2.1 K. In this work we attempt to describe this behavior precisely, and at
the same time we extend the measurements of B' above 10 2 K from T~. Primarily because of good
temperature stabiH. zation using a second-sound controller, a close fit of both amplitude and phase of
the resonance response to calculated values was possible, which greatly improved the precision of
the results. Plotting B and B' as a function of the reduced temperature a =1—T/T~, in the tempera-
ture range 2 x10 4 & ~ &3 x10 2, we found the experimental data are well Gtted by the following ex-
pressions, where -n is a critical exponent near -~3. B=be, B' =b'e ~+5' with ct = 0.330 + 0.015,
5=0.470+ 0.033, b'= -0.34 ~ 0.03, b', =1.01 ~ 0.12.

I. INTRODUCTION

In the hydrodynamic equations of rotating He II,
as derived by Bekarevich and Khalatnikov, ' the
mutual-friction force appears in the dissipative
function from very general assumptions, and is
expressed with the help of three kinetic coeffi-
cients: a, P, y.

' The effects of the y terms are ex-
pected to be extremely small. e and P are re-
lated, through simple expressions, ' respectively,
to the parameters 8 and 8' first introduced by
Hall and Vinen. '

Several attempts have been made to predict
theoretically 8 and 8' by considering the micro-
scopic nature of the mutual-friction force. ' '
This is generally carried out in two steps: (i) By
analysis of the hydrodynamic flow around a vortex
core the mutual-friction force, and therefore 8
and 8', are related to vq and 0~, two effective
collision diameters describing the scattering of
rotons by vortices. The most elaborate model on
this point is without doubt the one proposed by
Hall and Vinen, s refined by Hall, ' and recently re-
examined by Hillel, Hall and Lucas. ' By inver-
sion of their expressions for B and B', a,

~ (T) and
a,(T) can be calculated from the experimental data
forB andB'. (ii) The crossdiametersa~~ anda, are
derived from a kinetic treatment of roton-vortex
line collisions.

8 and 8' are experimentally determined by in-
vestigation of second-sound propagation in ro-
tating helium. The absence of any observed ex-
tra attenuation of second sound parallel to the di-
rection of rotation confirms that y =0. The co-
efficient 8, which induces an extra attenuation in
a direction perpendicular to the vortices, has
been extensively measured. s ' " On the other

hand, 8' is generally obtained using the fact that
it acts, together with the Coriolis force, in cou-
pling two degenerate modes in square" or cylin-
drical" cavities.

The measurements of B are in good agreement
below 2.1 K, but the results close to the A. point
presented by Lipa et al."and Lucas" differ con-
siderably. The results of Lipa et al. up to
6 x10 ' K from T„suggest that 8 tends towards a
constant value about 2. 5 at the ~ point, while the
Lucas and Hall" data up to 2 ~10 ' K from T~
seem on the contrary to indicate that B increases
monotonically as T -+.

Measurements of 8' in the literature stop below
10 2 K from Tz, and they lack precision. Accord-
ing to Lucas, "8' becomes negative above 2.1 K
in contradiction with the large positive values of
8' given by Snyder and Linekin. " Lucas points
out a possible error in the sign of the measured
quantity 2-8' in the results of Snyder and Linekin.
For example, the last point given in Ref. 12, at
T =2.156 K is 8'=5.7+2.0. In case of an error in
the sign of 2-8' it would be 8' = —1.7 instead of
5.7.

In this work we present measurements of both
8 and 8' up to 6&&10 4 K from T&. Our purpose is
mainly (i) to state precisely the behavior of B as
T-Tz and (ii) to extend the measurements of B' in
the same range of temperature.

II. EXPERIMENTAL ARRANGEMENT

The second-sound resonator we used in our ex-
periments has the same geometry as the one used
by Snyder and Linekin. ' It is a parallelepiped
cavity, a~bxc=3.0x3.0x2.6 cms, with a=6 a,s
precisely as possible. The c side is along the di-
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rection of rotation, i.e., parallel to the z (vertical)
axis, so that the cavity has a square cross section
i.n the x-y plane, as shown in Fig. 1. The cavity
is machined from slabs of epoxy resin Araldite.
One 1-mm-diam hole is drilled at the center of each
horizontal cap to allow the dc heat component to
escape.

Second-sound transmitters and receivers are
metallic films, about 1000-A thick, vacuum-de-
posited directly onto the Araldite substrates. We
have at our disposal two transmitters, on the faces
x =0 and y =0, which are chromium films covering
the whole height c, and as wide as possible. Two
lateral strips of tin form equipotential contacts,
making the heat flux input uniform. In order to
generate the second sound at frequency ~, one
transmitter is driven at ~e by a very low-fre-
quency synthesizer ADRET 303. Over the ex-
plored range of temperature, the fundamental
resonant fretiuency co/2s varies from about 20 to
300 Hz. The frequency stabilization is better than
one part in 10 ',

Several receivers, shaped as narrow vertical

strips, are arranged to probe the temperature
field at different points on the faces x =u and y=b.
They consist of granular (partially oxidized) Al
films. " Such superconducting bolometers, when
deposited on Araldite, have a broad transition,
over several tenths of K. They are preferred to
classical carbon bolometers because of their high
sensitivity, their fast thermal response, and also
a better controlled homogeneity.

We emphasize the capability of a bolometer to
measure both amplitude and phase of the tem-
perature oscillation T,e '~'. We have exploited
this capability extensively in our measurements.
The bolometric signal is fed into a lock-in am-
plifier (LIA) PAR 129A. The two out-of-phase
outputs of the I.IA drive the two channels of an XY
recorder. Thus, the complex amplitude T, (e) is
directly plotted on the Argand diagram. Figures
2 and 3 show typical loci T, vs v, obtained when
varying the exciting frequency near a resonance.

Following a well-known idea, '~' "another sec-
ond-sound resonator that we refer to as the control
cavity is included in a feedback loop to control the
mean temperature T, of the helium bath. Advan-

tage is taken of the rapid variation of phase near
the resonance to get an error signal. The origi-
nality of our control system resides in the use of
open glass cavities which can be driven at high
harmonics with a large quality factor of the order
of 15000, which represents nearly the theoretical
limit, accounting for bulk attenuation of second
sound. Detailed information on the construction
of such cavities will be published elsewhere, "

1cm
e

FIG. 1. Cross section of the second-sound resonator
in a plane perpendicular to the rotatton, axis. Trans-
mittexs and xeceivers are metallic films -1000 A thick.
Only the transmitter on the face x =0, and the three
bolometex s I, H, III xelevant to the discussion in the
text are shown in the figure. The four slabs forming
the vertical walls are assembled so that a =b as accu-
rately as possible. The deviation from the square
)5 —a~/a does not exceed 0.2%, as can be estimated by
meaauxing separately the two resonant frequencies
~~/2& and m&/2r at rest.

FIG. 2. Fir st-harmonic response of the rotating cavi-
ty. Temperature TD

—-1.995 K, rotational speed ) Q[/2s
=1.01 rps. Typical ~-F recordings of the complex
amplitude of the wave at bolometers I, II, or III, as
function of the frequency: (a) I, clockwise (cw) rota-
tion; (b) II, cw; (c) III, cw; (d) III, counterclockwise.
It is seen that the shape of the response at bolometer
III is strongly affected by the direction of rotation.
From this shape the sign of the quantity (2-B')0 can
be deduced. Black dots are experimental points for a
set of discrete values of the second-sound frequency:
~„/2~=310+m Hz g =0, 1, . . . , 5), increasing in the di-
rection of the arrow. For clarity only six points are
shown among the N 20-60 points actually recorded.
The continuous curves are those obtained by fitting all
N points by an expression of the form (12). On the scale
of this figure small deviations from theoretical curves
cannot be appreciated.
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FIG. 3. Second-harmonic response of the rotating
cavity. 2'0 =2.161 K

~
0

~
/2s= 1.00 rps. Black dots:

complex amplitude X+il' of the wave as measured by
bolometer I at frequencies ~„=195+n Hz g =0, 1, . . . , 7);
~ increasing in the sense of the arrow. The resonance
at even harmonics is not split, and the theoretical re-
sponse curve is a circle.

together with an analysis of the feedback system
and a comparative discussion of performances of
second-sound controllers and conventional brid. ge
controllers. The best registered performance, at
1.9 K and without rotation, corresponds to fluctua-
tions less than 3 x10 ' K in the range 0-3 Hz,
during 1 h.

The control cavity and the measuring cavity axe
enclosed in the same box, and the whole system is
rotated at a constant, positive or negative, angu-
lar velocity Q. As the second sound in the control
cavity is at a frequency 120 times that of the mea-
suring cavity„ there is no interference. In the
control cavity the second sound propagates paral-
lel to z and is not affected by rotation. On the
other hand, second sound at frequencies «10 Hz
regarded as a distuxbanee, is above the cutoff
frequency of the control loop.

III. EXPERIMENTAL PRINCIPLE

Cons~der t e rotating cavity of Fig. 1., driven
at frequency u by the transmitter of the face @=0.
The heat input on the transmitting face may be
written as q(y)s ' ', where q equals the a-c com-
ponent of the Joule effect in the chromium film,
and zero elsewhere. The response of the cavity
is found as a two-dimensional solution of the equa-
tions of motion, "where vortices ax e supposed to

remain straight, and the z components of normal
and superfluid velocity v„and v, are taken to be
zero.

I et us recall briefly under what conditions this
response is derived. We shall give in this sec-
tion all material and notations needed to interpret
the experimental results of Sec. lV.

If the dissipative terms associated with normal
viscosity and thermal conductivity are disre-
garded, the linearized hydrodynamic equations set
down in the rotating frame become considerably
simplified. Then again, neglecting thermal ex-
pansion, first and second sound are not coupled;
taking a mass flux j =0, the two-dimensional
temperature field T, (x, y)e ' ' is finally found to
obey a second-sound wave equation

AT, +A.'sT, =0, k2=(ups/u2)(I +ip),

where u, is the second-sound velocity, and P(&o, Q)
is an attenuation term due to the presence of vor-
tices. To first order Q/co, one has simply
p=BQ/v. Note that p=0 for Q =0. This would

give an infinite value of the quality factor Q, of
the nonrotating cavity, which is of course not the
case. There are losses, partly in the bulk but

mainly in the boundary layers, which contribute
to limit the value of Q„and are ignored in Eq.
(1). If we keep, for example, in the equations of
motion the term corresponding to the normal
fluid thermal conductivity ~, it can be shown that
it is equivalent to simply adding to Eqs. (1) and

(3) a bulk attenuation term zu/p, Cu'„where C and

po ax e the specific heat and mean density of He II.
Boundary losses are more difficult to introduce,
but we may, which is consistent with experimental
results, include all losses in a single constant
term P„such that

P =P, +BQ/u& .
As the impedance of the walls is praetieally in-

finite compared to the characteristic impedance
of helium, Z =[p,Cu', ] ', the boundary conditions
are obtained by equating the sources q to the in-
ward pointing normal component —Q n of the en-
ergy flux vector Q. The expression for the energy
flux in the rotating frame reduces to the single
important term T,o,v„, where 0, is the equilibrium
value of the entropy density. Then v„=—p, v, /p„
is easily expressed as a function of T„yielding,
always to first order in Q/&u:

with a = —its„(1+iP)ju, . The boundary condition
—Q ~ n= q implies

8+i g

8n
—= =oq ——(2 B')VT ~ (Q xn) . -
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Noted that, except for the change of pp in p, the
problem would be formally the same as without
rotation, if the 2 —B ' term did not change the form
of the boundary conditions in a fundamental way.
Using the Green's function G(r lr, ) for Eq. (1),
which satisfies BG/an=0 on the walls, we can
write

g(ro)G(r lro)d2ro,
walls

(5)

where g(ro) is the right-hand side of Eq. (4}. This
is a homogeneous integral equation which includes
both the differential equation (1) and the boundary
condition (4).

Assume now that the exciting frequency (d is
varied in the neighborhood of the nth harmonic
noo, =nwu2/a. As the cavity is never accurately
square, the frequencies &u, and &u, =wu, /b, cor-
responding respectively, to the x and y funda-
mental modes, although very close should be con-
sidered as distinct. When interpreting small
splitting effects, it may become necessary to consider
the actual separation 6(d= ~, —~,. Expanding G and T,
in a series of normal modes and retaining only
the two "resonant" terms, so that

T, = c„ocos(nwx/a) +c,„cos(nwy/b), (6)

we obtain from (5) a pair of equations which de-
termine c„, and c,„as functions of (d:

-2 ab
b'- n'w '/a'

nbqp —i2 2-B' —1- -1 "
Cp„

—2/ab
on b2 Pw 2/52

(7)

abq„+i2 2-B' —1- -1 "c„,

a is defined above in Eq. (8). q, is the average
heat input over the transmitting face, and

B —qi 4(d
Cyo(%) b i 2 ~ Coy b ~ z 2AB ——4' A.B —4A 40

(8)

whereA=to —u, (1 —,'ip), B =&&& ——u&2(1—,'ip), b-
=iz q,u, /a, and Au is a, small coupling term

nay
q(y) cos -b— d3

0

We are especially interested in the first harmonic
n =1. For a well-centered homogeneous trans-
mitter, one has q, = 0. Solving Eq. (7) with q, =0
and systematically neglecting the small quantities
oo —~,/oo„5&@/u„Q/&o, and p, compared with
one, we get

c„=X, [1-iy, (oo-(u, )] '+Z, [l-iy, ((u-(u, )]

c., = u, ll-r, (~-~,)] '+u. l I ir, (-~-~,)] ',
(10)

r, =2/P~, = 2/P. ~, =r.,

(u, -(u, =[are'+5OO']'~' .

Keeping in Eq. (11) the square root with the same
sign as ~co, au, and (d, are two unambiguously de-
fined frequencies symmetrically placed around
—2'(&f2+v, ). The A, and u; are weakly dependent
functions of u and are considered as constants
within our approximation, while the quantities in

square brackets are responsible for the strong
signal variation in the resonant region. In the
ideal case a =b, or for angular velocities large
enough so that b, ur»5oo, X„L, u„and u2 are,
respectively, proportional to 1, 1, i, and -i.
There is no need to give the general expressions
for X& and p.;. Let us simply indicate that if 5~ is
not negligible compared with A&a, A /X, is no

longer equal to unity. On the other hand, it can be
readily seen from Eq. (7) that q, w 0 results in
some mixing of the right-hand terms of Eq. (8).
In this case Eq. (11) is still valid, but the X; and

u; must be eorreeted by factors 1 +iq, /qo de-
pending on the direction of rotation. Accordingly
cl 0 becomes slightly dependent of the sign of 0 .

From Eq. (6) it is seen that the temperature
field at any point (x, y) of the cavity, in particular,
on the bolometers I, II, III indicated on Fig. 1,
can be written

T, = 8, [l-iy, (&u-&u, )] '+82[1-i y2(&u-O22)] ',
(12)

where 8, and ]9, are two complex amplitudes, linear
combinations of the A.; and }L(,&. Each term of Eq.
(12}taken separately appears as a classical reso-
nance response and the corresponding plot in the
complex plane is a circle passing through the ori-
gin of coordinates. A resonance circle is traced
counterclockwise as frequency increases. Con-
sider, for instance, the first resonant term. The
point H„at v =(d„corresponds to the maximum

b, oo = (8/w2)(2-B')Q.

Within the above-mentioned approximations Eq.
(8) coincides with the expressions of c» and c„
given by Snyder and Westerwelt. " Note that the
sign of Le, and therefore of 2-B' and 0, appears
only in c». The observation of the (10) mode
alone cannot give any information about the sign
of 2 —B'. To interpret the experimental results,
it is convenient to rewrite c» and c„each as the
sum of two terms
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modulus, and 45 from this point corresponds to
the half-width of the common response curves.
The quality factor, defined as the ratio of reso-
nance frequency ~, to this half-width is simply
related to y, and P by

(13)

At a given temperature T, and angular velocity 0,
frequency splitting ~, —(d, and Q factors are de-
termined, therefore, the shape of the bolometric
response in the complex plane is uniquely depen-
dent on the value of the complex ratio 6,/6, . We

are never very far from the ideal case, where
0 5(d 0 with receivers precisely positioned

either at the center of a face (I and II) or at a
corner of the cavity (III). Values of 6,/6, in this
ideal case are sufficient to show the main aspects
of the recorded signals on bolometers I, II, III,
as shown in Fig. 2.

Thus on the bolometer I opposite the transmitter
(x=a, y = ,'b), idea-lly T,(I)= —c„, 6,/6, =1, and

the response remains unchanged when rotation is
changed from clockwise to counterclockwise.
Actually, T, (I) is slightly affected by reversing
the direction of rotation, due to unavoidable de-
viations from ideal conditions: (i) inhomogeneity
of the transmitter (q, t 0} making c„dependent on
the sign of 0, (ii) poor centering of the receiver
rendering it sensitive to the (01}mode, (iii) or
alternatively, inhomogeneity of the receiver if
extended over the face x=a. These may account
for unexplained differences in the shape of the
response curves associated with the direction of
rotation in the results of Snyder and Linekin. "

Bolometer II is set at (x = —,'a, y =b) in order to
receive the (01) mode alone, T, (II) = —c», 6,/6,
= i/-i = -1. Changing 0 to -0 results in a change
of v in the phase of the signal T, (II) without af-
fecting its shape. As for bolometer III (x=a, y=-b),

T,(III}=—(c»+c»), 62/6, =1 —i/1+i= i, and -the

two resonance circles have diameters in quadra-
ture. In this case the sign of A~, determining
which of the two frequencies ey or (d2 is the lower,
strongly affects the actual shape of the response
plot, as can be seen in Fig. 2. Therefore we can
deter mine the sign of 2 —B ' by mere inspection of
a recorded plot of T,(III). Experimentally we
found the quantity 2 -B' to be always positive in
the whole range of temperature explored, in agree-
ment with the conclusions of Lucas. "

We also observed the second harmonic n= 2.
From Eq. (7) it is clear that the coupling effect
vanishes for even harmonics. The response plot
T, (I) remains a simple resonance circle, as
verified experimentally (Fig. 3). The only effect
of rotation is to decrease the amplitude of the
resonance and the associated Q factor. Observing

how the Q of second harmonic varies as function
of 0, we may have a straightforward method to
measure B. But since a computer program is
used in order to analyze split resonant responses
such as those shown in Fig. 2, it turns out that
both B and B' are deduced from the first harmonic

satisfactorily.

IV. DATA REDUCTION AND RESULTS

As explained in Sec. II the bolometric signal is
directly recorded as a complex voltage amplitude
Z=X+iY. The general expression (12) for tem-
perature amplitude T, also represents within a
multiplicative complex factor the recorded signal
Z. This comples factor Z/T, is determined by the
sensitivity of the LIA and the arbitrary setting of
the zero-phase axis relative to the reference sig-
nal. The method to determine the significant
parameters ao, —ao„y„and y„consists of fitting
the measured signal Z with an expression of the
form (12). This procedure is obviously correct
only if Z/T, is really a constant independent of &u.

This is right as long as the thermal time constants
7's of transmitter and bolometer are negligibly
small, which is true for the metallic films we use,
Strictly the heater and bolometer transfer opera-
tors, involving a factor [I-irurj ', cause a fre-
quency-dependent phase lag, first between the out-
put of the synthesizer which supplies the reference
signal to the LIA and the input q„and second, between

T, and the pick-up voltage. For instance, painted
carbon bolometers having w as large as 0.3 msec would
introduce a systematic error inphas e of about 2'
over an interval A&u/2v -10 Hz. In this connection,
it is even more imperative to make sure that the
input amplifier of the LIA has a flat response.
For instance, operating the LIA at about 100 Hz
with a selective amplifier having a Q factor as low
as five, the error in phase for 1 Hz would already
be 6'.

Prior to any recording we always begin by mak-
ing sure that the resonant response of the cavity
at some given angular velocity 0 and bath tem-
perature T, is perfectly linear with the heat input

q, (modulus of Z proportional to q, and constant
phase). To warrant a linear response, q, must be
turned down as we approach T~ (q, = 0.1 pW/cm'
at T~-T =5x10 ~ K). We did not try to precisely
define a critical heating power P, nor to systema-
ticallystudy P, vs T,. However, it is worth pointing
out qualitatively that what we observed as the first
critical limitation was the second-sound amplitude
rather than q, itself or the dc heat component.
When increasing Q at fixed temperature, which
increases accordingly the sound attenuation, we
were allowed to turn up q, to retrieve the same
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sound amplitude without getting out of the linear
region.

After T, is well stabilized and a rotating equilib-
rium is attained and maintaining constant some
suitable transmitting power, the exciting frequency
is increased by steps. The response Z(v) is plot-
ted by points for about N= 20 to 60 discrete values
e„of the frequency. Over the whole range of in-
creasing values of To, the amplitude of the pick-
up voltage decreases from 100 p,V to 100 nV.
Correspondingly, the time constant of the LIA
must be increased from 0.3 to 10 sec and the total
duration of a run increases from 5 to 30 min.
After a frequency run, to test that no significant
changes of temperature, angular velocity, or
transmitting power occurred during the measure-
ments, we return to the starting frequencies to
ascertain the reproducibility of the first points.
As far as Tq —T&10 ' we detect no observable
change in the points, within the precision of the
recorder pen. The situationdeteriorates rapidly for
T„-T & 10 'K. For the highest temperature T& - T
= 5 x 10 4 K, var iations of Z may reach 1 mm on
the recording sheet, which represents about 0.O'Pq of

( Z). Another reason which limits our measurements
to T& —T -5 ~10 ~ K is that above this temperature
the second-sound frequency decreases under 10 Hz

and falls into the bandwidth of the temperature
controller. Experimental second sound becomes
affected by the control system like any external
disturbance.

The remarkable reproducibility of the registered
points Z„after a time of 30 min can essentially be
attributed to the absence of long-term temperature
drift, when regulating with a second-sound cavity,
in contrast with a classical bridge controller. "
From the mell-calibrated dimensions of the con-
trol cavity and from its resonant frequencies, we

obtain u, with a precision of 10, and T, is esti-
mated using the table value of u, (T) from Greywall
and Ahlers. " Qn the other hand, 0 is measured
with a precision of 0.5/p.

Let us denote by f(&u) the function of fre-
quency on the right-hand side of Eq. (12).
It depends on eight parameters, viz. , the
real and imaginary parts of 6, and 8„u„u„y„
and y, . To fit a set of observed points Z„with a
function of the form f(v) regression calculations
are performed on a computer. The eight para-
meters in f(&u) are taken as the unknown regres-
sion coefficients, and are determined so as to
minimize the sum of squares of the residuals,
P„~Z„—f(cu„) )'. Table 1 compares the optimized
values of the quantities of interest (d, —u„y„
and y„as calculated from the recordings shown
in Fig. 2. Note that these recordings were ob-
tained by changing only the probe bolometer or

TABLE I. Optimized values of the quantities ~2 ~f/
2&, p&, and p2 as obtained by fitting the four recorded
plots in Fig. 2 l.abeled a, b, c, and d to an expression
of the form (12). + is the total number of points (X„
+&Y„) fitted. The uncertainty in the last digit given in
the parentheses corresponds to 99% confidence intervals.

Befer to (&2 —&~}/2& p~ = 9&/~~
Fig. 2 & (Hz) (sec) (sec)

(a)
(b)
(c)
(d)

32 1.59 (5) 0.173 (5) 0.179 (6)
20 1.61 (7) 0.170 (6) 0.173 (8)
22 1.55 (5) 0.179 (8) 0.184 (9)
42 1.58 (4} 0.176 (4) 0.178 (4)

0/2K (r ~s)
FIG. 4. Examples of plots at fixed temperature of

I.~V, ~
' vs ~/2~: () & =&.9» K, () & =2.113 K. »e

quantity f~y~] defined in Eq. (11) is inversely propor-
ti.onal to the quality factor of the cavity, expresses
second-sound attenuation, and increases linearly with
rotational speed 0/2x in accordance with Eq. (14). The
fitted straight line has a slope B(T) an/ the nonzero
intercept indicates a finite quality factor at rest.

the direction of rotation, given T, and (0 (. The
good agreement of these results, within the
estimated errors, justifies the above analysis of
the second-sound wave in the cavity and gives
confidence on the data reduction procedure. Note
also that y, and y, are allowed to vary indepen-
dently in the regression program. The results in
each case confirm that y, = y, as it should be ac-
cording to Eq. (11).

At each working temperature T„y, (or y, ), and

Q7g (Jo
y

are measured for a few values of the ro-
tation Q. The plot of 1/&y, vs 0/2v as shown in
Fig. 4 is a straight line, in accordance with Eqs.
(2) and (11):

1/vy, = P,u&, /2w +an/2v .
The extrapolated value of 1/vy, for 0 = 0 is in-
versely proportional to the quality factor Q, of the
cavity at rest. The slope J3 is computed by sim-
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FIG. 5. Examples of plots at fixed temperature of the
squared frequency splitting vs (Gj2x)2: (0) T =1.995 K,
(Sj T =2.113 K. In accoxdance with Eqs. (9) and (11) the
slope of the fitted line yields !2 8'!. As ex-plained in
the text a small nonzero intercept g~/2&)2 can arise
because the cavity is not perfectly square, and this may
randomly vary due to assembling and disassembling the
cavity to change bolometers. Whereas negligible in one
case (lower line), 6~/2x-0. 3 Hz in the other (upper
line).

6
FIG. 7. Mutual-friction parameter B as a function of

the reduced temperature c =1-T/T ~ on logarithmic
scales: (0) present measurements, (0) data of Lucas
and Hall (Ref. 11), (Q Lipa eE cE. (Ref. 10). The fitted
straight line corresponds to the power-law dependence
given in the text, with critical exponent near -3. Typi-
cal error bars are shown at both ends of the scale.

pie linear regression. Results for 8(T) are col-
lected in Pigs. 6 and 7. %e verified that the at-
tenuation observed in the second harmonic is con-
sistent with the values found for B.

As shown in Pig. 5 the squared splitting
[(~,—~, )/2s] ' is plotted as a function of (0/2w)'.
According to Eqs. (9) and (11) the relationship be-
tween these two quantities is linear. The compu-
ted slope of the regression line is used to derive
!2-8']. As explained above, we can deduce the

sign of (2 8') by -mere inspection of the response
plot of bolometer II. Results for 8'(T) are shown
in Figs. 8 and 9. Any observed nonzero intercept
of the line [(e,—e,)/2v] ' vs (0/2s) clearly cor-
responds to a nonzero separation 5~, as esti-
mated at rest from the measured values of v, and
co,. It should not be confused with the unexplained
nonzero intercept that Snyder and Linekin observe
in plotting the separation of the maxima of their
response curve Af as a function of the rotational
velocity. "
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FIG. 6. Texnperature dependence of the mutual-friction
parameter B above 1.75 K. Experimental points: (0)
present measurements, () data of Lucas from Hef. 11.
The arrow' marks the Qrst point shown again in Fig. 7.

FIG. 8. Temperature dependence of the mutual-fricUon
parameter B': (0) present xneasurements, () Lucas
(Ref. 11), (L) Snyder and Linekin (Ref. 12). The arrow
marks the first point reported in Fig. 9.
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V. CONCLUSION 6
I I I I I I ~ I I ~ I I I

I

Our results for B agree well with the measure-
ments of the previous authors in the lowest in-
vestigated x'ange of temperature, 1.75 &T & 2.10 K.
In Fig. 6 they are compared in particular with the
data from Lueas. Above 2.1 K values from Lueas
and Hall" become systematically greater than
ours, while those from Lipa et al. lo remain mark-
edly lower. This appears clearly in Fig. 7 where
B is plotted versus the dimensionless parameter
e =1-TjT~ using logarithmic scales, over the
range 2x10 &c &3~10 '. It is clear from this
plot that B can be described in this range by a
power law of the form

The two parameters b and n determined by a.

least-squares method are found to be

b=0.470+ 0.033, a=0.330~ 0.015 .
Our results for 8' confirm the observations of

Lueas" over the common range of temperature
(Fig. 8); in particular, the existence of a negative
divergence, which excludes the large positive
values found by Snyder and Linekin. '~ This agree-
ment is especially conclusive as we have used a
geometry and method very similar to that of
Snyder and Linekin. Results in the range
2x10 ~&«3x10 ~ are reported in Fig. 9. Clear-
ly, B' ean no longer be described by a simple ex-
pression like (15), as 8' is already near zero at
c =3 &10 2, and yet the experimental data in this
temperature range are correctly fitted by an ex-
pression of the form

B' = b'e +b',0 &

with

b' = —0.34 + 0.03, bo = 1.01 + 0.12,

e being the same exponent as for B. In Fig. 9,
bo-B is plotted as a function of e in log-log
scales, using this best estimate of bo bo 1 01.
The best fit [Eq. (16)] then appears as a straight
line with slope —e.

As our measurements of both B and B' agree
well with those of Lueas in the intermediate
temperature range of 1.75&T&2.10 K, we may

3

a

I I I I I I I

FIG. 9. The quantity bo -J3', where bo ——1.01 is plotted
as a function of the reduced temperature ~=1—T/T~:
(0) present measurements, () Lucas (Ref. 11). The
constant bo and the solid straight line have been fitted
as described in the text.

adopt Lucas's discussion of the comparison with
theory. %e refer in particular to the recent
article by Hillel, Hall, and Lucas, ' where the
authors recalculated the cross diameters ot~ and
o ~ from Lucas's results and compared them with
theoretical values. From this comparison it is
obvious that none of the existing theories is able
to account for the behavior of B and B' above 1.7 K.

As pointed out also by Hillel et al. the values of
o)( and o ~ close to Tz are quite insensitive to the
experimental scatter in B and B' as T -Tz. Pro-
vided only that B-+~ and B'--~, the asymptotic

0
values of o)I and o ~ are determined: o.~-7.4 A,
o)~ -0. Even the limiting behavior of o„o
=7.4(1+p, /p), does not depend on the critical ex-
ponents of B and B'. The only point we may infer,
in the theoretical scheme of Hillel et aI, concerns
the limiting behavior of o . Taking a critical ex-
ponent n = —3 for B and B', and knowing p, ~x &'~3,

it is found that o tt-0 like e.
Whether or not' the hydrodynamic analysis of

Hillel et a/. is adopted as a first step, the theory
of mutual-friction coefficients near the A. point
remains to be completed. The most marked fea-
ture of our measurements, the result that such a
theory should have to justify, is in our opinion the
evidence of a critical exponent for B and B', with
a value near --,'.
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