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An exact microscopic theory of volume and surface polaritons is developed for a spatially dispersive dielectric
half space. No dielectric function is postulated; instead a collection of terms which is designated such arises
naturally in the course of solving the microscopic equations that describe the response of the molecules to an
external driving field. The excited states of the crystal are assumed to be Frenkel excitons which are treated in
the tight-binding approximation. All intermolecular interactions are assumed to be of the point-dipole type.
Formulas are derived for the reflection of s- and p-polarized light from the dielectric at, arbitrary angle of
incidence. Formulas are also given for the reflection of light inside a prism separated from the dielectric by a
small gap as in attenuated-total-reflection experiments used to detect surface modes. Model calculations, using
ZnSe parameters, exploring the effect of spatial dispersion on the optical properties are described.

I. INTRODUCTION

The purpose of this paper is to develop in a logi-
cal and consistent manner a rnieroseopic theox'y of
the optical properties of a semi-infinite molecular
crystal. No assumptions concerning the dielectric
function are made. Indeed, since the starting point
ls the set of MRxwell equRtlons desex'lblng the in-
teraction of point dipoles in vacuum with an elec-
tromagnetic field, thex'e is no dielectric function
for the material half space but it proves conve-
nient in the course of solving the equations to iden-
tify R group of frequency-dependent terms that
play the role of the dielectric function.

The effect of spatial dispex'sion on optical prop-
erties was first studied by Pekar' and latex by
Hopfield and Thomas. ' These authors intx'oduced
the concept of the additional boundary condition
(ABC) as a technique for solving the Maxwell equa-
tions when the material half space was treated as
a continuous medium with R frequency- and wave-
vector-dependent dielectric function.

Since Frenkel excitons approximate point exci-
tations (electron and hole on the same molecule)
they can exist in the surface planes. However,
%anger excltons being much gl'eRtex' ln size» must
distort completely in order for the center of gravi-
ty to penetrate the surface planes. This physical
restriction from the surface region is analogous
to that of the center of mass of a bubble between
two parallel plates. The different ABC's postu-
lated for Frenkel and %annier excitons are one
manifestation of their quite different physical
proper ties.

In principle, the problem of guessing the appro-
priate ABC for a given type of exciton can be
avoided if the nonlocal dielectric function e(~, r, r')
is known for all points r and r' inside the half
space. For then Maxwell's equations can be solved
and the optical properties of the solid calculated.

Recently several groups' ' have adopted this ap-
proach and have claimed to have circumvented the
speclflcatlon of Rn ABC. The claims by these Ru-
thors are premature to say the least since they ap-
proximated the function e(e, r, r') by e(~, r —r')
xs(s)8(z'), where e(&o, r) is obtained by Fourier
transformation of the bulk dielectric constant
e(a&, K). The dangers in this approach are severe.
In the case of Wannier excitons, it implies bulk-
like behavior right up to the surface. This is not
correct since it has been shown that the nonlocal
susceptibility for %annier exeitons should include
terms depending on ~s+z'

( arising from charge-
image interactions near the boundary. '

Qther more explicit criticisms have been ad-
vanced by Agranovich and Yudson»' who point out
that the theory of Refs. 3 and 4 is only valid at
one fx'equency' (d which, hRppens to fRll outside the
exciton band. Sipe and Van Kranendonk, s and
Mead' have compiled other objections of a rnathe-
matical nature. In spite of the criticisms men-
tioned, the work of Refs. 3-5 contains some in-
teresting discussions of polaritons in bounded me-
dia and offers physical insight into the effect of
spatial dispersion on optical properties.

For Frenkel exeitons microscopic theories have
been derived' "that require neither the use of an
ABC nor an approximation for e(u&, r, r') near the
surface of the crystal. The localization of the
electron and hole on the same site reduces the
problem of calculating the optical properties to
that of finding the electromagnetic field of a dis-
exete array of point dipoles. This approach has
been largely ignored in Refs. 3-5 even though it
has produced exact results which are useful as
corrlpRx'lsons fox' Rppl"oximate theories. The Rd-
vantages of the microscopic approach are several.
First, no ABC or dielectric function is assumed,
the latter emerges naturally during the derivation;
second, they are not restricted to systems where
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spatia1. dispersion is weak; third, they can be
modified to account fox' surfRce reconstruction&
adsorbed monolayersq Rnd even deRd 1Ryex'8.

In this paper the microscopic theory is extended
to include P-polarized excitations. The earlier
work considered only the s-polarized optical px'op-

erties Rnd, consequently, could not describe the
effect. Of spatial, dispel sion Gn sux'fRce polRx'ltoQs

which exist only as P-polarized excitations. Very
recently reports of the observation of exciton sur-
face polaritons in ZQO, "CUBr, ' and Rnthracene"
have been published. The latter involves a Frenkel
exciton and the fox mer, because of theix small
radii (=20 A), may be thought of as Frenkei-like.

This paper is organized as follows. %6 begin
with a brief derivation of the xeflection power of
a half space, assuming a continuum model Rnd the
Pekar ABC P=0. Formulas axe also derived fox'

the I'ef lection power of the attenuated-total-reflec-
tion (ATR} experiment used to detect surface po-
lax'itons. In Sec. I1I the px'oMem is formulated for
both 8- RQd p-polarized fields. Then ln Sec. IV the
general solution of the p-polarized problem is out-
lined for the case of a driving field incident fx'om

vacuum on the semi-infinite crystal. Next, in

Sec. V, the results of ordinary optics are recov-
ered by assuming that spatial dispersion is ab-
sent. Section VI treats the case of an isotropic
solid with spatial dispersion in detail since this is
the simplest model problem. Section VII briefly
considers other models, including the case of
anisotropic molecules, and Sec. VIII comments
briefly on surface polaritons Rnd the theory of the
ATR experiment. Section IX describes model cal-
culations of the s- and P-polarized reflection power
of the half space and the ATE p-polarized reflec-
tion powers showing the presence of surface pola-
x'itons.

X
Vacuum Dielectric Halfspace

X
Prism Gap Dielectric Half space

FIG. l. Schematic representation of the right-handed
coordillate system and the directions of the p-polarized
incident and reflected electric fie1d amplitudes for a
dielectric half space without (top) and with a prism half
space g)ottom). For p polarization there are three fields

g& in the spatially dispersive medium.

dependence of the field amplitudes is taken to be
e"", where x is the projection of the wave vectox
onto the x axis. In the usual formulation the di-
electric function of the half space is assumed to
have the form

where e, is the background dielectric constant;
(d» the transverse excltGQ frequency& 9& the spR
tial. dispersion; y, a phenomenological damping;
K, the exciton wRve vectox; Rnd v» the plRsmR
frequency" containing the oscillator stxength of
the isolated transition as a factor.

II. CONTINUUM THEORY

An extremely useful way of checking the results
of the microscopic theory in the limit of weak
spatial dispersion is to calculate the ref lectivity
using the ABC P =0 and the continuum model fox"

the dlelectrlc propex'ties. In this section we find
the x'ef lection RIQplltudes fox' 8 Rnd p polarlzatlon~
fixst for the half space alone and then for the ATR
configuration. In the latter case the light is re-
flected from the prism side of a glass vacuum
lntex'face pRx'Rllel to the dlelectrlc half spRce. The
coordinate systems used in the calculations ax'e

shown ln Flg. 1.
The xz plane is taken to be the plane of incidence.

All incident fields are assumed to be monochroma-
tic with time dependence given by t. ' '. The x

A. ReAection from a dielectric half space

It is convenient to consider the reflection of P-
and g-polarized incident fields sepaxately. The
formulae will be summarized only briefly since
they Rre derivable from x"esults available in the
literature,

Fox" p polRl ization tjle contlnulty of g„»0, Rnd

g), Rcx'oss the interface plane z =0 yields equa-
tions sufficient to calculate the ref lectivity in or-
dlQRx'y Optics. However~ ln the pl esence of spR-
tlRl dlspex'sloQ the longltudlnRl mode mixes with
the two tx ansverse modes with the result that
fields inside the dielectx'ic have three components.
For exemple, the electric field intensity inside
the dielectric at the point r =(p, z) is given by
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E,(r) = e' "' Q S„e'8&', 4v6'„=(n', —1)S„,
4m''„=-8...

(2.11)

(2.12)

e(oi, R,) =0. (2.4)

Since the electxic field of this xnode is parallel to
its total wave vector, we have

(2.5)

Propagation in the positive z direction in vacuum

is described by the phase factor e'80', where

(2.6)

Px Gpagation in the same direction in the dielectric
is described by e'8&', where we may sometimes
choose to write P, in the form (j= 1, 2 only)

P, = [n', (oi/c)' - «']'»'. (2.7)

%e shall sometimes refer to n& as the refractive
index of mode j when discussing the transverse
modes» g = 1» 2.

The equations that must be solved for the re-
flection amplitude Ro are

(2.8)

whex'e 0' =x» g. Components of other vectox' fields
are expressed in the same way. To solve the equa-
tions derived from the continuity relations an ABC
is needed; we adopt the Pekar additional boundary
condition that all the components of the polariza-
tion density P (r) are zero at the crystal surface.
The results obtained in this way agree exactly with the
microscopic theory in the limit of weak spatial dis-
persion.

The two transvex se modes j =1,2 have total
wave vectors K, =(«, P, ) found by solving

c'K'/id'-e(oi, R) =0. (2.2)

Since the electric fields of these modes are per-
pendicular to their wave veetoxs, they satisfy

gg,.„+p)g~, =0, j=1,2, (2 8)

The longitudinal mode has total wave vector K,
=(«q Po)~ the magnitude of which satisfies

where r, (o&) is the ref lectivity for s-polarized
fields given in Sec. IIA2. %e shall see that this
result is also given by the mieroseopie theory in
the limit of weRk spRt1Rl dlspex'Sion, defined by
(ap& («1 for all j=1,2, 3.

2. s poiurizaIioe

In 8 polarlzRtlon there 18 no mlxlng Gf the long1-
tudinal with the transverse modes. The electric
incident and reflected field intensities are paxallel
to the y axis. Inside the crystal the electric f'ield

is the sum of two transverse components,

(r) eiK'o ~ S elsic

Continuity of the tangential components of the
electric and magnetic field intensities at the inter-
fRce z =0 yields

g+g =g, +g

Po(~o ufo) =PiSi-. +P So,

(2.15)

(2.16)

These equations can be solved with the hei. p of the
Pekar ABC

(2.1V)

where j= 1,2 in (2.11) and o =x, z. Contrary to the
conventional derivation we have here assumed that
all the polarization P(r) comes from exciton tran-
sitions. This deviation is necessary in order to
obtain a fox'mula, that agrees exactly with the one
de11ved fx'Qm the m1closcop1c theox'y.

Straightforward manipulation of Eqs. (2.8)-(2.12)
yields the following result for ro(id) =fto/E„ the
p-polarized reflection amplitude:

&,(oi) = -o,(oi)

40—(Ifo+Eo) =- Q (P,S,„-«S„), (2.9)
and the analogous equation to (2.11) with o =y.

The result for the s-polarized ref lectivity is

(2.10)

The last equation comes fr'om the ABC applied to
both components of the polarization density. By
analogy with the relation (e —1)E =4vP, which
holds f'or nondisper'sive matex"ials, we assume that
the amplitudes 6'& and g& are connected by

(2.18)

which 18 the weRk spRtlRl dlspex'81on limit of the
x'esult given by the microscopic theory. The wave
vectors Pi (j = 1,2) appearing in (2.16) are found by
solving Eq. (2.2) with specified «and id, justas in the
cRSe Qf the transverse modes of the p-polarization
theory.
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1. s-polarized ATR

The rat1o of the ampl1tudes Ao and Eo in the
prism (a&0) is given by

(2.19)

z(j.) I + &(as)elk
~(a) y ~(as)
Po

(2.20)

Here superscripts (1) RIll (2) refer io media 1 and

2 of the prism and gap regions, respectively.
Thus

P(fw —(e ~R/c 3 ~R)l/3 f 1 2 (2.21)

where c; is the dielectric constant of the glass
(f = 1) and gap (f =2). The quantity rs ls the re-
flection amplitude for the dielectric half space
given by Eq. (2.18) in the case of a vacuum gap.
The dimensionless quantity

(2.22)

measures the effective number of wavelengths
across the gap and back.

Z p-polunzed ATR

B. Theory of the ATR experiment

Qnce again the cases of s- and p-polarized inci-
dent fields are considered separately. Qnly the
results of the calculations are given since the
method is a straightforward extension of Sec. IIA.
There are two interfaces (see Fig. 1) at which the
continuity relations" of the Maxwell field apply.

based on a somewhat different division of inter-
molecular interactions into long- and short-range
parts, have been published elsewhere. There are,
however, some subtleties, overlooked heretofore,
that emerge from a comparison with the P-polar-
Ized theory.

Consider a semi-inflnIte orthorhomblc cl ystal
with one molecule per unit cell. The sites of the
lattice are taken to be

r q
=801x +pk Qgp + IQsz ~

where n, m =0, +I, +2, . . . , and l = 1, 2, 3, . . . . In
this model the index l labels the crystal planes
parallel to the surface plane z =as. The first plane
has E= I, the second 3 =2, and so on. The coordI-
nate system is shown schematically in Fig. 2. Note
that the crystallographic, dIelectrIc, and external.
coordinate axes are parallel. Furthermore we
consider only external driving fields with xz as the
plane of incidence. Following convention electric
fields of the type (0, E„,0} are referred to as s
polarized and those of the type (E„O,E,) are called
P polarized.

The cia.ssical oscillator model for excitons and
polaritons in molecular crystals is used here and
all nonlinear processes are neglected. The nota-
tion is the same as in Ref. 15. The response of
a molecule on site r, to a monochromatic driving
field with time dependence e ' ' is described by
a set of oscillating dipoles d,„e' ', where u de-
notes the quantum transition from the ground to
the uth excited state. After cancellation of the
time factor the equations of motion for any ag-
gregate of molecules arrayed on fixed sites r, in

For P-polarized light incident from the prism
side of the prism-gap interface the ATE amplitude
1S

(2.23)

with

(j.) y + y(2s)
(2.24}

where r~~a" Is the reflection amplItude for the gap-
dIelectr1c interface given for the case of a vacuum

gap by Eq. (2.13).

Q 0 Q Q Q Q

Q Q Q () Q Q Q

Q Q Q () Q Q Q

Q Q 0 () Q Q Q

III. FORMULATION OF THE MICROSCOPIC THEORY

The rest of this paper is concerned with the de-
velopment and application of the microscopic theo-
ry of P-polarized optical properties of a dielectric
half space. Fox completeness we also consider the
sImpler s-polarized problem. Qnly a brief outline
of the latter is given since the principal results,

FIG, 2. Schematic diagram of the right-handed coordi-
nate system used in the microscopic theory. Crystal
planes E =1,2, 3, . . ., correspond to z =a&, 2az, 3@3,. . .,
%here Q3 is the lattice constant in the z direction.
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a vacuum become

Q [15„,+4iia, ((u) $„.((u)] P, = n, (&u) ~ Eo(r,),

(~) ~ gg + 1 R-1 i ldz/c
4m C

(3.3)

is a dimensionless retarded dipole-dipole interac-
tion tensor (v, is the unit cell volume and R
= r, -r, .

P", =v,-' gd (3 4)

is a polarization density vector defined for each
site, and E,(r,) is the amplitude of the driving
field at site r, .

The external driving fields are monochromatic
and have the form

where

(r} E ei k.r (3.5)

k = ](x + Poz .

If 8 denotes the angle of incidence, then

(3.6)

(3.2)

where a, (&v) is the polarizability tensor of mole-
cule s,

15it '+4&ai e '@rt ' co' & ' Pr =Br (o ' Eoe' o"3,

where
(3.12}

&'ii (&a'x) = P 4„,„,(&o)exp[is(n —n')a, ]
n 'm'

(3.13)

is a two-dimensional sum of the retarded dipole
interactions.

The crucial step in the formulation of the prob-
lem is the calculation of the components of the
tensor @». and the separation of long- and short-
range interactions. Formulas for the case l =l'
were derived in Ref. 11 as a limiting case of l+l .
Since it is the result and not the details of this cal-
culation that are of immediate interest here, the
latter are relegated to Appendix A. The lattice
sums @« ~ are divided into a short-range part
v„., arising from the R ' terms of C„.that domi-
nate in the near zone (uR/c «1), and a long-range
part, arising from the R 'e' ' term that domi-
nates for wave-zone separations (&uR/c» 1}. Ex-
plicit formulas for the long- and short-range parts
are listed in Appendix A.

Now if the y axis is parallel to a principal axis
of the polarizability tensors a. , we have for s-po-
lar ized dr iving fields the equations

x = ((d/c) sin e,

p, =(&v/c) cose,

(3. |)
(3.8)

g (5„+4iia,„[v„„(f—f') —i ,'(k'a, /P-, )e'o ' ' "])Pi,,

=a,„E»e ' '. (3.14)

since

k= fkf=cv/c. (3 0)

p p f Ktm)
1 (3.10)

(xs = &» (3.11)

Eqs. (2.2) reduce to

Solutions of Eqs. (3.2) are sought that are peri-
odic in the x and y directions. If we set

There is one equation for each l = 1, 2, 3, . . . .
These equations have been derived and discussed
before. However, in previous work the K and u/c
dependence of v„(l—f') has not been investigated.

The equations for P-polarized driving fields are
more complex because the x and z components of
the material fields are coupled together. If 5„is
the second rank tensor made up from the x and z
components of a, , then the equations for the system
driven by a P-polarized external field are

(15» +4vn, i lxx[v„(l—l'} —,ia, poe' 0 —' ' ' ] (x2+ax}i+sgn(l —L')(1 —5„,)[v,(f —1')+ —,a, we'so ' ' 's]~
~

+zz[v (l l ) i ,'(a, x /p)e 8-0 - 'foi]] } ~ P, , =iz„~.Eoe Bo~~~ (3 15)

Note that in Eqs. (3.14) and (3.15) the short-
range interactions depend on x and k (= to/c).

The short-range interactions v(l —l'} are so
called because they fall off very rapidly with
fl- l f. For planes involving small Miller indices
it is often the case that these interactions are neg-
ligible for fl —l' f&2. Note that the off-diagonal in-

teractions depend on the order of l and l' through
sgn(l —l' }.

The P-polarization equations are simpler in
several special cases. For highly anisotropic
molecules one may be able to neglect all but the
one component of o. corresponding to the exciton
transition closest to ~. For example, the long
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axis of the TCNQo (tetracyanoquinodimethane}
molecule is almost parallel to the (010}crystal
plane. " Therefore, near the first singlet transition
which has an enormous oscillator strength (f= 2)
the system could be modeled by setting a„,= a,,
= const.

The second special ease and the one which we

a, =n, 1 (3.16)

and assume n, = o. is independent of distance from
the surface plane, then the P-polarized equations
become

pursue in this paper is the case of isotropic mole-
eules. If we set

g ((5» +4.)Ta[v,„(f—i') —i ,'apoe-'8() ' ' '&])P;, +i(1 —6» ) sgn(f —j')4wo([u„(l- l') + 2axe'—~o ' ' 'o]P),,)

=ay e o' s) (3 17)

g ({6„,+4vo([v„(f i') -i .'-(ax-'ip ) *e"~' '~'3])P„+i(1—&» ) sgn(f- &')4va[6..(&- ~')+k«e'" ' ' "]P),)

=(rZ„e'"'". (3.ie)

IV. GENERAL SOLUTION OF THE MICROSCOPIC

EQUATIONS

In this section we outline how the solutions of
the microscopic equations (3.14), (3.17), and

(3.18) are obtained. Detailed formulas for inter-
actions v(l i') of arb—itrary range are not given
since they are long and cumbersome. Instead we
focus on casting the equations that determine the
optical properties into a form that renders the
physics more transparent. The equations of mo-
tion are readily solved for some special cases and
this is done explicitly in the sections following
this one.

A. p polarization

For notational simplicity we set a, =a. To solve
the P-polarized equations (3.17) and (3.18) we set

~ ~ eN;ralx- ~ jx (4 1)

eiB.la
lz ~ jz

In passing we note that to neglect the dependence
of e on l means that the theory cannot be used to
study surface-exciton states arising because of
site-shift induced changes in the polarizability.
Evidence for the existence of the excitons has been
reported for some organic crystals and some
rare-gas solids. ""

S,.(f) = g e xp[i( P,
. f' +P, ~/ —f' ~)a], (4.3)

S,'.(f) = g (1 —6», }sgn(l f')exp[i(P, l'+P, ~i —f' ~)a]

(4.4)

that arise in Eqs. (3.17) and (3.18) as a result of
substitutions (4.1) and (4.2) have the values

i sin(p, a) e'o~" e'oo"
S.(l) =

cos(P,.a) —cos(P,a) 1 —e" t) o~" ' (4.5)

i sin(p. a)e "~" e'oo"
S'. 1 = 4.6

cos(P,.a) —cos(P,a) 1 —e "oo o~" '

They differ solely in the replacement of pp by py in
the argument of the sine function.

Next we group together terms that are propor-
tional to e'~~" and ei o", and separately set them
equal to zero. In a sense we are using the idea
expressed by the Oseen extinction theorem, for
the fields inside the medium propagate with ma-
terial wave vectors P~ and not the vacuum value
Po. After separating vacuum from material terms
we obtain four equations. The equations containing
e'8~" as factors are

The number of modes 6)&, appearing in (4.1) is fixed
by the range of the interactions V(l —f'), as will
become apparent later. The sums

g, s, . ( 4, , (p. )), ' )~(() ))~,4, , (p ))
i 8' (() )

cos(p&a) —cos(p,a) '" "' " cos(p,.a) —cos(p,a)
(4.7)

ei8~ 7 a p ax 8lnpoa oar sin(p, a)
p, cos(p,.a) —cos(p, a) cos p,a —cos p,a)
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Here we have used the notation

t,.(P,.;~)+ 6..= P v,(I -I')e"" '"
f~ =0

(4.9)

t„,(P,.; I) =I g sgn(I —I')u„,(I —I')e'~~" ".

where E, is the magnitude of the dxiving field.
This last result is the analog for a discrete lattice
of the Qseen extinction theorem. It is the rela-
tion between p,, and E0 that holds if the electric
fields felt by the molecules depend only on the ma-
terial wave vectors P,. and not the vacuum wave
vector P,.

To complete the solution we must derive the
equations that determine both the numbex and form
of the P,. and the Fourier-like amplitudes {p&,

(o =x, z). To this end we assume that the short-
range interactions v(t —I') vanish whenever
~I -I'

~

&L Therefor. e, the lattice sums t„,(P,;I)
are independent of l for l ~ i. +1. In the l ~ I + 1
region the coefficients of e'~~" Rre independent of
l and since the P,. are independent functions we
have

—,'ap, sin(poa)(p) ...(p.'),.',(p.)

—,'a«sin(p, .a)
+ 4sa t„(P,.)— o

cos(p, a) —cos(p, a)

—,'(a«'/p, ) sin(p, a)

cos(p,.a —cos p,a)

2 «sin(p, .a)
cos(p, a) —cos(p, a)

(4.13)

The condition that 6',,have a nontrivial solution is a
2 x 2 determinant set equal to zero, and is equivalent
to a polynomial of degree 2I + 1 in cos(P a). The form
of the determinants is the same for all j so that the
roots of this polynomial can, in principle, be solved
for cos(P, a) andhencefor P, . Since thefieldsP„are

Since the v(l —I') are two-dimensional sums, the
new sums are three dimensional and x'un ovex all
of the semi-infinite lattice. Note that t„is defined
differently from t„„in order (see later) to achieve
a complete separation of the macroscopic optical
field.

The two equations containing e'~0" Rs a factox' are
not independent; they are proportional to

~ 6,„-(«/p,)6„
i(5 -8 ~ )g 0 &i —e

bounded inside the crystal, we must select wave
vectors P,. with positive imaginary pax'ts. Note that
the number of modes in the case of p polarization is
2I +1, in contrast to I.+1 for the corx'esponding
CRse of 8 polRx'lzRtlon.

Once the set (P,.J has been determined the ampli-
tudes 6,, must be found. To do this we use Eqs.
(4.11)-(4.13) and Eqs. (4.7) and (4.8) for the sur-
fRce-lRyer x'egloD cox'x'esponding to the Set of plRDes
with l= 1,2, . . . , I.. Before proceeding to the calcu-
lation of the polarization amplitudes and the optical
properties we make the connection between Eqs.
(4.12) and (4.13) and the Fresnel equation for a
spatially dispersive continuous medium. This will
allow us to identify the group of terms that cor-
responds to the dielectric tensor.

1. Die1eetric tensor

It is convenient to introduce a tensor, which we
shall call the dielectric tensor, by means of the
definition

[&(Z, , (o) —T],~~ = (4vn) '[5,~+ 4@nt„,(p,.)],
(4.14)

K,.= xx+P,.z. (4.15)

Equations (4.12) and (4.13) can now be written more
compactly as

p [(~ 1)-.', .+lit„.]6,.„=0, (4.16)

where M„,is the matrix of trigonometrical fac-
tors which occur inside the square' brackets along
with the sum t„.(P,) of short-range interactions.

Our identification of the dielectric tensox' is sup-
ported by the following observation. In the limit
of weak spatial dispersion, where [ap,. ~

«1 for all
j, the matrix M simplifies to

M„„=p', (p;'—p',—) ',
M„=M.„=«p,.(p',. —p',)-',

M, = 1 —«(P,' —Po)

(4.17)

(4.19)

which ls cleRlly indepeDdent of the lDtel"plRne spRc-
ing a (=a,). If we use

P (~2 +2)l j 2 (4.20)

then straightforward manipulation of (4.16) yields

det ~(~/c)'e(K„ur) —IC',.(1-K,K,.) ~

=0. (4.21)

This has the same form as the Fresnel equation
for a spatially dispersive medium of infinite ex-
tent" and supports our identificati. on of the di-
electric tensor by Eq. (4.14).
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where

(4.23)

This lattice sum can be evaluated by a modification
of Ewald's method. " The long-range part is read-
ily calculated by transforming (see Appendix C)
the three-dimensional lattice sum of R 'e'~" to the
corresponding reciprocal sum and performing the
differentiations, e.g. , see Eq. (3.3), to generate
C R(&u). The long-range part is

(K K —1k')/(K' —k') . (4.24)

The o.a' components of this tensor are the same as
the optica, l pa. rts of the matrix M in Eq. (4.16). The
reason for defining /„different from f„„in Eq. (4.9)
is now clear, for without separating 5„the zz
components of llf and (4.24) would not be equal.

Since Eqs. (4.16) and (4.22) are equivalent, we
may write

(4.25)

where K = Kx+ Pz, and P is a member of the set
(P,. j, j= 1,2, . . . , 2L+ 1. The components of 7 are
defined by Eqs. (4.9) and (4.10) or by the "Ewald"
formula"'" for $„-(cu).

The Ewald formulas for C K(u) may be used to
generate expansions for the components of F valid
near the center of the Brillouin zone. For a cubic
crystal a straightforward expansion yields

Comparing K,. with k, Eq. (3.6), we see that P,
has been replaced by P,. whereas ~ has not been
changed since it is determined by the periodic
boundary condition along x.

Equation (4.14) is an important result since it
shows that in the case of p polarization there is
no simple expression for the dielectric function of
a discrete lattice of isotropic molecules. Further-
more, it indicates that to treat spatial dispersion
phenomena correctly the v and (d dependence of the
lattice sums t„,must be considered very care-
fully.

In the limit of weak spatial dispersion
I aK,. I

«1,
the wave vectors P,. corresponding to any phenom-
enological dielectric function are found by inserting
a specified g(K, &u) into Eq. (4.21) and solving the
resulting polynomial for the set of roots (P,.j with

positive imaginary parts.
Next we show why the term 6„waswritten sep-

arately in Eq. (4.9). Returning to Eq. (3.2) we note
that for a lattice periodic along all three axes the
propagating modes have frequencies and wave

vectors K satisfying

(4.22)

t„„(K,&o) = f(0, &o) + 2 (e'J, + p' J,),
t„(K,(o) = f(0, (g) + z(P'J, + &'J,},
f„,(K, u) = ~lcP J, .

(4.26)

(4.27)

(4.28)

e(K, u)) =e(K, (o)1,

where

4vn((u)
&(K, (o) =1+

1+4»(co) t(K, ur)

with

(4.32)

(4.33)

t„,(K, ur) = 6„,[f(0, u) + qK'J] . (4.34)

We emphasize that this is really a mathematical
model with no basis in reality for real cubic crys-
tals. However, this does not entirely invalidate
its usefulness for as we shall see later it leads to
a soluble system of equations which lends consid-
erable insight into the effect of spatial dispersion
on the optical properties.

Z. Equations of motion in the surface planes

The surface region was defined as the set of
crystal planes for which l=1, 2, . . . , L. If we as-
sume the bulk-region equations (4.12) and (4.13)
to hold for all I, then Eqs. (4.7} and (4.8) for I
=1,2, . . . , L, represent auxiliary conditions that we
must impose on the amplitudes (P,, in order to de-
scribe correctly the behavior of P„andE,(la) in

Here J,. (i = 1, 2, 3) are functions of frequency v,
and t(0, u&) is the common value of the diagonal
components of t at the center of the Brillouin zone.
For a cubic crystal f(0, 0) = —3.

Using these relations the components of e(K, e)
are found to be given by

e„„(K,(u) = e,((o) +-,'[e,((o) —I]'(J,~'+ J2P'), (4.29)

e„(K,(o) = ~,((u) —g [e,((o) —1)'(J,P'+ J,~'), (4.30)

e„,(K, u)) = ——,[e,(co) —1]'J,~P . (4.31)

These relations are in agreement with the form of
quite general expressions derived from causal and
symmetry arguments for a crystal with weak spa-
tial dispersion. '"

The relations show that in general the dielectric
tensor &(K, ur) is neither diagonal nor proportional
to a single scalar function. In general, for a cubic
crystal there are three independent parameters to
deal with. This makes even the theory for cubic
crystals fairly complex and it is highly desirable
to introduce a set of approximations to give a
simple model. From Eqs. (4.29) —(4.31) we note
that e(K, e) becomes diagonal if we set J, = J, and

J, = 0. We call this limit the simple isotropic
limit. In this limit



the surface region. These auxiliary equations may
be %'rltten 1Q the fol IQ

E (la) = F e' o"+ It sin8e ' 0"
08 0

The p-polarized reflectivity

p e"~"[t t„,(f)tf,„+n, t,.(.f)tf„]=0,

'Where / ly 2p e e ~ y L Rnd

Staxting with I =I we find

(4.35a)

(4.36)

~(R) =Ito!Eo (4.43)

can b6 calculRted for a fized external fl equency (d „Rnd
angle of incidence 8, by solving Eqs. (4.11), (4.16},
and (4.38) for pJ and 6'„., and substituting the re-
sults into Eqs. (4.41) and (4.43). Rather than at-
tempting this for the general case we prefer to confine
oux' interest to soxn6 physlcRlly illuminating cRses.
The p-polarized reflection power is obtained by
squaring the modulus of r~(& )

2I,+1

Q tt', ,=0, (4.3V)

$8jIQ Ojc' y

for 0'= x Rnd z. These condltlons Rx'6 RQRlogous to
those found by Mahan and Obermair in the problem
of I'ef lection Rt Qox'IQRl RQgles of 1ncldenc6.

p-polQflz8d PvflectMll po NtPP

In th18 section a g6nerRl forIQula for the I'efl6c-
tivity is derived. Consider a point e = ta (t &0) out-
side the crystal. The totaL field is

For 1= I.—1, I.—2, . . . , 2, 1, Eqs. (3.35) give results
differing from (4.3V) by the presence of the phase fac-
tor e' 't' '. Thus Eqs. (4.35a) and (4.35b) are equiva-
lent to the following set of auxiliary conditions to
be sRtlsf led by the amplitudes (P

4. Summury of the p-popgun=ed solution

At this po1nt 1t, ls convenient to summarize the
equations determining the amplitudes 6'&, and
theix' wave vectors P& fox' the problem of P-polar-
ized pol3riton states. The bulk region supplies

Q [(7—1),',.+M„„,]d'~. =0, (4.16)

which 1s Used to cleterIHlne the 21 + 1 vRlues of p&

%1th posltlve 1mag1nary parts Rnd to relate +J8 to
The sul fRce Ruxll1Rry condltlons on 6 I~ from

Sec. IVA2 Rre

+6',„e'~J'"=0, l =0, 1,2, . . . , I, +1. -(4.38)

The f1nal equation lelRt1ng 6&„to the amplitude of
th6 dr1v1ng field„x'epx"esent1ng the extinction of
vacuum fields at lattice sites, is

(4. 11)

E„(la)=E„e"0"2' g Q -[(g'„-1')P,.,
ge 1 Q

+ tg„y,sgn(t —1')P,,„]
The equations of motion fox' 8 polal lzRtlon Rre

given by (3.14). To solve these equations we set
Q]~ = (7 Rnd

+-3.&-y~ I E- &' l a (4.39)

For
~

l ~»1 all but the G=O component is negligible.
Next we substitute Eqs. (4.1) and (4.2) for P„and
after completing the sum over planes 1' find

(4.40)

f (@O+8.}a
It, =t2nak g 5';„+—6',, —, , (4.41)

The number and nature of the wave vectors p,. are
not the same as fox' the p-polarized problem. It
eras dernonstx'Rted in Hefs. 11 and 13 that there
a16 I + I IDodes. The equations determining the
modes ax'6

[(e,„-1)-'+M„]6„,=0,

g d', „e'8~"=0, 1=0,-1, 2, . . . , I.+1, --
is the reflection amplitude. A similar calculation
fox' the z component of the total field yields

i2mapo ~ ) q(~ ~ ) =-Eo. (4.47)
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The y component of the die1ectric tensor is

4ma
e»(K(, (o) =1+

4 ( ), 4 vn(oo)
((d') = 1 +

1
(5.1)

v(l —l') is proportional to (1 —&» ) [see Eq (4 15)]
the dielectric tensor reduces to q(&o)1, where

t.,„(~,P, ) = g v,„(l}e"&" (4.49)

depends on ~ through the two-dimensional. sums
u»(l). For a cubic crystal and small wave vectors
~crK~«1, the lattice sum (4.45) is given by

-,'p, a sin(P, a)
cos(p, a) —cos( p,a)

In the limit of weak spatial dispersion
~
P,.a~«1,

so th.at

(4.51)

(K, &o) = t(0, tu)+ 2K Z, , (4.50)

where m the limit o1-0 the leading term is f(0, 0)
0

The long-range macroscopic field is contained in
(5 3)

and the 2x2 secular determinant of coefficients of
6'„canbe factorized to give

[n,' —&(O1)]e(OO) = 0,
where the refractive index n, is defined by

(5 4)

Here l = v„„(0)=v„(0)according to the assumptions
made above. [For a cubic crystal the three-di-
Illellslo11al lattice su111 f(0q 0) = —o. Fol' clll11c cl'ys-
tals I„„(0)is only approximately equal to --,'.]

Since there is only one mode in expansions (4.1}
and (4.2), we have

P„=O',.e 'i" (5.2}

for o = x, z. The secular equations (4.12) and (4.13)
reduce to

[B&((d/C)& —K&]& (5.5)
(4.52)

becomes independent of the lattice constant g.
The wave vectors P,. are determined byEq. (4.45)

and the L+ 1 amplitudes 6',.„arefound by solving
Eqs. (4.46) and (4.47). The ref lectivity of the sur-
face ls

and e(u) is defined by Eq. (5.1). Equation (5.4) de-
fines the frequency of the longitudinal mode by
e(&u) =0 and the dispersion of the transverse mode
by II,'= e(o1). The ref lectivity of the crystal is

(5.6)

(4.53) which is equal to the mell-known result for a crys-
tal without spatial dispersion.

Finally, if there is no incident driving field, the
~ and P, satisfy

x =e '"' and x.=e-"".
0 j p, + g&(&u)=0, (5.7)

V. CRYSTAL KITH NO SPATIAL DISPERSION

The purpose of this section is to recover some
well-known results for a medium with no spatial
dispersion. This is done partly for completeness
and partly to show that this corresponds to the
case of negligible interactions v(l l'} between-
crystal planes (f.= 0 case). Throughout this sec-
tion we assume that )oK(« I.

In the limit of weak spatial dispersion only one
mode contributes in any significant way to expan-
sions (4.1) and (4.2). The other modes have large
Imp& and are damped out after a short distance into
the crystal. Let us assume that there is no inter-
action between crystal planes by taking v(l —I')

If there is no interaction between planes,
then there is negligible dispersion in the exciton
energy for the direction perpendicular to the sur-
face. Furthermore, since the xz component of

which is the equation determining the surface-po-
lariton modes of an isotropic solid. This result
is obtained by substitution of (4.11), with E„=0,
into the secular equations (4.12}and (4.13).

VI. SIMPLE ISOmOPIC SOLID

In this section me consider the solution of the
microscopic equations in the limit of weak spatial
dispersion for the case L =1. For the model used
the solution proves to be identical with that pre-
sented in Sec. IIA1 and therefore establishes a
link between a continuum theory based on a parti-
cular ABC and a microscopic theory simplified by
a well-defined sequence of steps.

The solid is assumed to have the bulk dielectric
constant of the simple isotropic type given by
Eqs. (4.32)-(4.34). For interactions with range
I = 1 only neighbor interactions betmeen planes are
permitted apart from all the intraplane interactions
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between molecules belonging to the same plane,
In addition for the special case of the simple iso-
tropic solid the off-diagonal interactions v„,(1) are
zex'o.

Fol p-polRx'ized fields there Rl 6 three coDlpo-
nents with wave vectors p,. to be found by solving
the determinant of coefficients of 0',, [see Eq.
(4.16)] set equal to zero. With the neglect of some
nonzero factors this determinant can be simplified

«(K„(o)[n',—«(K, , io)] = 0 . (6.1)

yields one solution for p& ( j=3) while

n', —«(K, , io). =0, (6.3)

being a quadratic polynomial in n', » yields two
roots (j=1,2).

It is an easy exercise to show that Eq. {4.16) re-
duces to

This equation has the same form as (5.4) for the
solid with no spatial dispersion (L=0 case). In the
simple isotropic model, however, the function
«(K, io) depends upoll Ki = Kx+ p z as well as io. Tile
6quRtlon

«(K, , &o) = 0

A. Cubic crystal

Fox' a cubic crystal in which only nearest-neigh-
bor plane interactions are important (I.=1 model)
it is necessaxy to allow for nonzero t„,. The de-
terminant for the wave vectors p,. has three solu-
tions; however, the detexminant itself cannot be
factored as in the case of the simple isotropic
solid. From Eqs. (4.10) and (4.28) we see that t„,
is directly proportional to gp,. times a function that
depends weakly on fx'equency. For 8 =-0 the dielec-
tric tensor is approximately diagonal; however, the
existence of the off-diagonal part cannot be neglec-
ted in this model since it 18 due to spRtlR1 dlspex'-
sion. There is another complicating property of
«(K, &o); namely, the diagonal elements are not
necessarily equal [see Eqs. (4.29) and (4.30)].

OQce the thl 66 D1ode wRve vectox'8 p~ Rx'6 deter-
mined the amplitudes 5',, must be determined in
ox'der to calculate the reflection power. It can be
shown that the presence of the xz component of
v(l —I') (I = 1,I' = 2) does not change the form of
Eq. (6.6). However, the proportionality constants
in (6.4) and (6.5) are different,

where j= 1»2, 3 and B,. is the ratio of coefficients in
(4.12). A formula for the reflectivity can be de-
rived in the way described in Sec. VI.

P&6'»„—KP&z = 0 (6 5) B. Anisotropie crystals

fox' j= 3» the longltudlQRl Diode The sux'fRce Ruxll-
1Rx'y condltlons glv6

Suppose the moj.ecules making up the lattice have
R Qondegenerate trBJlsltlon polax'ized perpeDdlculal
to the crystal surface. The equations of motion
[see (3.15)] for this case are

while the extinction condition, Eq. {4.11) reduces
to

(6.'t)

Q (6„,+ 4gn, ((o)[v„(l—I')

4(s &2/p )ei8oi 1 !' I e3] j~-

This system of equations is readily solved for
the polarization amplitudes 6',, and the ref lectivity
may then be calculated using (4.41) and (4.43). The
final I'esult for the ref lectivity, without making any
fuxther approximations, is exactly the formula
(2.13) obtained from the continuum theory in Sec.
IIAl.

To obtRln the x"eflectivity of ordinary optics»
%'hex'6 spRtlRl dlspex'sloQ ls Degllgible we simply
take the limit p, p - and find the ref lectivity
given by Eq. (5.6) w1'tll «1'eplaced by n1.

VII. OTHER MOl3ELS

In this section we comment briefly on some more
realistic and therefore, by necessity, mathemati-
cally mox'e complicated models.

=n (io)E e"o"3 (72)

This 86t of one-dlDlensloQRl equations hRS R fox'IQ
slmllal" to those fol" 8-polarized wRves Rnd their
solutions are readily found. Similarly, for a non-
degenerate transition parallel to the surface, along
x SRy» %'6 hRve

Q (51;+4wn„(io)[v„„(I—I')- -,'ia, p,e' 0" "'+]]P,, ,

(~)@ &ieo la3 (g 3)

The solution of these equations is obtained by the
same route used fox' the 8-polarized equations and
will not be considered further. The ref lectivity
fRctox'lzes into sepRl Rte contributions fl oIQ each
mode.
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VIH. SURFACE POLARITONS AND AIR

The dispex sion relation fox surface polaritons is
obtained from Eqs. (4.16), (4.38), and (4. 11) by set-
ting Eo = 0 in the lattex' and then setting the deter-
minant of the coefficients of 6',, equal to zero. In
ox'dlDRx'y optics SUI'fRce polRl ltons Rr"6 nox'mRl

modes thRt canQot be excited by plane-%'Rve fields
incident from the vacuum side of the interface
since their wave vectors x & ~/c. In a medium with
SpRtlRl dlspex'sion R bUlk mode cRD exist for' fle-
quencies inside the stop band and therefore coupling
between bulk and surface modes is expected. The
stronger the dispersion in the ezciton band (effec-
tive mass assumed to be positive) the greater the
damping of the surface wave by the bulk.

Sux'fRc6 polRx'lton8 cRQ be detected ln principle by
coupling to evaDescent %'Rves, Rs ln the ATR ex-
pex'iment, and by coupling to vacuum electromag-
netic fields through a surface that is either natural-
ly x'ough or x"uled like a, diffraction gx'ating. "'"

It is possible to set up a microscopic theory of
the coupling to bulk and surface modes achieved in
the ATR exp611IQent. This DlRy be doD6 Using the
Hertz vector for an oscillating dipole in the vicinity
of R planar intex'face. This technique has px'evious-
ly been used to study the effect of surface plasmons
on tx'RnsltloDs of Inolecul68 locRllzed neRX' R Sux'-

fRce. Howevel-, ln the ATB experiment the gap
between prism and dielectric surface is rarely
small enough to perturb the energies of surface
molecules by dixect van der Waals interactions.
Consequently, a micr'oscopic theory of the ATR
Qeed Qot, be constructed ln the D13Ilnel Just sug-
gested; x'athex' it is quite sufficient to substitute
into the formulas of Sec. II B an expression derived
by the microscopic appr'oach of Sec. III. In the
limit of weak spatial dispersion (

~
ap,

~

« I) the
81IQple lsotx'oplc model yleMs 1esults identical
with the continuum theox'y of Sec. D. Therefox'e, in
the model calculations described in Sec. IX we use
the continuum-theox'y equations to calculate the
ATR spectx'um.

To illustrate the Use of the theory calculati. ons
have been pex'formed using the ZnSe parameters
first proposed by Maradudin and Mills. These
parameters dex'lved by fitting the reflection spec-
trum to an oscillator formula ax e x'epx'esentative Gf

a numbex' of other materials including ZQO and.
CdS. The lowest singlet exciton transitions in these
systems are fairly weak, corresponding to oscilla-
tor strengths of approximately 0.01 and stopping
bande of IO-I5 cm ' in width. The effective mass

of the electron is around 0.8w, to 0.9m, . %6 use
the formulas given in the limit of weak spatial dis-
pex'sion for the Simple-isotropic-solid Inodel. The
parameters used are e, =8.1, ~/&or=0. 07416,
0 ~D/c' ~ 6.1728 & 10 ', and 0 ~ y/err ~ 10 '.

Calculations for the reQection power at the vacu-
um-dielectric interface and for the ATR at the
prism-gap interface have been performed and will
be described separately.

As mentioned briefly before there are some dan-
gers in using the dielectric function (2.1a) in a mi-
cr"oscoplc theory tI1Rt stRX'ts by assuming the oscil-
lating dipoles are in vacuum. One consequence
may be an incorrect treatment of how the back-
gx"ound dielectxic shields the long-range dipole
interactions. This effect can be accounted for in
the microscopic theory either by assuming the di-
poles to be embedded in a medium with frequency-
lndependent dlelectx'lc permeability Eoy which
causes a problem of how to treat the vacuum half
space, or by partitioning e into a resonant and
nonresonant part. We shall not pursue either of
these appx'oaches here; instead the rather cava-
lier approach of calculating the wave vectors with
the phenomenologica. l e(K, u&) is adopted.

A. RefIIection from the vacuum-didectric interface

The role of spRtlRl dispersion ln I'educing the x'6-

Qectivity within the stopping band was first clearly
demonstrated by Hopfield and Thomas. ' In Fig. 3
this effect is shown for normal incidence (8 =0') and
zero damping for spatial dispersion Dr =D/c
ranging from zero to the value assumed for ZnSe.
The bRckgl ound dlelectx'lc fo RDd plasma fx'eqUency

(dp are the ZnSe values. For normal incidence
there is no contribution to the ref lectivity fx"om the
longitudinal mode; the two transverse polari-
ton branches deter mine the ref lectivity.

In Fig. 4 the polariton branches for v=O are
shown schematically for the D =0 and D &0 cases.
The slower increase in reflection power with fre-
quency for Bz&O shown in Fig. 3 is due to a slower
incxease in xefractive index and the absence of the
singularity in n, (~) for &u = &or. The longitudinal ez-
citon (branch 3 in I"ig. 4) occurs at

(d~ = QPr+ DX + (dp/Ko .
For &~ =0 the longitudinal frequency occurs at
4)I = j..OOO 339(d& RQd slQce spRtlRl dlspex'Sion cRU868
only R vex'y small Shift ln t1118 posltlon the peak r'6-
flection appears to Occur' at u~. In the y=O limit
the peak ref lectivity for B&0 occurs at, the point
where n, (~), the refractive index of the second
br'anch of the bulk polariton spectrum, goes through
zero. For (d & +~ this mode has a purely imaginary
I'ef1 Rctlve index.
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The polax'ized. reflection spectra for 8 = 60 and
6~= 0 and 6.1728 & 10e are shown in Figs. 5 and 6,
respectively. The low p x'eflectivity for ~ & co~ is
due to the presence of the Bremster minimum given
by tang =n, (&o). In Fig. 7 a detail of the peak re-
fleetivity is displayed showing discontinuities due
to the wave vectors p, and p, passing through zero.
Fox y~w 0 these edges are washed out; in particu-
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FIG. 3. Effect on the reflection power at normal inci-
dence (8=0) of increasing the spatial dispersion B~ from
zero to the ZQSe value. The damping p is zero.

1.0-
~f

09
0.8—

l

0.7-
/

/

(U /
/

CL

c 05-
Q

o~ 04

(I:

= P-Polarized
———= S-Polarized

0.3 /
/

0.2 /

I

0.1 I
I

0 0 . . f t . '
~ 1

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

8=60
DT = 0

1 0-5

FIG. 5. 8- and p-polarized reflection powers of a half
space %1th no spat1al d18pel sion g)~——0) 1Q the vlciQ1ty of
the stop band. The angle of incidence is 60 .

lax, for y~= 10 ' they are barely detectable. In
Fig. 8 the wave vectors p,. (j=1,2, 3) are plotted
against frequency. Note the separation behveen
branch 3 (longitudinal) and branch 2 (transverse)
that exists fox' K&0 and gives x'lse to the two sepa-
x'ate discontinuities in the p-polarized reflection
powex'.

In Figs. 9 and 10 the polarized reflection spectra
at 8=85' are shown for a~=0 and D~=6.1728x10 6.
The Brewster minimum is clearly visible near ~~.
There is also a peak on the high-frequency side of
the stopping band in both figures. The main effect
of spatial dispersion in these low-resolution spec-
txa is the erosion of the lour-frequency edge of the
reflection band. In higher- resolution calculations
the p reflection contains two discontinuities similar
to those vlslble 1n Flg. 7 fox' tile 8 = 60 p spectrum.

At angles of incidence close to grazing the s-po-
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FIG. 4. Upper figure shows schematically the volume-
and surface-polariton dispersion for a crystal with Qo

spatial dispersion. The lower part shows schematically
the effect of nonzero spatial dispersion g)~&0) on the
volume polaritons.

0.0 1

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

RedUCed Ft eqoeAC')/ 10 j~—~T)/MT

FIG 6. 8'- aQd p-polarized reflection powers of a
spatial dispersive half space in the vicinity of the stop
band. The angle of 1nc1deQce is 60 .
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FIG. 7. Detail of the s- and p-polarized reflection
powers in the vicinity of ~1 showing discontinuities due
to the volume polaritons when the damping yz is zero.

larized reflection power is close to 1.0 for all ~
except near co~, which there is a small dip. The
p-polarized spectrum is a few percent lower with
the same appearance as the spectra in Figs. 9 and
10.

In all the calculations performed no fine structure
in the form of spikes or narrow minima was ob-
tained. This is contrary to the theory of Maradudin
and Mills, where a spike was found in the p-polar-
ized reflection power which they attributed to the
presence of the longitudinal exciton.

B. Attenuated-total-reflection spectra

In the absence of spatial dispersion there exists
within the stopping band a normal mode referred
to as a surface-polariton mode. These modes are
p polarized and correspond to electromagnetic ex-
citations confined to the surface region of the crys-
tal. The electric fieM intensity of surface polari-
tons decays exponentially in either direction nor-
mal to the interface and they cannot be excited by
photons of a vacuum half space since their energy

0.0-1.0 —0.5 0.0 0.5 1.0 1.5 2.0

Reduced Frequency 10 (u —~7)/~7
FIG. 9. s- and p-polarized reflection powers of a half

space with no spatial dispersion (D~ —-0) in the vicinity of
the stop band. The angle of incidence is 85'.

and wave vectors cannot be simultaneously matched
to any vacuum photon. The dispersion relation for
a surface polariton in the limit D~= 0 is

[~(+)Q2 +2]1/2+ (Q2 +2)1/2e(~) P

If e(&u) is real and less than -1, then this equation
can be solved for ~&k, yielding

e(~) 1/2
k.

e((u) —1

This dispersion relation is displayed schematically
in the top part of Fig. 4. It starts where ~= ~~
crosses the light line and asymptotically approach-
es ~~ for large K. The limiting frequency for large
I(. is given by

Q3& = (&Fr + QP&/(1 + Ea)
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I

I
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DT= 6.1728 x 10

-0.2 0.0 0.2 0.4 0.6 0.8

Reduced Frequency 10 (~—w7)/wT

FIG. 8. Plot of the frequency dependence of the wave
vectors P& (j=1,2, 3) in the vicinity of the stop band for
8=60 and yz=0.

0.0
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Reduced Frequency 10 (~—~7)/~7

FIG. 10. s- and p-polarized reflection powers of a
spatially dispersive half space in the vicinity of the stop
band. The angle of incidence is 85'.
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in the absence of spatial dispersion (Dr=0). For
the ZnSe parameters (~a —~r)/u&r = 3.02 x 10 ' t»s
is close to the longitudinal frequency at (uz —~r)/
cog =3 ~ 39 + 10 ~

To explore the effect of spatial dispersion on sur-
face-polariton and ATR spectra, we have per-
formed calculations for various angles of incidence
8 for a plane-polarized electromagnetic field inci-
dent from the prism side of the prism-gap inter-
face. These spectra have been calculated assuming
the gap d between prism and dielectric satisfies

d&dr/c = 1 .

1.0

0.9

0.8

0.7

a 0.6—0
C
.„-' 0.5-

v- 04-
K

0.3—
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0.1—

0.0
-0. 1 0.0

I

P 1 0-10
T--P =10T

I

I

I
I

0. 1 0.2 0.3 0.4 0.5 0.6

The magnitude of this gap was chosen to ensure re-
flection changes of at least several percent. The di-
electric constant of the prism was taken to be e, = 15,
the value adopted by Maradudin and Mills. '
For this high value the critical angle for the
prism-vacuum interface is 14.963'. Figure 11
shows the effect of spatial dispersion on the p-po-
larized ATR spectrum for 8= 17'. For small val-
ues of D~ there is a pronounced minimum due to
absorption by the surface polariton. As the dis-
persion D~ is increased the peak near su~ is eroded
and the spectrum distorts towards that shown in
Fig. 10; that is, it resembles the spectrum of the
vacuum-dielectric half space at angles close to
grazing incidence. Note also the increase in width
and the shift to higher frequency as D~ gets larger.
This effect, due to mixing with (lower frequency)
transverse volume polaritons, is the subject of a
separate study.

Calculations have been performed for the whole
range of 8 and values of D~ between 0 and 6.1278

1.0

0.9

0.8

Reduced Frequency 10 (~-~T)/~T

FIG. 12. p-polarized ATR spectrum at 8=20 for two
different values of the spatial dispersion parameter D~.
Note the asymmetric distortion of the minimum. The
prism-dielectric gap d =c/co~.

x 10 '. Two features of the calculations are worthy
of comment. First it has been found that for 20"
& 8 40' the effect of an increase in D~ is primari-
ly to distort the minimum asymmetrically and to
cause a small shift to higher frequencies (see Fig.
12). For much la.rger values of 8, where the re-
flection power is close to unity throughout the stop
band, the minimum which is always present for
D~ = 0 is washed out as D~ is increased. These ob-
servations admit a simple interpretation. %here
dispersion is weak, coupling to lower-frequency
volume modes pushes the surface mode to higher
frequency. Qn the other hand, when the spatial
dispersion is large the coupling of surface and vol-
ume polaritons results in modes that are not con-
fined to either the surface or the bulk. These new
modes have surface tails that absorb energy from
the evanescent field of the prism over a wide fre-
quency range.

0.7
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e 04 I
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where

and

()2+ q2 y2)1/2 (A2)

APPENDIX A: CALCULATION OF 4

The following integral representation is used:

]
R 2p „y—exp[- r

I
a

I
+'(&~+ ny)]d ( dn

(Al)

FIG. 11. p-polarized ATR spectrum for selected val-
ues of the spatial dispersion parameter, D~=10, 10
and 6.1728&&10 (ZnSe value). The angle of incidence
8=17' is a few degrees greater than the critical angle
8~=14.963' for the prism-vacuum interface. The prism-
dielectric gap d =c/~2.

lim y=-ik.
0

(A3)

The real part of y is positive for real $ and real g.
With the aid of (Al) the two-dimensional lattice

sum in (3.13) is converted into one over the lattice
of two-dimensional reciprocal vectors 0,
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(A4)

where after differentiating with respect to R=(p, z}
we set p= 0 and z = (I —I'}a,. In this last equation

g=x+6 (A5}

1+ ~p ~y

G

giga(g y2)e-y&l t-l' 1@3

6

(All)

Equation (A4) holds only for I e I', formulas for I
=l' were given in Ref. 15. The 6=0 part is the
long-x'ange interaction and the sum of all 640
terms is the short-range part. This nomenclature
arises because the e ~g" factox' ensures that, all
G c 0 terms are exponentially damped, whex'eas the
G = 0 terIQ ls Qoty slQce

(«2 y2)1/2 — f(P2 «2)&/2

ID Ref. 15 RQ indirect Rx'gument %'Rs given fol
4)((col «) hy taking the limit as I' I. In Appendix
B an explicit formula is derived for 4»(&o; «) that
does Qot IQRke use of this limit.

Fox' lt E' the lattice sums are

4„,(&o; «) = v(I —I')+6=0 term. (AB)

pi +-1(g y2)e-y&l l- I' ( 63

6

Thex'6 Rl 6 Do coIQpoDBQts coupllQg g to g ox' z so
that the distinction between s and p polarizations
holds in the pxesence of spatial dispersion for the
geometry of this pxoblem provided the y axis coin-
cides with a principal axis of the polarizability
tensor n. This is no surprise since the xz plane
coincides with a mirror plane of symmetry. The
components of the short-I"ange interaction Rre

TI16 prime slgnlf les thRt the C = 0 tel In ls absent.
The diagonal components satisfy the following sum
rule:

In the limit k =0 where spRtiRl dispel sion is Rb-
sent we see that the components of v x"educe to
static (unretarded) dipole sums satisfying the well-
known sum rule

APPENDIX 8: FORMULA FOR +II(w; x)

To calculate the retarded interaction between a
dipole in the 1th plane and all the other dipoles in
the same plane it is convenient to start from the
"Ewald" formula for CK(&o), the phase-modulated
sum for a three-dimensional lattice. "' If we let
o~-'0, the suIQ ovel I'BclplocRl vectol components
parallel to the z axis is replaced by a standard in-
teglRl. At the SRIQB tlnle that pax't of the EwRld suIQ

coming from summation over the real crystal lRt-
tice reduces to a two-dimensional sum over the Eth

plane only. As an example we give the x'esult fox
the zz component of C».

Hexe 4~ is the probability integx"al and

2
E(u; u) =

+„dxe " cos[v(u —x)j „

2
A(u)= „,dxe" sin(ux).

To obtain the 8'8 coIQponent of th6 shox't-x'Rnge in-
teraction v the long-range pax't G = 0 must be sub-
tracted from the sum over the x'eciprocal lattice.

To find the long-range (or optical field) part of
the retarded dipole sum (4.23) it is not necessary
to first convert the sum into a convergent Emald sum,
as done in Refs. 28 Rnd 29, Fax' the optical field it
is sufficient to transfoxm the lattice sum into one
over the three-dimensional reciprocal lattice with-
out dividing it into convergent sums over both the
real and reciprocal spaces. Let x' be a field point



that does not coincide with a lattice site. Then the
SUm over the reciprocal lattice ls simply

+ (K+ U)(K+ U) —a' s,.-„.-„
(K+ U) —a

~here U are the reciprocal-lattice vectors and k
= &e/e. This result is generated by transforming
the Hertz vector for the lattice to reciprocal space
and then carrying out the differentiations implied
in Eq. (3.3). The optlcat-field part of (Cl) is )ust
the U=O term.

*An account of this work was presented at the Atlanta
meeting of the Axnex'lcRQ Physical Society, 1976, Ab-
stract 8012: Bull. Am. Phys. Soc. Ser. II 21, 279
(1976).

'S. I. Pekar, Sov. Phys, -JETP 6, 785 (1958); Sov. Phys. —

Solid State 4, 953 (1962).
2J. J. Hopfield and D. G. Thomas, Phys. Bev. 132, 563

(1963).
3G. S. Agarwal, D. N. Pattanayak„and E. Wolf, (a) Phys.

Bev. Lett. 27, 1022 (1971); (b) Opt. Commun. 4, 255
(1971); (c) 4, 260 (1971); (d) Phys. Lett. A 40, 279
(1972); (e) Phys. Hev. 8 10, 1447 (1974).

4A. A. Maradudin and D. L. Mills, Phys. Bev. 8 7, 2787
(1973),

~(a) J. J. Sein, Phys. Lett. A 32, 141 (1970); (b) J. L.
Birman and J. J. Sein, Phys. Bev. 8 6, 2482 (1972);
(c) J. J. Sein, J. Opt. Soc. Am. 62, 1037 (1972); (d)
B. Zeyher J. L. 8lI*IQRQ, Rxld W. Brenlg, Phys. Hev.
8 6, 4613 (1973).

6H. Fuchs and K. Kliewer, Adv. Chem. Phys. 27, 355
(1974).

YV. M. Agranovich and V. I. Yudson, Opt. Commun. 7,
121 (1973).

8J. E. Sipe and J. Van Kranendonk, Can. J. Phys. 53,
2095 (1975).

~C. A. Mead, Phys. Hev. 8 (to be published).
loC. W. Deutsche Rnd C. A. Mead, Phys. Hev. 138, A63

(1965).
' G. D. Mahan RQd G. Obermaler» Phys. Hev. 183, 834

(1969).
l2G. D. Mahan, Phys. Bev. 8 5, 739 (1972).
l3M. B. Philpott, J. Chem. Phys. 60, 1410 (1974).
l4M. B. Philpott, J. Chem. Phys. 60, 2520 (1974).
~5M. B. Philpott and P. G. Sherman, Phys. Bev. 8 15,

5381 (1975).
~6F. Evangelisti, A. Frova„and F. Patella, Phys. Bev.
8 10, 4253 (1974).

lYJ. Lagois and 8. Fisher, Phys. Bev. Lett. 36, 680

(1976).
'8I. Hiraboyoshi, T. Koda, Y. Tokura, J. Murata, and

Y. Kaneko, J. Phys. Soc. Jpn. 40, 471 (1976).
' K. Tomioka, S. A. Hice, and M. G. Sceats, Abstract

EM6, Bull. Am. Phys. Soc. Ser. II 21, 355 (1976).
~oM. Born and E. Wolf, Pyjncipzes of Optics, 4th ed.

(Pexgamon, London, 1970), Chap. 1.
B. B. Pennelly and C. J. Eckhardt, Chem. Phys. 12,
89 (1976).

~2M. S. Brodin, M. A. Dudinskii, and S. V. Morisova,
Opt. Spectrosc. 34, 651 (1973).

2~J.-M. Turlet and M. B. Philpott, J. Chem. Phys. 62,
2777 (1975); 62, 4260 (1975); Chexn. Phys. Lett. 35,
92 (1975); J. Chexn, . Phys. 64, 3852 (1976).

24J. Fexguson, Chem. Phys. Lett. 36, 316 (1975).
25N. I. Ostapenko, M. P. Chernomorets, and M. T. Shpak,

Phys. Status Solidi 8 72, K117 (1975).
26A. Harmensen, E. E. Koch, V. Saile, M. Schwenter,

and M. Skibowskii, in Vamum Ultraviolet Radiation
Physics, edited by B. Haensel, E. E. Koch, and C. Kunz
(Pergaxnon-Veiweg, New York, 1974).
V. M. Agx'anovlch and V, L, Glnzburg» Spatial Disper-
sion in CxystaE Optics and the Theo%'y of Excitons
(Wiley-Interscience, New York, 1966), Chap. 1.

28M. B. Philpott and J. %. Lee, J. Chem. Phys. 58, 595
(1973).

~~G. D. Mahan, J. Chem. Phys. 43, 1569 (1965).
3 The pax'ameters 4; are proportional to the phenomeno-

logical paraxneters o. ; (i=1,2, 3) of Bef. 27, Table 3,
p. 112. For an. isotropic material e3 ——0.

&
—n2. Ke de-

fine the simple isotropic material to be the one for
which e& ——G2.

SlA. Otto, Adv. Solid State Phys. 14, 1 (1974).
32D. L. Mills and E. Burstein, Bep. Prog. Phys. 37, 817

(1974).
3~H. Morawitz and M. H. Philpott, Phys. Hev. 8 10, 4863

(1974).




