PHYSICAL REVIEW B

VOLUME 14, NUMBER 8

15 OCTOBER 1976

Polaritons in a spatially dispersive dielectric half space*

Michael R. Philpott
IBM Research Laboratory, 5600 Cottle Road, San Jose, California 95193
(Received 1 June 1976)

An exact microscopic theory of volume and surface polaritons is developed for a spatially dispersive dielectric
half space. No dielectric function is postulated; instead a collection of terms which is designated such arises
naturally in the course of solving the microscopic equations that describe the response of the molecules to an
external driving field. The excited states of the crystal are assumed to be Frenkel excitons which are treated in
the tight-binding approximation. All intermolecular interactions ‘are assumed to be of the point-dipole type.
Formulas are derived for the reflection of s- and p-polarized light from the dielectric at arbitrary angle of
incidence. Formulas are also given for the reflection of light inside a prism separated from the dielectric by a
small gap as in attenuated-total-reflection experiments used to detect surface modes. Model calculations, using
ZnSe parameters, exploring the effect of spatial dispersion on the optical properties are described.

I. INTRODUCTION

The purpose of this paper is to develop in a logi-
cal and consistent manner a microscopic theory of
the optical properties of a semi-infinite molecular
crystal. No assumptions concerning the dielectric
function are made. Indeed, since the starting point
is the set of Maxwell equations describing the in-
teraction of point dipoles in vacuum with an elec-
tromagnetic field, there is no dielectric function
for the material half space but it proves conve-
nient in the course of solving the equations to iden-
tify a group of frequency-dependent terms that
play the role of the dielectric function.

The effect of spatial dispersion on optical prop-
erties was first studied by Pekar® and later by
Hopfield and Thomas.? These authors introduced
the concept of the additional boundary condition
(ABC) as a technique for solving the Maxwell equa-
tions when the material half space was treated as
a continuous medium with a frequency- and wave-
vector-dependent dielectric function.

Since Frenkel excitons approximate point exci-
tations (electron and hole on the same molecule)
they can exist in the surface planes. However,
Wannier excitons being much greater in size, must
distort completely in order for the center of gravi-
ty to penetrate the surface planes. This physical
restriction from the surface region is analogous
to that of the center of mass of a bubble between
two parallel plates. The different ABC’s postu-
lated for Frenkel and Wannier excitons are one
manifestation of their quite different physical
properties.

In principle, the problem of guessing the appro-
priate ABC for a given type of exciton can be
avoided if the nonlocal dielectric function e(w, f, ')
is known for all points T and I’ inside the half
space. For then Maxwell’s equations can be solved
and the optical properties of the solid calculated.
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Recently several groups®~® have adopted this ap-
proach and have claimed to have circumvented the
specification of an ABC. The claims by these au-
thors are premature to say the least since they ap-
proximated the function e(w,t,T’) by €(w,T —I')

% 6(z)6(z'), where e(w,T) is obtained by Fourier
transformation of the bulk dielectric constant

e(w, K). The dangers in this approach are severe.
In the case of Wannier excitons, it implies bulk-
like behavior right up to the surface. This is not
correct since it has been shown that the nonlocal
susceptibility for Wannier excitons should include
terms depending on |z +z’| arising from charge-
image interactions near the boundary.®

Other more explicit criticisms have been ad-
vanced by Agranovich and Yudson,” who point out
that the theory of Refs. 3 and 4 is only valid at
one frequency w which happens to fall outside the
exciton band. Sipe and Van Kranendonk,® and
Mead® have compiled other objections of a mathe-
matical nature. In spite of the criticisms men-
tioned, the work of Refs. 3-5 contains some in-
teresting discussions of polaritons in bounded me-
dia and offers physical insight into the effect of
spatial dispersion on optical properties.

For Frenkel excitons microscopic theories have
been derived®~!% that require neither the use of an
ABC nor an approximation for e(w, ¥, ¥’) near the
surface of the crystal. The localization of the
electron and hole on the same site reduces the
problem of calculating the optical properties to
that of finding the electromagnetic field of a dis-
crete array of point dipoles. This approach has
been largely ignored in Refs. 3-5 even though it
has produced exact results which are useful as
comparisons for approximate theories. The ad-
vantages of the microscopic approach are several.
First, no ABC or dielectric function is assumed,
the latter emerges naturally during the derivation;
second, they are not restricted to systems where
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spatial dispersion is weak; third, they can be
modified to account for surface reconstruction,
adsorbed monolayers, and even dead layers.'®

In this paper the microscopic theory is extended
to include p-polarized excitations. The earlier
work considered only the s-polarized optical prop-
erties and, consequently, could not describe the
effect of spatial dispersion on surface polaritons
which exist only as p-polarized excitations. Very
recently reports of the observation of exciton sur-
face polaritons in ZnO," CuBr,'® and anthracene'®
have been published. The latter involves a Frenkel
exciton and the former, because of their small
radii (=20 A), may be thought of as Frenkel-like.

This paper is organized as follows. We begin
with a brief derivation of the reflection power of
a half space, assuming a continuum model and the
Pekar ABC P=0. Formulas are also derived for
the reflection power of the attenuated-total-reflec-
tion (ATR) experiment used to detect surface po-
laritons. InSec. III the problem is formulated for
both s-and p-polarized fields. Then inSec. IV the
general solution of the p-polarized problem is out-
lined for the case of a driving field incident from
vacuum on the semi-infinite crystal. Next, in
Sec. V, the results of ordinary optics are recov-
ered by assuming that spatial dispersion is ab-
sent. Section VI treats the case of an isotropic
solid with spatial dispersion in detail since this is
the simplest model problem. Section VII briefly
considers other models, including the case of
anisotropic molecules, and Sec. VIII comments
briefly on surface polaritons and the theory of the
ATR experiment. Section IX describes model cal-
culations of the s- and p-polarized reflection power
of the half space and the ATR p-polarized reflec-
tion powers showing the presence of surface pola-
ritons.

II. CONTINUUM THEORY

An extremely useful way of checking the results
of the microscopic theory in the limit of weak
spatial dispersion is to calculate the reflectivity
using the ABC P =0 and the continuum model for
the dielectric properties. In this section we find
the reflection amplitudes for s and p polarization,
first for the half space alone and then for the ATR
configuration. In the latter case the light is re-
flected from the prism side of a glass vacuum
interface parallel to the dielectric half space. The
coordinate systems used in the calculations are
shown in Fig. 1.

The xz plane is taken to be the plane of incidence.
All incident fields are assumed to be monochroma-
tic with time dependence given by e~*“*. The x

Prism Gap Dielectric Half space
FIG. 1. Schematic representation of the right-handed
coordinate system and the directions of the p-polarized
incident and reflected electric field amplitudes for a
dielectric half space without (top) and with a prism half
space (bottom). For p polarization there are three fields
8, in the spatially dispersive medium.

dependence of the field amplitudes is taken to be
¢'**, where « is the projection of the wave vector
onto the x axis. In the usual formulation the di-
electric function of the half space is assumed to
have the form

w
wZ+DK? = w? =iwy’

e(w,K)=¢€,+ (2.1a)
where ¢, is the background dielectric constant;
wp, the transverse exciton frequency; D, the spa-
tial dispersion; y, a phenomenological damping;
K, the exciton wave vector; and w?, the “plasma
frequency” containing the oscillator strength of
the isolated transition as a factor.

A. Reflection from a dielectric half space

It is convenient to consider the reflection of p-
and s-polarized incident fields separately. The
formulas will be summarized only briefly since
they are derivable from results available in the
literature.

1. p polarization

For p polarization the continuity of E,, H,, and
D, across the interface plane z =0 yields equa-
tions sufficient to calculate the reflectivity in or-
dinary optics. However, in the presence of spa-
tial dispersion the longitudinal mode mixes with
the two transverse modes with the result that
fields inside the dielectric have three components.
For example, the electric field intensity inside
the dielectric at the point T =(p, z) is given by
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> > 3
RTY i
Ey(T)=e'*? E 8,.e'8i,
=1

(2.1b)

where o0 =x, z. Components of other vector fields
are expressed in the same way. To solve the equa-
tions derived from the continuity relations an ABC
is needed; we adopt the Pekar additional boundary
condition that all the components of the polariza-
tion density P (r) are zero at the crystal surface.
The results obtained in this way agree exactly with the
microscopic theory in the limit of weak spatial dis-
persion.

The two transverse modes j =1, 2 have total
wave vectors K, = (k, g;) found by solving

2K?/w? - e(w,K) =0. (2.2)

Since the electric fields of these modes are per-
pendicular to their wave vectors, they satisfy

k8 + 884,50, j=1,2. (2.3)
The longitudinal mode has total wave vector -ﬁa
=(k, B;), the magnitude of which satisfies

e(w,K,) =0. (2.4)

Since the electric field of this mode is parallel to
its total wave vector, we have

k8 3s = P58y =0. 2.5)

Propagation in the positive z direction in vacuum
is described by the phase factor e'®0*, where

Bo =[(w/c) - ¥¥1V2. (2.6)

Propagation in the same direction in the dielectric
is described by ¢'%/*, where we may sometimes
choose to write B; in the form (j=1, 2 only)

B, =[n(w/c)? - k?]V2. 2.7)

We shall sometimes refer to n; as the refractive
index of mode j when discussing the transverse
modes, j=1,2.

The equations that must be solved for the re-
flection amplitude R, are

Bo(Ro = Eo) % Z 8ixs (2.8)
3
'Z:_’ (R0+Eo)=" ]Zl (ngh‘"‘l(gj.), (2.9)

(2.10)

3
Z(P,0=0, o=x,2.
=1

The last equation comes from the ABC applied to
both components of the polarization density. By
analogy with the relation (e — 1)E =47P, which
holds for nondispersive materials, we assume that
the amplitudes ®;, and §,, are connected by

471®,, :(n'}x -1&,,,
41!(?50 ="5301

(2.11)
(2.12)

where j=1,2 in (2.11) and 0 =x,z. Contrary to the
conventional derivation we have here assumed that
all the polarization P(r) comes from exciton tran-
sitions. This deviation is necessary in order to
obtain a formula that agrees exactly with the one
derived from the microscopic theory.

Straightforward manipulation of Egs. (2.8)~(2.12)
yields the following result for r,(w) =R,/E,, the
p-polarized reflection amplitude:

7p(w) = =7 (w)
x ( 7By + B ) (Bas + ) = 3By + B,) (B By +K2)>
"i(lso - ﬁz)(Bzﬁs +K2) - ng(Bo - 131)(3133 +K2)
(2.13)

where 7 (w) is the reflectivity for s-polarized
fields given in Sec. IIA2. We shall see that this
result is also given by the microscopic theory in
the limit of weak spatial dispersion, defined by
laB; |« 1 for all j=1,2,3.

2. s polarization

In s polarization there is no mixing of the longi-
tudinal with the transverse modes. The electric
incident and reflected field intensities are parallel
to the y axis. Inside the crystal the electric field
is the sum of two transverse components,

.- 2 )
Ey(r)'-‘e”('p Z 8/:181613'

j=1

(2.14)

Continuity of the tangential components of the
electric and magnetic field intensities at the inter-
face z =0 yields

Eo+Ry=8,,+8,y, (2.15)
Bo(Eo =Ro) =B18 1y +Be8sy - (2.16)

These equations can be solved with the help of the
Pekar ABC

@, +®,, =0 (2.17)

and the analogous equation to (2.11) with o =y.
The result for the s-polarized reflectivity is

rw) ==~ H-@’-——Q (2.18)

Bi+Bo ’

which is the weak spatial dispersion limit of the
result given by the microscopic theory. The wave
vectors B, (j=1,2) appearing in (2.16) are found by
solving Eq. (2.2) with specified kand w, justas in the
case of the transverse modes of the p-polarization
theory.
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B. Theory of the ATR experiment

Once again the cases of s- and p-polarized inci-
dent fields are considered separately. Only the
results of the calculations are given since the
method is a straightforward extension of Sec. II A.
There ‘are two interfaces (see Fig. 1) at which the
continuity relations®® of the Maxwell field apply.

1. s-polarized ATR

The ratio of the amplitudes R, and E, in the
prism (z<0) is given by

1-
As(w)=—‘i‘%i R (2.19)
with
(1 (23) i A
B 1+72 (2.20)

5. =

Here superscripts (1) and (2) refer to media 1 and
2 of the prism and gap regions, respectively.
Thus

Bé”’-(e,-wz/cz - KZ)I/Z ,
where ¢; is the dielectric constant of the glass
(:=1) and gap (i =2). The quantity »® is the re-
flection amplitude for the dielectric half space

given by Eq. (2.18) in the case of a vacuum gap.
The dimensionless quantity

A =2d88 (2.22)

i=1,2, (2.21)

measures the effective number of wavelengths
across the gap and back.

2. p-polarized ATR

For p-polarized light incident from the prism
side of the prism-gap interface the ATR amplitude
is

1-5
Ay(w) =—‘1——;5—p , (2.23)
»
with
(1) (23) i A
_€ BY (1+r e >
o= 5 (s )» (2.24)

where @ is the reflection amplitude for the gap-
dielectric interface given for the case of a vacuum
gap by Eq. (2.13).

IIl. FORMULATION OF THE MICROSCOPIC THEORY

The rest of this paper is concerned with the de-
velopment and application of the microscopic theo-
ry of p-polarized optical properties of a dielectric
half space. For completeness we also consider the
simpler s-polarized problem. Only a brief outline
of the latter is given since the principal results,

based on a somewhat different division of inter-
molecular interactions into long- and short-range
parts, have been published elsewhere. There are,
however, some subtleties, overlooked heretofore,
that emerge from a comparison with the p-polar-
ized theory.

Consider a semi-infinite orthorhombic crystal
with one molecule per unit cell. The sites of the
lattice are taken to be

T =na, ¥ +may) +1a,2 , (3.1)

where n,m =0,+1,+2,..., and [=1,2,3,.... In
this model the index [ labels the crystal planes
parallel to the surface plane z =a,. The first plane
has 1=1, the second /=2, and so on. The coordi-
nate system is shown schematically in Fig. 2. Note
that the crystallographic, dielectric, and external
coordinate axes are parallel. Furthermore we
consider only external driving fields with xz as the
plane of incidence. Following convention electric
fields of the type (0, E,, 0) are referred to as s
polarized and those of the type (E,, 0, E,) are called
p polarized.

The classical oscillator model for excitons and
polaritons in molecular crystals is used here and
all nonlinear processes are neglected. The nota-
tion is the same as in Ref. 15. The response of
a molecule on site I'; to a monochromatic driving
field with time dependence ¢~!“* is described by
a set of oscillating dipoles as,,e“'“", where u de-
notes the quantum transition from the ground to
the uth excited state. After cancellation of the
time factor the equations of motion for any ag-
gregate of molecules arrayed on fixed sites Fs in

R, E,
Rg 9/ g,
X
o o o o o o 1
© o0 600 o 2
o o o o o o 3
o o o 6 o o o 4

z

FIG. 2. Schematic diagram of the right-handed coordi-
nate system used in the microscopic theory. Crystal
planes 1=1,2,3,..., correspond to z =a3, 2a;, 3as, ...,
where aj is the lattice constant in the z direction.



14 POLARITONS IN A SPATIALLY DISPERSIVE DIELECTRIC... 3475

a vacuum become

Z (16,, +478,(w)* &4 (w)]- Py =ad,(w) Eglr,),

o’

(3.2)

where &,(w) is the polarizability tensor of mole-
cule s,

§yolw) = _(42;) (% +<§m “lgieRle (3.3

is a dimensionless retarded dipole-dipole interac-
tion tensor (v, is the unit cell volume and R
=|r =T, ),

P,=v;* Y d, (3.4)
u

is a polarization density vector defined for each
site, and E,(T,) is the amplitude of the driving
field at site T,.

The external driving fields are monochromatic
and have the form

- T

E,F) =B e v, (3.5)
where

K=kx+By% . (3.6)
If 6 denotes the angle of incidence, then

k=(w/c)sing, 3.7

B, =(w/c) cosh, (3.8)
since

k=|k[=w/c. (3.9)

Solutions of Eqs. (3.2) are sought that are peri-
odic in the x and y directions. If we set

-158=§,e“‘""1, (3.10)

a;=a,, (3.11)

Egs. (2.2) reduce to

J

S8, +478,(w) &y (w; 0] By o=@y (w) - Ege'Pol®s,

17

(3.12)
where
6” ’(w; K) = E 5vtml,n 'm'l ’(w)exp[[K(n = n,)al]
(3.13)

is a two-dimensional sum of the retarded dipole
interactions.

The crucial step in the formulation of the prob-
lem is the calculation of the components of the
tensor &;;. and the separation of long- and short-
range interactions. Formulas for the case [ =10’
were derived in Ref. 11 as a limiting case of [#!/’.
Since it is the result and not the details of this cal-
culation that are of immediate interest here, the
latter are relegated to Appendix A. The lattice
sums &,, are divided into a short-range part
¥,,+, arising from the R~® terms of &, that domi-
nate in the near zone (wR/c<« 1), and a long-range
part, arising from the R™*¢*“** term that domi-
nates for wave-zone separations (wR/c>1). Ex-
plicit formulas for the long- and short-range parts
are listed in Appendix A.

Now if the y axis is parallel to a principal axis
of the polarizability tensors &, we have for s-po-
larized driving fields the equations

Z {6, +4may,l0,,(1-1) 'i%(kzaa/ﬁo)ei%h‘-l,laa]} Py,
%

=q,,Eopetfol. (3.14)

There is one equation for each 1=1,2,3,....
These equations have been derived and discussed
before. However, in previous work the x and w/c
dependence of v,,(! - ') has not been investigated.
The equations for p-polarized driving fields are
more complex because the x and z components of
the material fields are coupled together. If @, is
the second rank tensor made up from the x and z
components of &,, then the equations for the system
driven by a p-polarized external field are

> (Ao, +4ndy {5lv(1- 1) - Siagfoet®ol' 1 18] + (32 +28)i sgn(l = 1)(1 = 0,10 (L= 1) + SagketPol1=H1%]
[}

+22[0,, (1= 1) =i Y(ak2/By)eiBolt=1las]} )y . B = 5, - B eiBolas,  (3.15)

Note that in Egs. (3.14) and (3.15) the short-
range interactions depend on k and k (= w/c).

The short-range interactions v(/-1’) are so
called because they fall off very rapidly with
|l- 7). For planes involving small Miller indices
it is often the case that these interactions are neg-
ligible for |I-1"|>2. Note that the off-diagonal in-

—

teractions depend on the order of [ and I’ through
sgn(l-1).

The p-polarization equations are simpler in
several special cases. For highly anisotropic
molecules one may be able to neglect all but the
one component of & corresponding to the exciton
transition closest to w. For example, the long
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axis of the TCNQ® (tetracyanoquinodimethane)
molecule is almost parallel to the (010) crystal
plane.?' Therefore, near the first singlet transition
which has an enormous oscillator strength (f=2)
the system could be modeled by setting a,,=a,,
=const.

The second special case and the one which we

pursue in this paper is the case of isotropic mole-
cules. If we set

& =al (3.16)
and assume «,; =« is independent of distance from
the surface plane, then the p-polarized equations
become

> oy +amalv, (1-1) - itapye'Bl -l P 1i(1-8,,) sgn(l - )4dnalv, (1~ I') +sake Bl =V15]p,, )
5

= @Eye'f'%,  (3.17)

> {6y +4malv, (1= 1) —it(ak?/By)e tol ]l b vi(1-5,,) sgn(l - I)dnalv,,(I- I') + sakeiBoli=Vle]p, )
=

In passing we note that to neglect the dependence
of @ on I means that the theory cannot be used to
study surface-exciton states arising because of
site-shift induced changes in the polarizability.
Evidence for the existence of the excitons has been
reported for some organic crystals and some
rare-gas solids.??726

IV. GENERAL SOLUTION OF THE MICROSCOPIC
EQUATIONS

In this section we outline how the solutions of
the microscopic equations (3.14), (3.17), and
(3.18) are obtained. Detailed formulas for inter-
actions V(I - 1') of arbitrary range are not given
since they are long and cumbersome. Instead we
focus on casting the equations that determine the
optical properties into a form that renders the
physics more transparent. The equations of mo-
tion are readily solved for some special cases and
this is done explicitly in the sections following
this one.

A. p polarization

For notational simplicity we set a; =a. To solve
the p-polarized equations (3.17) and (3.18) we set

P,.= Z @, et (4.1)
7

p,z:Z @085t (4.2)
J

2aB, sin(B,a)
cos(B,a) - cos(B,a)

Z eiﬂjla% [1 +410 (txx(Bj; 0+

1 .
zak® sinB,a

E eis,-ta{ [1 + 41701(!22(5;; D+1+

i

B,lcos(B;a) — cos(Bya)

= anzeieolaa . (3_ 18)

r

The number of modes @, appearing in (4.1) is fixed
by the range of the interactions ¥(I -1"), as will
become apparent later. The sums

S0 = }E_‘, expli(B;l' +B, |1 =1’ |)a], (4.3)
1’=1

YOE i: (1-5,,.) sgn(l - I)expli(B;1"+ B, | = 1 |)a]
1’ =1
(4.4)

that arise in Eqs. (3.17) and (3.18) as a result of
substitutions (4.1) and (4.2) have the values

~ isin(Boa)ei’si“ eibyla
S, = cos(B,a) — cos(Byd) 1o Ba » (4.5)
P ig;la iByla
S0 = i sin(B,a)e i e'ho (4.6)

cos(B,a) — cos(Bga) ~ 1 - e BoFia

They differ solely in the replacement of 8, by g, in
the argument of the sine function.

Next we group together terms that are propor-
tional to e®i'? and e*0'¢, and separately set them
equal to zero. In a sense we are using the idea
expressed by the Oseen extinction theorem, for
the fields inside the medium propagate with ma-
terial wave vectors B; and not the vacuum value
B,- After separating vacuum from material terms
we obtain four equations. The equations containing
e'il® a5 factors are

zax sin(B ,a)

ﬂ @), + 470 (txz(sj; D - costoer et 3oa)> cp,-e} -0, (47

sak sin(B )

]>] ®iz + 4T (txz(Bf; n- cos(B,a) - c08(600)> (ij} =0

(4.8)
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Here we have used the notation
taa(ﬁj; D+ 5,,= Z vl - 1')eiB;t' =1a (4.9)
17 =0
for o=x,2, and

LBy 1) =i E sgn(l =1, (1 - 1")e#st¥ =1e,
=1
(4.10)

Since the v(I - I') are two-dimensional sums, the
new sums are three dimensional and run over all
of the semi-infinite lattice. Note that {,, is defined
differently from 7, in order (see later) to achieve
a complete separation of the macroscopic optical
field.

The two equations containing e*0’¢ as a factor are
not independent; they are proportional to

; @, — (k/By) @,
i2m1ak Ej: ""]__:_eﬂ'ﬁg-%}'ﬁ" = Eo N

where E is the magnitude of the driving field.
This last result is the analog for a discrete lattice
of the Oseen extinction theorem. It is the rela-
tion between @;, and E, that holds if the electric
fields felt by the molecules depend only on the ma-
terial wave vectors f3 ; and not the vacuum wave
vector B,.

To complete the solution we must derive the
equations that determine both the number and form
of the B; and the Fourier-like amplitudes @;,
(0=x,2). To this end we assume that the short-
range interactions V(I — ') vanish whenever
|1 -7’|>L. Therefore, the lattice sums #,,.(8;;1)
are independent of [ for /=L +1. Inthel>L+1
region the coefficients of e*?i’® are independent of
I and since the B; are independent functions we
have

(4.11)

3ap, sin(B,a) )] .

cos(B,a) — cos(B,a)

{1 +410 <txx(6j) +

zak sin(B;a) ~
" cos(B,a) - cos(BoaD@" =0,

(4.12)

+ 4na<trz(Bj)

z(ax?/B,) sin(B,a) )]
cos(B,a) — cos(Bya)/1"*

{1 + 4Tra<tzz(8j) +14

sax sin(.a) _
cos(B,a) - cos(Boa)> ©x=0.

(4.13)

+4nq (txz(ﬁj) -

The condition that®;, have a nontrivial solutionisa
2X2determinant set equal tozero, and is equivalent
toapolynomialof degree 2L+ 1 in cos(B;a). The form
of the determinants is the same for allj so that the
roots of this polynomial can, inprinciple, be solved
for cos(B;a) and hence for ;. Since the fields P,,are

bounded inside the crystal, we must select wave
vectors g; with positive imaginary parts. Note that
the number of modes in the case of p polarization is
2L +1, in contrast to L +1 for the corresponding
case of s polarization.

Once the set {8,} has been determined the ampli-
tudes @;, must be found. To do this we use Egs.
(4.11)—(4.13) and Eqgs. (4.7) and (4.8) for the sur-
face-layer region corresponding to the set of planes
with 1=1,2,...,L. Before proceeding to the calcu-
lation of the polarization amplitudes and the optical
properties we make the connection between Eqgs.
(4.12) and (4.13) and the Fresnel equation for a
spatially dispersive continuous medium. This will
allow us to identify the group of terms that cor-
responds to the dielectric tensor.

1. Dielectric tensor

It is convenient to introduce a tensor, which we
shall call the dielectric tensor, by means of the
definition

[€(K;, ) = T];L = (4ma) [0, + 4Tat 0. (B)) ],

(4.14)
where

K;=k%+B,2. (4.15)

Equations (4.12) and (4.13) can now be written more
compactly as
D IE-DE+M,,. 0,0, (4.16)
~7
where M ., is the matrix of trigonometrical fac-
tors which occur inside the square brackets along
with the sum ¢,..(8,) of short-range interactions.
Our identification of the dielectric tensor is sup-
ported by the following observation. In the limit
of weak spatial dispersion, where Iale <1 for all
j, the matrix M simplifies to

M, =-B3B5-8D7", (4.17)
M,,=M, =kB{B5-B)", (4.18)
M,,=1-k¥B5-8)", (4.19)

which is clearly independent of the interplane spac-
ing a (=a,). If we use

B; =(K:—r)2 (4.20)

then straightforward manipulation of (4.16) yields
det|(w/c)%E(K;,w) - KA1 -K,K)|=0.  (4.21)

This has the same form as the Fresnel equation

for a spatially dispersive medium of infinite ex-

tent®” and supports our identification of the di-
electric tensor by Eq. (4.14).
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Comparing ﬁj with E, Eq. (3.6), we see that 3,
has been replaced by 8; whereas k has not been
changed since it is determined by the periodic
boundary condition along x.

Equation (4.14) is an important result since it
shows that in the case of p polarization there is
no simple expression for the dielectric function of
a discrete lattice of isotropic molecules. Further-
more, it indicates that to treat spatial dispersion
phenomena correctly the « and w dependence of the
lattice sums #,,, must be considered very care-
fully.

In the limit of weak spatial dispersion laKJ. | <1,
the wave vectors f; corresponding to any phenom-
enological dielectric function are found by inserting
a specified €(K, w) into Eq. (4.21) and solving the
resulting polynomial for the set of roots {B,-} with
positive imaginary parts.

Next we show why the term §,, was written sep-
arately in Eq. (4.9). Returning to Eq. (3.2) we note
that for a lattice periodic along all three axes the
propagating modes have frequencies and wave
vectors K satisfying

det |1 +4ma(w)dg(w)| =0, (4.22)
where
g(w)=Y Fo(we®E, (4.23)
R

This lattice sum can be evaluated by a modification
of Ewald’s method.?® The long-range part is read-
ily calculated by transforming (see Appendix C)

the three-dimensional lattice sum of R™'e?*® to the
corresponding reciprocal sum and performing the
differentiations, e.g., see Eq. (3.3), to generate
&z(w). The long-range part is

(KK -1r)/(K? - k). (4.24)

The oo’ components of this tensor are the same as
the optical parts of the matrix M in Eq. (4.16). The
reason for defining /,, different from ¢, in Eq. (4.9)
is now clear, for without separating 5, the zz
components of M and (4.24) would not be equal.

Since Eqgs. (4.16) and (4.22) are equivalent, we
may write

KK - T ) (4.25)

b(w) =T(«,B; w) +<7<_2——k_2—
where K= kx +pBZ, and B is a member of the set
{8;}, i=1,2,...,2L+1. The components of T are
defined by Eqgs. (4.9) and (4.10) or by the “Ewald”
formula®®? for $z(w).

The Ewald formulas for $z(w) may be used to
generate expansions for the components of ¥ valid
near the center of the Brillouin zone. For a cubic
crystal a straightforward expansion yields

1K, ) = 1(0, w) + 3(k3J, + B2J,) (4.26)
LR, w) = K0, w) + 5(B2, + K2J,) (4.27)
1K, w)=3KBJ, . (4.28)

Here J; (i=1,2, 3) are functions of frequency w,
and #0, w) is the common value of the diagonal
components of t at the center of the Brillouin zone.
For a cubic crystal #0,0) = - 3.

Using these relations the components of E(I_Z, w)
are found to be given by

€ (K, 0) = €,(w) + 3[e(w) = 1]2(J,K2 + J,8%) , (4.29)
€K, 0) = €5(w) - 3| €y(@) = 1]3(J,8% + J,k?) , (4.30)
€K, w) = = 3e(w) = 1]2J,kB.. (4.31)

These relations are in agreement with the form of
quite general expressions derived from causal and
symmetry arguments for a crystal with weak spa-
tial dispersion.??

The relations show that in general the dielectric
tensor E(I-Z, w) is neither diagonal nor proportional
to a single scalar function. In general, for a cubic
crystal there are three independent parameters to
deal with. This makes even the theory for cubic
crystals fairly complex and it is highly desirable
to introduce a set of approximations to give a
simple model. From Egs. (4.29)-(4.31) we note
that E(E, w) becomes diagonal if we set J,=J, and
J,=0. We call this limit the simple isotropic
limit.>® In this limit

AR, w) =eK,w)i, (4.32)
where
- dra(w)
=14 4.33
€K, ) +1+41rat(w))f(K, w) ( )
with
foo o (K, @)= 8,5, [H0, w) + 3K%J] . (4.34)

We emphasize that this is really a mathematical
model with no basis in reality for real cubic crys-
tals. However, this does not entirely invalidate
its usefulness for as we shall see later it leads to
a soluble system of equations which lends consid-
erable insight into the effect of spatial dispersion
on the optical properties.

2. Equations of motion in the surface planes

The surface region was defined as the set of
crystal planes for which [=1,2,..., L. If we as-
sume the bulk-region equations (4.12) and (4.13)
to hold for all I, then Eqs. (4.7) and (4.8) for [
=1,2,...,L represent auxiliary conditions that we
must impose on the amplitudes @ ;, in order to de-
scribe correctly the behavior of P, and E(la) in
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the surface region. These auxiliary equations may
be written in the form

2L+1

D ei[ar (e, + st (De,,]=0, (4.35a)
i=1
2L+1 .
> etite[ar (g, + AL, (D)@,]=0, (4.35b)
j=1
where 1=1,2,...,L and
Aty (1) = Loo (B3 1) = Ly (B;) - (4.36)
Starting with /=L we find
2L+1
> #,=0, o=x,2z. (4.37)
J=1

Forl=L-1,L-2,...,2,1, Egs. (3.35) give results
differingfrom (4.37) by the presence of the phase fac-
tor e*%('"%  Thus Eqs. (4.35a) and (4.35b) are equiva-
lent to the following set of auxiliary conditions to
be satisfied by the amplitudes @, :

2L+1 "
iBjla —
2 €e®i=0,

=1

1=0,1,...,-L+1 (4.38)

for o=x and z. These conditions are analogous to
those found by Mahan and Obermair in the problem
of reflection at normal angles of incidence.

3. p-polarized reflection power

In this section a general formula for the reflec-
tivity is derived. Consider a point z=1a (I <0) out-
side the crystal. The total field is

- PP, .

E(la)= Eye™®'® - 270 Y > s
=1 G

+igy,sgn(l-1")P, ]

xyleel e (4 309)
For |I|>1 all but the G=0 component is negligible.
Next we substitute Eqgs. (4.1) and (4.2) for P,, and
after completing the sum over planes I’ find

E (la)=E, e+ R cosfe %™, (4.40)
where
(B +8.)a
. K e 0
Ry=i2mak Z(@""‘LE@”) T (44
7

is the reflection amplitude. A similar calculation
for the 2 component of the total field yields

E,(la) = E,e*'+ R, sinfe#o’e, (4.42)
The p-polarized reflectivity
7 w)=R,/E, (4.43)

can be calculated for a fixed external frequency w, and
angle of incidence 6, by solving Eqgs. (4.11), (4.16),
and (4.38) for 8; and #,,, and substituting the re-
sults into Egs. (4.41) and (4.43). Rather than at-
tempting this for the general case we prefer to confine
our interest to some physically illuminating cases.
The p-polarized reflection power is obtained by
squaring the modulus of ().

4. Summary of the p-polarized solution

At this point it is convenient to summarize the
equations determining the amplitudes ®;, and
their wave vectors B; for the problem of p-polar-
ized polariton states. The bulk region supplies

2 lE=1)5 +M,, )64, =0,

’

(4.16)

a
which is used to determine the 2L +1 values of g,
with positive imaginary parts and to relate ®;, to
®;.. The surface auxiliary conditions on ®;, from
Sec. IVA2 are

Z@J’aemﬂazo’
j

The final equation relating ®,, to the amplitude of
the driving field, representing the extinction of
vacuum fields at lattice sites, is

i2rak Z ﬁf‘éﬁz’ﬂi”

1=0,1,2,...,-L+1. (4.38)

=E,. (4.11)

B. s polarization

The equations of motion for s polarization are
given by (3.14). To solve these equations we set
a;,=a and

= i3;la
Py = Z ®;pe™
i

The number and nature of the wave vectors g; are
not the same as for the p-polarized problem. It
was demonstrated in Refs. 11 and 13 that there
are L +1 modes. The equations determining the

(4.44)

modes are
[(eyy= 1)1 +M, J0,,=0, (4.45)
D ®e =0, 1=0,-1,-2,...,-L+1,
1 (4.46)
iy (4.47)

i2map, Z T oiBo-Bpa ~—Fo-
i
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The y component of the dielectric tensor is

4o

€,,(K;, w) =1 Todral, (k6 ° (4.48)
where
L
tyy(k, B) = D vy (el (4.49)

I=-L

depends on k through the two-dimensional sums
v,,(1). For a cubic crystal and small wave vectors
|aK |« 1, the lattice sum (4.45) is given by

(4.50)

where in the limit w~0 the leading term is #0,0)
1

== 3.

The long-range macroscopic field is contained in

3 Ra sin( Ba)

15y= cos(p,a) — cos(Ba)

(K, w) = 40, w)+ 3K°T, ,

(4.51)

In the limit of weak spatial dispersion |g;a|<1,
so that

Moo= B2 _cos®f
vy ?0 _ é—-’j 11— 723
becomes independent of the lattice constant a.

The wave vectors g; are determined by Eq. (4.45)
and the L +1 amplitudes ®,, are found by solving
Egs. (4.46) and (4.47). The reflectivity of the sur-
face is

(4.52)

= X ;= X
Vs(w)=—xozH;Lx—ff s (4.53)
F A
where
x,=e % and  x;=e750,

V. CRYSTAL WITH NO SPATIAL DISPERSION

The purpose of this section is to recover some
well-known results for a medium with no spatial
dispersion. This is done partly for completeness
and partly to show that this corresponds to the
case of negligible interactions ¥#(I- I’) between
crystal planes (L=0 case). Throughout this sec-
tion we assume that |aK|< 1.

In the limit of weak spatial dispersion only one
mode contributes in any significant way to expan-
sions (4.1) and (4.2). The other modes have large
Imp; and are damped out after a short distance into
the crystal. Let us assume that there is no inter-
action between crystal planes by taking V(I - ")

o« §,,,. If there is no interaction between planes,
then there is negligible dispersion in the exciton
energy for the direction perpendicular to the sur-
face. Furthermore, since the xz component of

V(I - 1’) is proportional to (1 - §,,.) [see Eq. (4.15)]
the dielectric tensor reduces to ¢(w)l, where

4ro(w)

e(w)=1+
Here {=v_(0)=v,,(0) according to the assumptions
made above. [For a cubic crystal the three-di-
mensional lattice sum #(0,0)= - 3. For cubic crys-
tals v,,(0) is only approximately equal to —3.]
Since there is only one mode in expansions (4.1)
and (4.2), we have

P=0,eh (5.2)

for o=x,z. The secular equations (4.12) and (4.13)
reduce to

k@, + [ ® =0 (5.3)

and the 2X 2 secular determinant of coefficients of
®,, can be factorized to give

[n] - €(w)]e(w)=0, (5.4)
where the refractive index », is defined by
B =[rn¥(w/c)? - k]2 (5.5)

and €(w) is defined by Eq. (5.1). Equation (5.4) de-
fines the frequency of the longitudinal mode by
€(w)=0 and the dispersion of the transverse mode
by n?=¢€(w). The reflectivity of the crystal is

(0) = B - Bo€ 5.6
72 (w) BT Re (5.6)
which is equal to the well-known result for a crys-
tal without spatial dispersion.

Finally, if there is no incident driving field, the
k and B, satisfy

B+ Roe(w)=0, (5.7)

which is the equation determining the surface-po-
lariton modes of an isotropic solid. This result
is obtained by substitution of (4.11), with E =0,
into the secular equations (4.12) and (4.13).

VI. SIMPLE ISOTROPIC SOLID

In this section we consider the solution of the
microscopic equations in the limit of weak spatial
dispersion for the case L=1. For the model used
the solution proves to be identical with that pre-
sented in Sec. II Al and therefore establishes a
link between a continuum theory based on a parti-
cular ABC and a microscopic theory simplified by
a well-defined sequence of steps.

The solid is assumed to have the bulk dielectric
constant of the simple isotropic type given by
Eqs. (4.32)-(4.34). For interactions with range
L =1 only neighbor interactions between planes are
permitted apart from all the intraplane interactions
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between molecules belonging to the same plane.

In addition for the special case of the simple iso-
tropic solid the off-diagonal interactions v (1) are
Zero.

For p-polarized fields there are three compo-
nents with wave vectors g; to be found by solving
the determinant of coefficients of @;, [see Eq.
(4.16)] set equal to zero. With the neglect of some
nonzero factors this determinant can be simplified
to

e(K;, )7 - (K, 0)]=0. (6.1)

This equation has the same form as (5.4) for the
solid with no spatial dispersion (L =0 case). In the
simple isotropic model, however, the function
€(K w) depends upon K =KX+ sz as well as w. The
equation

€(K;,w)=0 (6.2)
yields one solution for g; (j=3) while
- €(K,, w)=0, (6.3)

being a quadratic polynomial in nf,, yields two
roots (j=1,2).

It is an easy exercise to show that Eq. (4.16) re-
duces to

K®; + B;0;,=0 (6.4)
for j=1,2, the transverse modes, and to

Bi®x— k®;,=0 (6.5)

iz

for j=3, the longitudinal mode. The surface auxil-
iary conditions give

3
> 0,=0, o=x,2 (6.6)

while the extinction condition, Eq. (4.11) reduces
to

2k Y (B - B) @~ (K/R)®,)=E,. (6.7)
j=1

This system of equations is readily solved for
the polarization amplitudes @;, and the reflectivity
may then be calculated using (4.41) and (4.43). The
final result for the reflectivity, without making any
further approximations, is exactly the formula
(2.13) obtained from the continuum theory in Sec.
AL

To obtain the reflectivity of ordinary optics,
where spatial dispersion is negligible, we simply
take the limit g,, B, ~ and find the reflectivity
given by Eq. (5.6) with € replaced by .

VII. OTHER MODELS

In this section we comment briefly on some more
realistic and therefore, by necessity, mathemati-
cally more complicated models.

A. Cubic crystal

For a cubic crystal in which only nearest-neigh-
bor plane interactions are important (L =1 model)
it is necessary to allow for nonzero {,,. The de-
terminant for the wave vectors g; has three solu-
tions; however, the determinant itself cannot be
factored as in the case of the simple isotropic
solid. From Egs. (4.10) and (4.28) we see that /,
is directly proportional to kB; times a function that
depends weakly on frequency. For 6 ~0° the dielec-
tric tensor is approximately diagonal; however, the
existence of the off-diagonal part cannot be neglec-
ted in this model since it is due to spatial disper-
sion. There is another complicating property of
e(ﬁ, w); namely, the diagonal elements are not
necessarily equal [see Egs. (4.29) and (4.30)].

Once the three mode wave vectors B; are deter-
mined the amplitudes @; must be determined in
order to calculate the reflection power. It can be
shown that the presence of the xz component of
V(I-1") (I=1,1'=2) does not change the form of
Eq. (6.6). However, the proportionality constants
in (6.4) and (6.5) are different,

=B.®. (7.1)

ivix?

where j=1,2,3 and B, is the ratio of coefficients in
(4.12). A formula for the reflectivity can be de-
rived in the way described in Sec. VI.

B. Anisotropic crystals

Suppose the molecules making up the lattice have
a nondegenerate transition polarized perpendicular
to the crystal surface. The equations of motion
[see (3.15)] for this case are

> {6, +4na (v, (1 -1

'
—i'é‘(ang/BU)eiﬂol l-l'|u3l }Pz'z
=0, (w)E e®ol%. (7.2)

This set of one-dimensional equations has a form
similar to those for s-polarized waves and their
solutions are readily found. Similarly, for a non-
degenerate transition parallel to the surface, along
x say, we have

Z {671 + 4ma W)V, (1 = 1) - Fiay e = 1as)}p,,
I

= (w)E,etfla. (7.3)

The solution of these equations is obtained by the
same route used for the s-polarized equations and
will not be considered further. The reflectivity
factorizes into separate contributions from each
mode.
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VIII. SURFACE POLARITONS AND ATR

The dispersion relation for surface polaritons is
obtained from Eqgs. (4.16), (4.38), and (4.11) by set-
ting E;=0 in the latter and then setting the deter-
minant of the coefficients of @, equal to zero. In
ordinary optics surface polaritons are normal
modes that cannot be excited by plane-wave fields
incident from the vacuum side of the interface
since their wave vectors k> w/c. In a medium with
spatial dispersion a bulk mode can exist for fre-
quencies inside the stop band and therefore coupling
between bulk and surface modes is expected. The
stronger the dispersion in the exciton band (effec-
tive mass assumed to be positive) the greater the
damping of the surface wave by the bulk.

Surface polaritons can be detected in principle by
coupling to evanescent waves, as in the ATR ex-
periment, and by coupling to vacuum electromag-
netic fields through a surface that is either natural-
ly rough or ruled like a diffraction grating.’''*?

It is possible to set up a microscopic theory of
the coupling to bulk and surface modes achieved in
the ATR experiment. This may be done using the
Hertz vector for an oscillating dipole in the vicinity
of a planar interface. This technique has previous-
ly been used to study the effect of surface plasmons
on transitions of molecules localized near a sur-
face.’® However, in the ATR experiment the gap
between prism and dielectric surface is rarely
small enough to perturb the energies of surface
molecules by direct van der Waals interactions.
Consequently, a microscopic theory of the ATR
need not be constructed in the manner just sug-
gested; rather it is quite sufficient to substitute
into the formulas of Sec. II B an expression derived
by the microscopic approach of Sec. III. In the
limit of weak spatial dispersion (|ag;| <« 1) the
simple isotropic model yields results identical
with the continuum theory of Sec. II. Therefore, in
the model calculations described in Sec. IX we use
the continuum-theory equations to calculate the
ATR spectrum.

IX. MODEL CALCULATIONS OF THE EFFECT OF SPATIAL
DISPERSION ON THE OPTICAL PROPERTIES

To illustrate the use of the theory calculations
have been performed using the ZnSe parameters
first proposed by Maradudin and Mills. These
parameters derived by fitting the reflection spec-
trum to an oscillator formula are representative of
a number of other materials including ZnO and
CdS. The lowest singlet exciton transitions in these
systems are fairly weak, corresponding to oscilla-
tor strengths of approximately 0.01 and stopping
bands of 10-15 ecm™ in width. The effective mass

of the electron is around 0.8m, to 0.9m,. We use
the formulas given in the limit of weak spatial dis-
persion for the simple-isotropic-solid model. The
parameters used are €,=8.1, w,/w,=0.074186,
0=D/c*<6.1728X 10", and 0=y/w, =10

Calculations for the reflection power at the vacu-
um-dielectric interface and for the ATR at the
prism-gap interface have been performed and will
be described separately.

As mentioned briefly before there are some dan-
gers in using the dielectric function (2.1a)inami-
croscopic theory that starts by assuming the oscil-
lating dipoles are in vacuum. One consequence
may be an incorrect treatment of how the back-
ground dielectric shields the long-range dipole
interactions. This effect can be accounted for in
the microscopic theory either by assuming the di-
poles to be embedded in a medium with frequency-
independent dielectric permeability €,, which
causes a problem of how to treat the vacuum half
space, or by partitioning « into a resonant and
nonresonant part. We shall not pursue either of
these approaches here; instead the rather cava-
lier approach of calculating the wave vectors with
the phenomenological 6(12, w) is adopted.

A. Reflection from the vacuum-dielectric interface

The role of spatial dispersion in reducing the re-
flectivity within the stopping band was first clearly
demonstrated by Hopfield and Thomas.? In Fig. 3
this effect is shown for normal incidence (6 =0°) and
zero damping for spatial dispersion D,=D/c?
ranging from zero to the value assumed for ZnSe.
The background dielectric €, and plasma frequency
w, are the ZnSe values. For normal incidence
there is no contribution to the reflectivity from the
longitudinal mode; the two transverse polari-
ton branches determine the reflectivity.

In Fig. 4 the polariton branches for k=0 are
shown schematically for the D=0 and D,>0 cases.
The slower increase in reflection power with fre-
quency for D;>0 shown in Fig. 3 is due to a slower
increase in refractive index and the absence of the
singularity in n,(w) for w=w,. The longitudinal ex-
citon (branch 3 in Fig. 4) occurs at

w? = w%+ DK*+ wi/e, . (9.1)

For D, =0 the longitudinal frequency occurs at
w;=1.000339%w, and since spatial dispersion causes
only a very small shift in this position the peak re-
flection appears to occur at w;. Inthe y=0 limit
the peak reflectivity for D>0 occurs at the point
where n,(w), the refractive index of the second
branch of the bulk polariton spectrum, goes through
zero. For w<w; this mode has a purely imaginary
refractive index.
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Reflection Power

T L/

0.0 A ;
21.0 -1.5 0.0 05 1.0 1.5 2.0

Reduced Frequency 103(w~—w7)/wT
FIG. 3. Effect on the reflection power at normal inci-

dence (8=0) of increasing the spatial dispersion Dy from
zero to the ZnSe value. The damping v is zero.

The polarized reflection spectra for 6=60° and
D,=0 and 6.1728 X 10° are shown in Figs. 5 and 6,
respectively. The low p reflectivity for w<w; is
due to the presence of the Brewster minimum given
by tanf =n,(w). In Fig. 7 a detail of the peak re-
flectivity is displayed showing discontinuities due
to the wave vectors B, and B, passing through zero.
For y,+#0 these edges are washed out; in particu-

FIG. 4. Upper figure shows schematically the volume-
and surface-polariton dispersion for a crystal with no
spatial dispersion. The lower part shows schematically
the effect of nonzero spatial dispersion (D7>0) on the
volume polaritons.

1.01 =
0.9}
0.8

——=P-Polarized
~——=S~Polarized

0.7
0.6
0.5
0.4}
0.3
0.2
0.1

Reflection Power

0.0 i ; 1
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Reduced Frequency 103(w—w-r)/w1—
FIG. 5. s- and p-polarized reflection powers of a half
space with no spatial dispersion (Dp=0) in the vicinity of
the stop band. The angle of incidence is 60°.

lar, for v,=10" they are barely detectable. In
Fig. 8 the wave vectors g; (j=1,2,3) are plotted
against frequency. Note the separation between
branch 3 (longitudinal) and branch 2 (transverse)
that exists for k>0 and gives rise to the two sepa-
rate discontinuities in the p-polarized reflection
power.

In Figs. 9 and 10 the polarized reflection spectra
at =85 are shown for D=0 and D,=6.1728 X 1076,
The Brewster minimum is clearly visible near wy.
There is also a peak on the high-frequency side of
the stopping band in both figures. The main effect
of spatial dispersion in these low-resolution spec-
tra is the erosion of the low-frequency edge of the
reflection band. In higher-resolution calculations
the p reflection contains two discontinuities similar
to those visible in Fig. 7 for the 6§ =60° p spectrum.

At angles of incidence close to grazing the s-po-

1.0 9 =60°
Dy = 6.1728x10%
0.9} vr= 10—5
0.8} Val
/0
0.7} Fa
Y /
ad B /] ——P-Polarized
OC' 05 ——-—S-Polarized
S
§ o4 Jp—
2 03 /,/
0.2 /
!
0.1 !

0.0 ; ] )
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Reduced Frequency 103(w~wT)/wT

FIG. 6. s- and p-polarized reflection powers of a
spatial dispersive half space in the vicinity of the stop
band. The angle of incidence is 60°.
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% Dy =6.1728x 10 |
« = |
yr=0
0.2 —- = P-Polarized
---=S-Polarized

0.0
0.25 0.30 0.35 0.40 0.45
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FIG. 7. Detail of the s- and p-polarized reflection
powers in the vicinity of w; showing discontinuities due
to the volume polaritons when the damping yr is zero.

larized reflection power is close to 1.0 for all w
except near w,, which there is a small dip. The
p-polarized spectrum is a few percent lower with
the same appearance as the spectra in Figs. 9 and
10.

In all the calculations performed no fine structure
in the form of spikes or narrow minima was ob-
tained. This is contrary to the theory of Maradudin
and Mills, where a spike was found in the p-polar-
ized reflection power which they attributed to the
presence of the longitudinal exciton.

B. Attenuated-total-reflection spectra

In the absence of spatial dispersion there exists
within the stopping band a normal mode referred
to as a surface-polariton mode. These modes are
p polarized and correspond to electromagnetic ex-
citations confined to the surface region of the crys-
tal. The electric field intensity of surface polari-
tons decays exponentially in either direction nor-
mal to the interface and they cannot be excited by
photons of a vacuum half space since their energy

18 ] 6,
0 = 60
» Dy =6.1728x 10°®
14 yr=0 8
/ 3
10f

o
——

Real Part of Wave vector §.

8
N 2

40:2 0:0 0t2 0:4 0.6 0.8

Reduced Frequency 103(w—w-r)/w-r
FIG. 8. Plot of the frequency dependence of the wave
vectors B; (j=1,2,3) in the vicinity of the stop band for
6§=60° and yp=0.
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FIG. 9. s- and p-polarized reflection powers of a half

space with no spatial dispersion (Dz=0) in the vicinity of
the stop band. The angle of incidence is 85°.

and wave vectors cannot be simultaneously matched
to any vacuum photon. The dispersion relation for
a surface polariton in the limit D,=0 is

[e(w)k? = k*]H 2+ (B2 - k%) 2e(w)=0.

If €(w) is real and less than —1, then this equation
can be solved for x>k, yielding

This dispersion relation is displayed schematically
in the top part of Fig. 4. It starts where w=w,
crosses the light line and asymptotically approach-
es wg for large x. The limiting frequency for large
Kk is given by

W} = wh+ w2/(1+¢€)

1.01

0.9}—-""

0.8 T

/
5 0.7} ,r
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o 06} ‘ { ———S-Polarized
§ o0.5] |
§ 0.4 N
%
T 03
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o-2r D;=6.1728 x 10%
0.1 vy =105

0.0
-1.0-0.5 0.0 0.5 1.0 1.5 2.0
Reduced Frequency 103(w—wT)/wT
FIG. 10. s- and p-polarized reflection powers of a

spatially dispersive half space in the vicinity of the stop
band. The angle of incidence is 85°.
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in the absence of spatial dispersion (D;=0). For
the ZnSe parameters (wg ~ wy)/w,=3.02 X 107 this
is close to the longitudinal frequency at (w; - wg)/
wp=3.39 X10™,

To explore the effect of spatial dispersion on sur-
face-polariton and ATR spectra, we have per-
formed calculations for various angles of incidence
0 for a plane-polarized electromagnetic field inci-
dent from the prism side of the prism-gap inter-
face. These spectra have been calculated assuming
the gap d between prism and dielectric satisfies

dwp/c=1.

The magnitude of this gap was chosen to ensure re-
flection changes of at least several percent. Thedi-
electric constant of the prism was taken tobe €, =15,
the value adopted by Maradudin and Mills.*
For this high value the critical angle for the
prism-vacuum interface is 14.963°. Figure 11
shows the effect of spatial dispersion on the p-po-
larized ATR spectrum for §=17°. For small val-
ues of D, there is a pronounced minimum due to
absorption by the surface polariton. As the dis-
persion D, is increased the peak near w; is eroded
and the spectrum distorts towards that shown in
Fig. 10; that is, it resembles the spectrum of the
vacuum-dielectric half space at angles close to
grazing incidence. Note also the increase in width
and the shift to higher frequency as D, gets larger.
This effect, due to mixing with (lower frequency)
transverse volume polaritons, is the subject of a
separate study.

Calculations have been performed for the whole
range of 6 and values of D, between 0 and 6.1278

1.0
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0.6}
0.5}
0.4
0.3}
0.2}
0.1

Reflection Power

0.0 -
-0.1 0.0 0.1 0.2 0.3 04 05 06
Reduced Frequency 103(w—w-|-)/w-|-

FIG. 11. p-polarized ATR spectrum for selected val-
ues of the spatial dispersion parameter, Dp=10"1, 1077,
and 6.1728X107® (ZnSe value). The angle of incidence
6=17° is a few degrees greater than the critical angle
0.=14.963° for the prism-vacuum interface. The prism-
dielectric gap d=c/wr.
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FIG. 12, p-polarized ATR spectrum at 6 =20° for two
different values of the spatial dispersion parameter Dr.
Note the asymmetric distortion of the minimum. The
prism-dielectric gap d =c/w1.

x 1075, Two features of the calculations are worthy
of comment. First it has been found that for 20°

< 6 < 40° the effect of an increase in D, is primari-
ly to distort the minimum asymmetrically and to
cause a small shift to higher frequencies (see Fig.
12). For much larger values of §, where the re-
flection power is close to unity throughout the stop
band, the minimum which is always present for
D=0 is washed out as D, is increased. These ob-
servations admit a simple interpretation. Where
dispersion is weak, coupling to lower-frequency
volume modes pushes the surface mode to higher
frequency. On the other hand, when the spatial
dispersion is large the coupling of surface and vol-
ume polaritons results in modes that are not con-
fined to either the surface or the bulk. These new
modes have surface tails that absorb energy from
the evanescent field of the prism over a wide fre-
quency range.

APPENDIX A: CALCULATION OF &, (wk)
The following integral representation is used:

eikR 1 ® 1 .
. =§}f[ > exp[- v|z| +i(Ex+ny)|dE dn,
(A1)

where

y=(8+m? = K?)Y/? (A2)
and

lim y=-ik. (A3)

&n =0

The real part of v is positive for real £ and real 7.
With the aid of (A1) the two-dimensional lattice
sum in (3.13) is converted into one over the lattice

of two-dimensional reciprocal vectors G,
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- I g oiEBr,lzl
‘P,,,(w;x)=_z£7-[(vv+k21)aa Z————Y———,
1% “F g

(A4)

where after differentiating with respect to R=(p, z)
we set p=0 and z=(I - I')a,. In this last equation

E=k+G (A5)
and
v, =(g - k)2, (A6)

Equation (A4) holds only for [#1’; formulas for [
=]’ were given in Ref. 15. The G=0 part is the
long-range interaction and the sum of all G#0
terms is the short-range part. This nomenclature
arises because the e77#?! factor ensures that all

G #0 terms are exponentially damped, whereas the
G=0 term is not, since

Yo= (K2 = B2 = — i(R? = )M/, (A7)

_In Ref. 15 an indirect argument was given for

®,,(w; k) by taking the limit as I’ ~/. In Appendix
B an explicit formula is derived for 3 nlw; &) that
does not make use of this limit.

For 1+’ the lattice sums are

(w3 k)=V(@I -1")+G=0 term. (A8)

ll'
There are no components coupling y to x or z so
that the distinction between s and p polarizations
holds in the presence of spatial dispersion for the
geometry of this problem provided the y axis coin-
cides with a principal axis of the polarizability
tensor a. This is no surprise since the xz plane
coincides with a mirror plane of symmetry. The
components of the short-range interaction are

1(g’2‘ _ k2)e-7’gl 1-1'lag s (Ag)

1 -
V=305 ) Vg

L4

Here &, is the probability integral and

F(u;v) =72 fw dx e cos[v(u - x)],

A(u)=?%7—2— fm dx e"‘z sin(ux) .

To obtain the zz component of the short-range in-
teraction V the long-range part G =0 must be sub-
tracted from the sum over the reciprocal lattice.

4"2-5”-2: i > {exp(i—@)—%gz—[l - %(Zyiz
G

ot

sy 1 k 2NR _.2.2 LR 4n B2 k 2
+ Ee" ”{Eg[F<n ;-ﬁ>+ 7z se" ":] ——p—F(ﬂR, )} 37;7—< )+§k3A<ﬁ>+z§k3.

xz = (1 - 61 ;')%03 sg'ﬁ(l - l') Z’gxe“ygl - la3 s
G

(A10)
é Z ')" 2077gl I-1 Ia3 (All)

G
=% Z (gz k2)e-1gll v Ia3 (A12)

G

The prime signifies that the G=0 term is absent.
The diagonal components satisfy the following sum
rule:

va=— a,k’ E'w‘
4 G

In the limit 2=0 where spatial dispersion is ab-
sent we see that the components of V reduce to
static (unretarded) dipole sums satisfying the well-
known sum rule

Z Uao:O' (A14)

1o vgli-t'lay (A13)

APPENDIX B: FORMULA FOR &,(w;k)

To calculate the retarded interaction between a
dipole in the Ith plane and all the other dipoles in
the same plane it is convenient to start from the
“Ewald” formula for ®3(w), the phase-modulated
sum for a three-dimensional lattice.?®'®® If we let
a,~«, the sum over reciprocal vector components
parallel to the z axis is replaced by a standard in-
tegral. Atthe same time that part of the Ewald sum
coming from summation over the real crystal lat-
tice reduces to a two-dimensional sum over the Ith
plane only. As an example we give the result for
the zz component of & 0

APPENDIX C: FORMULA FOR Ef(w)

To find the long-range (or optical field) part of
the retarded dipole sum (4.23) it is not necessary
tofirst convert the sum intoa convergent Ewald sum,
as done in Refs. 28 and 29. For the optical field it
is sufficient to transform the lattice sum into one
over the three-dimensional reciprocal lattice with-
out dividing it into convergent sums over both the
real and reciprocal spaces. Let T be a field point
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that does not coincide with a lattice site. Then the
sum over the reciprocal lattice is simply

_ s o
@i(w):Z(K+U)(K+U) 1 5.s

== e C1
D ; (c1)

where U are the reciprocal-lattice vectors and &
=w/c. This result is generated by transforming
the Hertz vector for the lattice to reciprocal space
and then carrying out the differentiations implied
in Eq. (3.3). The optical-field part of (C1) is just
the U=0 term.
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X
Prism Gap Dielectric Half space

FIG. 1. Schematic representation of the right-handed
coordinate system and the directions of the p-polarized
incident and reflected electric field amplitudes for a
dielectric half space without (top) and with a prism half
space (bottom). For p polarization there are three fields
& ; in the spatially dispersive medium.



