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This paper presents detailed numerical calculations of surface-catalyzed chemical reaction rates in the

Brownian-motion rate theory of Kramers. Accurate values of the rate for a wide range of values of the

friction coe8icient, the principal parameter of the theory, are obtained for the first time. A one-parameter

empirical formula is obtained which gives the rate in quite general circumstances, Application of the results to

calculation of catalytic rates at metal surfaces is discussed.

I. INTRODUCTION

In this paper we explore the consequences of the
Brownian-motion approach to rate theory, pro-
posed by Kramers. ' Considerable effort has been
expended towards justifying the application of the
Brownian-motion model to catalytic rates at metal
surfaces' ' and towards calculating the friction co-
efficient needed to apply the model to such a sur-
face." It is, therefore, desirable to know the re-
action rate predicted by this model, as a function
of friction coefficient.

Good approximate solutions have been obtained
for the limits of very large' and very small' '

friction; in both limits the rate was found to be-
come small. So the case of greatest practical in-
terest (i.e., highest reaction rate) is that of inter-
mediate friction, for which the reaction rate goes
through a maximum. No accurate calculation has
previously been done in this region, and it is the
purpose of this paper to present accurate numer-
ical results for this case. Togethex with the pre-
vious results for the small- and large-friction
limits, this provides an essentially complete pic-
ture of the dependence of reaction rates on fxic-
tion.

II. BROWNIAN THEORY OF CATALYTIC RATES

In the Brownia. n-motion theory"' of surface
catalysis, the problem of determining the rate of
a catalytic reaction is approximately reduced to
that of determining the rate of escape of a Bxown-
ian particle from a one-dimensional potential
mell. ' Consider a system consisting of a reacting
complex (i.e., one molecule in the case of a uni-
molecular reaction, two in a biomolecular one,
etc.} held on a solid surface by an attractive po-
tential. Temporarily ignoring the internal degrees
of freedom of the surface (phonons and electronic
excitations}, we can calculate the Born-Oppen-
heimer energy surface for the complex in the po-
tential field of the static solid (i.e., the energy of

the system as a function of the nuclear coordinates
of the atoms in the complex}. fn general, the re-
actant and product of the catalyzed reaction corre-
spond to two minima of this Born-Qppenheimer
energy function. If the reacting complex is weakly
coupled to the individual internal degrees of free-
dom of the solid surface (though it may be held
tightly by the time-independent attractive potential
of the surface), the influence of the internal de-
grees of freedom on the atoms of the complex may
be approximated by a frictional force and a Mar-
koffian random force acting on each of the atoms,
just as in classical Brownian motion. " Further-
more, our interest is in systems moving in many-
body configuration space from the reactant mini-
mum of the energy function to the product mini-
mum, near a line (the reaction path) connecting
these minima. %e may transform to a curvilinear
coordinate system" " in which one coordinate (the
reaction coordinate) increases along the path, and
the other axes are orthogonal to it. If the friction
along the orthogonal coordinates is sufficient to
maintain thermal equilibrium along these direc-
tions, they may be factored out of the px oblem,
leaving us with a one-dimensional problem of es-
cape from a potential well V(x} by a "particle"
(representing the reacting system) whose position
x and velocity v obey a I.angevin equation

GV
d—= E(x) —qv +A(t), (2.1)

sf Bf sf 8 ttTsf—+v —+E—=fj—vf +——
8@ ~v ~v m Bv

(2.2)

where E(x) = -(1/m)(8 V/sx), m is the effective
mass, g is the effective friction coefficient, and
A(t) is a Markoffian random force with zero corre-
lation time [reasonable if the internal degrees of
freedom of the substrate giving rise to q and A(t)
vary rapidly compared to x and v]. An ensemble
of such systems then obeys a Fokker-Planck equa-
tion"
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trapped in the product mell, and the detai1. s of the

trapping must be irrelevant.
Thus, for both large and small friction, the

nature of the product well is irrelevant, and for
the small friction case it must not be allowed to
reflect particles. This is achieved by the well
shown in Fig. 1; the barrier potential continues
downward indefinitely on the product side.

The potential used in the numerical calculations
consists of an upward parabolic well and a down-
ward parabolic barrier:

(2 2)

FIG. 1. Potential well fzq. (2.3)] used for numerical
calcul. ations of escape rate. Distance is measured in
the dimensionless units described in the text; for this
case n = —2'~2, d'= +2~~2

where f(x, v, f) is the ensemble distribution func-
tion.

The choice of a potential V(x} requires some
care. The potential along the reaction path in
many-particle configuration space goes from one
minimum to another. It mould seem appropriate
to use a one-dimensional V(x) with two minima, a
*'double well. " However, it is clear that in a real
reaction only the reactant well and the barrier
region are important; what happens after the "par-
ticle" has entered the product well is irrelevant.
This is true numerically in the case of large fric-
tion, when the distribution diffuses very slowly
into the product well. The reaction-rate constant
can be computed as the ratio of the leakage rate
to the reactant mell population. After some density
has built up in the product mell, backflow into the
reactant mell ean occur, but this is a real physical
effect (the reverse reaction), and the populations
of the two wells obey simple first-order kinetic
equations, involving the rate constant mentioned
above. In the small-friction case, however, the
true rate is harder to define. A particle in the re-
actant well with enough energy to surmount the
ba,rrier will do so, entering the product well. But
it is then quite likely to bounce right back into the
reactant mell, since the fxictional energy loss is
small. This is not a physical effect, but an artifact
of the assumed one dimensionality. In the real
many-dimensional configuration space, a particle
escaping into the product well along the reaction
path is going in a specific direction, and the
chance that the forces in the product well will send
it back along exactly the same path is very small.
The "backflow" effect in the model is spurious; if
it is to describe a real reaction between well-de-
fined chemical species, the particle must be

(2.4)

p oo

j, =
I f (0, v)v(fv, (2.5)

Ch de, x, e . (2.6)

physically, the injection distribution A(x, v) is de-
termined by the phase-space distribution of mole-
cules which adsorb on the surface. For the pur-
poses of this calculation, we will assume it is a
Boltzmann distribution for x&O, and zero for x
p Oi

The sharp cutoff of A. at x=0 is somewhat arbi-
trary, as is the cutoff of the integral in Eq. (2.6).
However, the fraction of the density in A. or f near

The separation 0 and the inflection point e are
uniquely determined by Q, u„, +~. Thus these
three variables, with kT, m, and g, determine
the problem uniquely.

If we pick units ((}„fortime, kT for energy (2kT/
m)'~' for velocity, the only remaining variables
are Q/kT, (vc/(v„, and q/(v„. For the numerical
calculations we chose (vc =(v„and Q/kT =4, and
allowed q to vary. %e indicate in Sec. VD how
the results might be extrapolated to larger Q/kT;
this has not yet been checked by doing numerical
calculations at larger Q/kT, but that would not be
difficult.

To calculate a reaeti. on-rate constant, we con-
sider an ensemble f(x, v, t) in which particles are
being injected into the reactant well at the rate
A(x, v). [Such injection modifies the Fokker-Planck
Eq. (2.2) by introducing a term X(x, v) on the
right. ] When the system reaches a steady state
f, (x, v), the rate constant is the ratio of the current
of particles over the barrier to the population of
the well
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x=0 is of order e *, which is negligibly small
in practice, so the cutoffs have little effect and

may be chosen where it's most convenient.
In fact, instead of calculating a steady state

f, (x, v), the calculation was done with a transient
state having initial condition

f(x, v, t = 0) = A. (x, v)/(v„. (2.8)

This amounts to replacing the steady source
a(x, v) by the impulsive source X(x, v)f((t)/(d„,
which inserts particles only at t =0 (the factor (((„
is included so the units of the sources agree).
This was done partly for numerical convenience
[we can merely step f(x, v, t) forward in time, and
needn't solve an implicit equation for f,(x, v)], and

partly because there is some interest in the tran-
sient behavior (see Sec. V B}. Clearly the steady
source is recovered by integrating the new source
over time, so the steady-state solution f, is the
corresponding superposition of transient solu-
tions:

a set of coupled equations in two variables. ' These
are then solved on a grid of points in x and t, after
replacing derivatives by finite differences. To
avoid numerical instabilities described in Ref. 14,
it is necessary to define the odd and even coeffi-
cients a„on different grids in x, and to use a
Runge-Kutta method for stepping in t.

Because of our choice [Eq. (2.7}] of a discontinu-
ous initial condition, highly singular distributions
in both x and v are present near t =0. These cre-
ate numerical oscillations for early times. The
spurious oscillations are largely independent of
the potential, however, and by calculating them
exactly for the force-free case" it has proved
possible to subtract them out.

Reflecting boundary conditions are most natural
for this algorithm. This creates no problems on
the left side of Fig. 1, where the boundary can be
chosen to have V(x) so large there are virtually no
particles to reflect. At the right, however, re-
flection is a serious problem which was solved by

f.(x, u(= „)f(x, e, t d (, ( (2.9) 0.0}0-

so we can retrieve the steady-state rate constant
as

(2.10)
707

from the transient current and population j(t),
A(t), defined analogously to Eqs. (2.5) and (2.6).

III. NUMERICAL TECHNIQUES

To calculate the reaction rate [Eq. (2.10}]we

must know the time evolution of the distribution
function f(x, v, t), which is determined by the Fok-
ker-Planck equation (2.2). The algorithm used
for the solution of this first-order linear partial
differential equation is described in detail else-
where. " It involves expanding the velocity depen-
dence of f(x, v, t) in Hermite polynomials If„:

0 000
0

0.0085-
0.2

}0

f(x, v, t) = g a„(x, t)ff „(v)e " . (3.1)

[As in Sec. II, v is in units of (2kT/m}'~'. ]
This is physically very reasonable for large q,

when the velocity distribution is nearly Maxwel-
lian [i.e., the first term dominates Eq. (3.1)]. We
can then cut off the summation at a low order
n,„. In fact, truncating the calculation at n,„=1
[two terms of Eq. (2.1)] corresponds exactly to the
Smoluehowski equation, "'which is correct in the
large-q limit. For low g, this expansion becomes
increasingly awkward, and in fact for q =0.1 u„
convergence was not achieved even with n =40.

The Hermite-function expansion converts the
partial differential equation in three variables into

0.008-

Q.0075"
030
0.25
0.2
Q 4

IO

FIG. 2. (a) Numerical, results for current across bar-
rier, labeled by friction coefficient 7I (in units of the mell

frequency cu&). ART labels the absolute-rate-theory
value 2 e ~ ~ . The 7t= 0 resul. t was obtained, analytically:
j(t)=2(e ~+~-e ~~)~~~), where E(t) is the energy of a
trajectory traversing the x & 0 region in time & ~ (b) Ex-
panded vertical scale (5x) showing drop of low-q curves
alound t = 6.
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is mostly determined by (4.2), and A„X„and
A, mostly by the fit. For example, with g=2 {in
units in which &v„= 1) we have for f & 2

j(t) = 0 003 78e '"' "'+0 004 41e '"'
and with q= 0.2, we have for t & 8

(4,4)

V. DISeUSSION

A. Relation to Kramers' theory

The rate constant for the Brownian-motion the-
ory was calculated exactly for the pure parabolic
barrier by Kramers'.

rr = ge oI' [(1+rf/4(o2c)'i' rI/2(oc-]/N(0) (5.1)

[in units of &u„, as above; N{Q) is the equilibrium
population of the well, given in our case by Eq.
(4.3)]. This was expected to correctly describe
escape from a well for large friction coefficient
g, because the velocity equilibration rate is then
rapid and the depletion of the equilibrium distri-
bution on the left slope of the barx ier by the bar-
rier leakage is easily compensated by diffusion
from the well to its left, the fact that the well has
finite depth has little effect.

This clearly cannot remain true for low g; for
@=0 the particles with E&Q will escape, leaving
the bulk of the particles having E & Q trapped in
the well, unable to escape in any finite time. The
equilibrium rate constant is thus zero. Fox' low

q, the escape rate depends on particles acceler-
ated froxn E& QtoE) Q by the stochastic force, a
sort of diffusion in energy. Kramexs made an
estimate for the rate based on this picture, in
which the rate is proportional to g. Improvements
have been made on this calculation, "' leading to a
somewhat larger proportionality constant.

Based on these two limits, shown as dashed
curves in Fig. 3, Kramers conjectured that there
would be a wide range of q in which the rate is
given quite well (within 10%) by the absolute-rate-
theory (ART) value'

(5.2)

This conclusion depends crucially on how the rate
interpolates between the two limits' Kx'amex's

j(t) =0.00761e """'+0.287e ' (4.5)

The extrapolation (4.1) for j(t) then allows us to
compute the rate constant r analytically from
(2.10); the results are plotted as Fig. 3. The rate
constant turns out to depend mostly on j (f ); in
fact X~N(0), A~, and t'N(0) are all (within a few
percent) equal to j(t ). So one can conveniently
interpret the values j(t ) at the right edge of Fig.
2 as being proportional to the rate constants for
the various friction coefficients.

assumed the actual rate follows each curve until
quite near their intersection.

The objective of the present calculation was to
calculate the rate in the interpolation region, in
particular, to try to locate the maximum. As Fig.
3 shows, this was achieved, and the result lends
some support to Kramers's conjecture: the rate
peaks quite near the ART value {though not within
IOVo). An extrapolation of the results to larger,
more realistic barrier heights (described below)
can put the result very near the ART value.

B. High friction

The agreement between the numerically com-
puted rates and Kramers's high-g limit is ex-
tremely close. [Kramers's rate is even closer to
the calculated long-time limit of j(t) /N(t); the
rate r exceeds this slightly due to the transient. ]
This provides encouraging evidence for the cor-
rectness of the solution algorithm. The agreement
persists down to q's which are by no means large
compared, say, to v„(=1); Kramers's approxi-
mation was indeed well chosen.

It can be seen from Fig. 2 that the attainment
times are roughly the same for all the large-
friction cases (q ~ 1). In fact, the fitted values of
X2' a.re all equal to 1, within the ambiguity (+1070)
introduced because they depend on the exact in-
terval used for fitting. (This is even true for the
low-friction cases, where, however, A.,' describes
only the exponential decay at the far right; the
total attainment time is discussed below. )

The friction independence of the attainment time
is of interest because of a previous suggestion, "
based on an approximate theory of the attainment
time, that it becomes anomalously large at q
=2 '~'. It is apparent from Fig. 2 that this does
not occur. However, a new phenomenon does be-
come apparent at about this value of q, which has
the effect of increasing the attainment time; this
is discussed in Sec. V C.

C. Low fnction

For q& 0.707, the current j(f) appears to level
off by around t = 3, but then abruptly drops to a
lower value around t = 6. The plateau to t = 3 cor-
responds to Kramers's exact solution for the pure
parabolic ba, rrier (dashed curve in Fig. 3); it has
clearly not yet felt the effect of the finiteness of
the well to the left.

For large friction, j(t) never does feel this ef-
fect. The way in which it is felt for small friction
can be seen for g=0 which is exactly solvable.
The current in this case is due to particles on
trajectories with energy E &Q, which started out
at x &0. The particles on a particular trajectory
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will sweep around that trajectory in the well, con-
tributing a constant current across the barrier
until the last particle (one which was just entering
the well at f =0) crosses and the current drops
suddenly to zero. The time required for travers-
ing the well depends on the trajectory, which
smooths the current drop as in Fig. 2, but the
average time is comparable to a period of oscil-
lation in the harmonic well (namely 2»). It seems
clear that the current drops around t =6 for
0& @~O. VOV axe due to the same mechanism as for
g= 0, but less precipitous because the stochastic
force continually promotes particles from trapped
trajectories (E &@) to escape trajectories (E&Q)
to replace those lost.

f (0, v, t) =f(O, -v, t- T), (5 3)

which is zero because particles only leave the
well, never enter it. For nonzero friction q this
is no longer exact; the stochastic force scatters
particles away from their original trajectories.
However, if I} is small f(0, v, t) still retains some
"memory" of f(O, -v, f- T) (which is nearly zero
for small q).

We assume this memory decays with time in an
exponential fashion: in time v, it has decayed by
e ""'for some constant A (since the decay rate
clearly should be proportional to I}). Thus the
distribution at t, which is the Kramers solution
f»(x, v) in the absence of memory and which de-
creases proportionately to the amount of memory
(e "~) to zero for complete memory, is in general

D. Extrapolation to higher barriers

We give here a physically motivated parameter-
ization with only one parameter of the rate r(TI)
which reproduces the numerical data and agx ees
well with the approximate solution in the low- q
limit (dashed line in Fig. 3). This enables extra-
polation of our results to different potentials, in
particular those with higher barriers. The pa,-
rametric form of r(I}) is based on Kramers's
large-I} expression [Eq. (5.1)]. This is essentially
exact for large q; we wish to examine how it fails
for smaller q.

We consider the current j (f) at a time after the
transient has decayed; recall that this is essen-
tially proportional to the rate constant. Consider
a particle contributing toj (f), i.e. , leaving the
well at time t, with velocity v. It lies on a tra-
jectory passing in and out of the well, traversing
the well in some time period r; a partic1e on that
trajectory would have entered the well at t- v',

with velocity -v. (We have chosen f large enough
so f & 7.) In the absence of friction, this deter-
mines the distribution function at t: by
Liouville's theorem,

f=f» e-""'f». (5.4)

The corresponding current gives us the rate con-
stant

-Afj~f'= t'~ —e (5.5)

This has the correct behavior: it approaches the
Kramers rate for lax ge q and is linear in q for
small q,

+QUART ' (5.6)

This suggests what the dependence of Av on the
barrier height should be, since Kramers's low-q
solution gives

Ti(q/sr)T „„,. (5.7)

So AT=B(Q/kT) for some constant B. The final
parameterization is

(1 e-B(Cll lrT&n)T. (5 8)

where T» is given by Eq. (5.1). The arbitrary
parameter B may be fixed by requiring Eq. (5.8)
to be correct at q= 0.2; this gives B=3.04. Then
(5.8) is correct within 1% at al/ values of I); it is
plotted as the soUd line in Fig. 3(b). As an inde-
pendent check we can calculate the slope of (5.8)
at q= 0; it is 0.035, compared to 0.073 in
Kramers' approximate solution' and 0.057 in the
improved solution. ' This is adequate agreement,
considering the uncertainties in the low-q solution.
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Vr. CONCLUSION

Numerical results have been given which fill
the gap in previous calculations of reaction rates
in the Brownian- motion model. A semiempirical
formula [Eq. (5.8)] was found which reproduces
the numerical results (and Kramers's high-friction
limit') very accurately, and gives good agreement
with approximate low- friction calculations.

It would appear that the dependence of reaction-
rate constants on friction coefficients is now ade-
quately well known, and the next step in applying
the Brownian-motion model to surface catalytic
reactions must be the determination of q in a
realistic situation. Previous attempts to do this
in very simplified models" have given results
highly dependent on details of the mode1. This
suggests that perhaps an a pnori calculation is
too difficult, and one should instead determine g
from an observed rate. One could then hope to
predict other rates on the same substrate (assum-
lllg tile sa1118 YJ) wltll dlffel'slit llal'I'ler llelgll'ts.
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