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A theory for elementary excitations in random substitutional alloys with off-diagonal as well as diagonal
disorder has been developed using a new technique for configurational averaging introduced by Mookerjee.
The theory is valid in both the long- and short-mean-free-path regions, and generates a Green's function

which is always analytic. The mathematical formalism is illustrated for the case of electrons in a binary alloy

with a tight-binding Hamiltonian. Typical results for the densities of states of one-dimensional chains are
shown to compare well with essentially exact numerical calculations.

I. INTRODUCTION

Since the introduction of the coherent-potential
approximation (CPA) in 196'I by Soven' and Taylor, '
there has been a great deal of work done on the
theory of disordered systems trying to extend the
CPA to include off-diagonal disorder and multi-
site correlations. ' " While there have been some
successes, no general theory has emerged.

A new approach to the problem of disordered
systems which we believe holds great promise
was introduced by Mookerjee"'" in 1973. This
approach centers around a new technique for av-
eraging functions of independent random variables.
Using this technique Mookerjee was able to develop
a new theory for randomly disordered alloys in
which there is only site-diagonal disorder. This
theory successfully includes multisite correla-
tions and has been used to calculate the densities
of electronic states for diagonally disordered one-
and three-dimensional random alloys. "" Despite
his successes with this formalism, Mookerjee"
was not able to properly include off-diagonal dis-
order. He was successful only in extending the
theory to include the special case of a random bond
model which, in general, is not applicable to phys-
ical systems. (The relationship of this special
case to the more general off-diagonal disorder
problem is discussed in Sec. II.)

In this paper we show how to extend the formal-
ism introduced by Mookerjee to properly include
off-diagonal disorder. We then discuss two com-
putational methods based on this formalism.

The essential feature of this theory is the unique
way in which configurational averages are handled.
Rather than expanding the Green's function in
some manner and then averaging an appropriate
set of terms as is the conventional practice, we
transform the random problem into an ordered
one which is defined in a larger Hilbert space.

We then evaluate the Green's function in this ex-
tended space by using conventional expansion
techniques.

This new Hilbert space is referred to as the
augmented space. In somewhat oversimplif ied
terms, this augmented space may be described
as the direct product of the Hilbert space spanned
by the original Hamiltonian with a "disorder"
space which describes the various allowed con-
figurations of the solid. On transforming to this
augmented space, a new nonrandom Hamiltonian
can be defined such that configurational averages
in real space for the random solid are equal to
inner products in the augmented space.
Once the augmented space is constructed we eval-

uate the Green's function in this space by applying
two techniques previously used on solids with di-
agonal disorder ""only: the recursion method
of Haydock et al.' and the graphical method of
Anderson. " We emphasize that although we have
found these methods to be useful techniques for
evaluating the Green's function, they are not es-
sential to the basic theory. The transformation to
augmented space is exact and yields a new Hamil-
tonian which may be treated by other means as
we]l

The theory is quite general and can be applied
equally well to any elementary excitations in ran-
dom substitutional alloys. In order to be specific
we have chosen to investigate here the electronic
properties of a binary alloy. In Sec. II of this
paper we review the transformation to augmented
space. Sections III and IV deal with the two tech-
niques we have chosen to use in evaluating the
augmented space Green's function, the recursion
method and the graphical method, respectively.
For each method we include the results of cal-
culations for one-dimensional alloys which are
compared with essentially exact results. Con-
cluding remarks are contained in Sec. V.
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II. AUGMENTED SPACE FORMALISM

8( = 8g5(s I ) Sg) + 88 5(s I)SS),

5' ~5 s), s 5 8~, 8g,

(2.3a)

(2.3b)

wllel'6 5(s, s ) ls 'tile Kl'011eckel' delta flIIlctloll
and the summations indicate that o,'and p take on
th6 values A Rnd B.

In a disordered solid it is the configurationally
averaged properties that axe of physical interest.
The configUX'Rtlonally Rvex'Rged Green 8 fuDctlon
18 defined by the relRtlon

('„(~)=J " ((l[~) «(QJ)('l(;,)

&& P, (s,)P,(s,) "'II,(s&)"
xd8 d8 ' ' 'd8

The Hamiltonian 0 is defined on the Hilbert space
Q, and p,- and p,. ax'e the basis vectors defined in
0 such that H, ,= g, IH

i g;).
Since the avex'aged Green'8 function is defined

in terms Gf RD integral ov61 independent random
vaxiables we can use the augmented space formal-
ism" to evaluate this integral by constructing a
Hllbert SpRC6 4'y R VeCtGX' p0 1Q 4~ and R self-
adjoint opexator X on the Hilbert space Z = 084
such that

&;;(&)=8;(Sr.l(&fc-&) 'III10&, (2.5)

whex'e l~ is the identity operator on Z and {3de-
notes the dix'ect ox tensox' pxoduct. Thus config-

In this section we describe the augmented space
formalism Rs applied to the electronic properties
Gf R 1andom substltutlonR1 blnRX'y A-B Rlloy %'1th

a neax'est-neighbox', tight-binding Hamlltonian 8,
0,-& = e,-5, + 5'&&.

The dlRgonRl element e& equals either 8~ ol e~&
and the off-diagonal element 8';& takes on the values
8'~, W», ox W» = 8'» depending on the occupa-
tloQ of sites s RQd j. S; =0 lf s=g ol if l, Rnd ) ax'6

not nearest neighbors. The relative concentrations
of the A and 8 constituents are denoted by e~ and
({."g = j. —c~, respectively.

We describe the configuration of the alloy in
terms of a site occupation variable s,-, where s;
= s„(ss) if an A atom (8 atom) is present at site
i. For a random substitutional alloy, the {s;Jare
independent x'RndoIQ vRx'1Rbles with pl obRblllty
distribution P,(s,). For a binary alloy,

&;(SI}= 8~88(s; —s~)+ 888D(s(- ss) (2.2)

where 5D(x) is the Dirac delta function. 8; and W,z
can be wxitten explicitly as functions of the site
occupation vRX"1Rbles 8) Rnd sg',

p, (s~)=- — lim Im(I)~~(SI„-M~) '~8,"), (2.6)
8~ 8{)t +80+

where I@ 18 the ideQtlty opex'Rtox' on the spRce p&.
In othex' words, @0~ and M~ are chosen such that
the spectral density of M~ with respect to @0~ is the
glveQ px'obRblllty dlstx"lbutlon. Such R relation cRQ

always be found fox any probability density p. For
the binax"y alloy, with the probability distribution
given ln E(I. (2.2)) we fmd tllat (t)p ls a HIIbert
spRce of dimension 2,

@ =g«;@+a&J,

h = (s~ —ss)&8~88 )

C =8@+8'—0)

Rnd the Rppx'opx'1Rte vectox"

(2.7)

IQ terms of the Hilbext Space 4~ and the opera-
tol8 Rnd vectox'8 deflQed on this spRce, %'6 cRQ

define the essentlRl element8 needed for the trans-
formation to the augmented space. %6 define

{3$ {34ee. p {3~ 0

{3@2{34 4 «p~ {3e e 4
0 0 0 0

~~=J~~2"'~~~M~~. i "-
(2.8a)

(2.8b}

(2.8c)

The fact that 8~ is equal to the identity operatox
on all except the Ath component of 4 is an expxes-

urational averages in real space are replaced by
innex' products in the augmented space Z. Intui-
tively, one can think of 4 Rs a "disorder" space
which allows for all possible configurations. The
new Hamiltonian X x"etains the physical information
in its action on Q, and the action on 4 buiM8 i.n
the Rppx'opx'late probabllltles fol 6Rch conf lgul Rtlon.

The key featuxe of the mathematical formalism
is that 3C can be constructed by means of a sub-
stitution rule. Each matrix element of H can be
thoUght Gf Rs R function of the random vRx'1RM68

{s,}, and we can write HI&=h„({s,'I). If we sub-
stitute R suitably chosen self-adjoint operator 8~
(which acts on 4 ) for the random variable s~,
then h,.I({8$)becomes an operator on 4, and 3C

defined by K;, =h,&({8$)is the desired operator on
Z. For example, if h,.&({s„f)= 8, a (nonrandom)
constant, then h„({8$)= cfo. If h;, ({sg)=s, +s„
then h„.({SQ)=8, +8,.

%6 8tlll Deed to descl"lbe how the dlsox'del spRce
C, the vectox ~, and the operators s„axe chosen.
For each random variable s~, we find a Hilbert
spRce Q@ y

R unit vector "v0 in Qpq Rnd R 86U-ad)oint
operator M„(on (t)~} such that
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sion of the independence of the random variables.
Using the above definition we can now apply the

substitution rule to obtain the augmented space
Hamiltonian X for which Eg. (2.5) is valid. Sub-
stituting the direct product operator 8, defined in

(2.8c) into the expressions given for the diagonal
and off-diagonal elements of the real-space Ham-
iltonian in Eg. (2.3) we have

3C; = e„5(s„IO,3,)+es5(ssl~, S,), (2.9a)

X,,= g g W.,5(s.l„S,)5(s,I„S,). (2.9b)

In order to complete the transformation to aug-
mented space we must define what we mean by
the Kronecker delta function of the operator 8,.
From spectral theory we know that 5(s I~ 3,) is
the projection onto the elgenvectol associated
with the eigenvalue s, .20 In oxder to find the ma-
trix representation of the Kronecker delta, we
first note that

5(s I@,S;)= I, 8 I2 8 ' ' ' 8I),8 5(s I ))M, )8 I(„~~ ~ .
{2.10)

ln order to calculate 5(s I, ,M,)we diagon. alize
M, ;

Using these definitions C,,(e) can now be evaluated
from Eq. (2.5).

As we mentioned. earlier, Mookerjee" has also
attempted to treat off-diagonal disorder using the
augmented space formalism. As he noted, he
failed to include the correlations between sites
correctly. He simply replaced the hopping inte-
grals randomly and thus neglected the fact that
if site i contains an A atom then 8',

&
must equal

R'z& ox' 8'» for all j coupled to i. Similarly if
site i contains a B atom W, z must be S'» or 8'».
The theory we have presented in this section
properly accounts for these correlations between
sites.

So far we have described the augmented space
formalism for determining the configurationally
averaged Green's function of an alloy with off-
diagonal as well a,s diagonal disorder. This in-
volves choosing an appropriate set of independent
random variables to describe the system, con-
structing the augmented space, and finding a ma-
trix representation fox the Kronecker delta func-
tion in the augmented space. Everything to this
point is exa,ct. It still remains for us to describe
the computational procedures we have used for
evaluating the Green's function in this formalism
and some illustxative examples. In Secs. ID and
IV we describe two such techniques, the recursion
and graphi, cal methods, and illustrate their use
for a one-dimensional alloy.

(mc„
U=I

{vce —vc„

ls unitary. Thus

I 5(s, s„)
0

o
III,

5(s„se)j

CA CA CB

F", =—b(s„I„M,)= I „(, . ),c~csj ce

(2.12)

(2.13)

(2.14a)

III. RECURSION METHOD

The recursion method of Haydock, Heine, and
KeQy'6 i.s a fox'm of the I anczos~~ procedure to
invert matrices. The essentia, l element of this
method is an algorithm which constructs a tri-
diagonal representation for any operator. For
the operator R defined on the Hilbert space 4 and
the vector I1}in 4 we can construct an orthonor-
ma, l basis in which 8 is tridiagonal by the follow-
ing algorithm:

(n+i}=R~n}-o„~n}-p„, (n 1} for n-l, p, =O,

(3 1)

CB —Cg CB
F) —=5(seI),M)) =

I
i. (2.14b)

CACB
' '

CA (n iR in} (nin)
fnln) ' P"-' (n lin-1)-

With respect to the normalized system, In}/
((n In})'~, R is tridiagonal with diagonal elements
R = a„and off-diagonal elements R„,=R
= ~p„.

Once we have constructed a tridiagonal repre-
sentation of R, it is relatively easy to generate
a continued fraction expansion for the Green's
function, g{e)= {el-R) '. Let D„be the determin-

(3.2)

Substituting these expressions fox the delta func-
tions in Eq. (2.9) we find that the elements of the
augmented space Hamiltonian X can be written as

(2.15a)

SI,.„~~ ~ ), i'

X;;=I, 8 I2 S ' "8 (e~ F; + ee F; )8I;„'
B B

K;)= Q Q W' q(I, SI28' ~ ~ SF) SI,„~~ ~ SP,'-
0; =A B=ot
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ant of the matrix derived from g(z) ' = zf -R by
deleting the first n rows and columns. D, is the
determinant of the complete matrix g ', and by
the stRndRx'd x'elRtlon froIQ llneRx' Rlgebx'R

CI lglI}=

g Qt ~ 0 ~
3

(3.5)

In the recursion method we calculate (n„,P„)
for n=1, 2, . . . , np and use a repetitive termination
for the remainder of the continued fraction.
There are a number of possible termination pro-
cedures; several of these are discussed by Hay-
dock et al." Such an approximation gives the con-
txibution of the first 2np moments of B exactly.
All higher moments are approximated in terms of
these first 2np moments.

Applying this procedure to the augmented space
HamlltoQ1RQ Rllows OQe to evRluRte the conf lgul R-
ti.onally averaged Qreen's function. For example,
if we wish to calculate the average density of states
n(e), which is given by the relation

1
n(e) = —— lim ImC, , (z),

s+fp+
(3.6)

we let A=K and
l
I}=

l g, Sy,) and then use the re-
cursion relation to evaluate the diagonal element
of the averaged Green s function G, ,(z).

Before discussing some example calculations,
let us consider what information about the alloy
is included by this approximation. The recursion
method constructs new vectors

l
n+ I}in the aug-

mented space Z as a linear combination of states
which are "nearest" neighbors of the states m

l
n}.

(The nearest-neighbor structure of the augmented
space is discussed more fully in Sec. IV.) There-
fox'e eRch level in the recursioQ Inethod iDcludes iQ-
formation about how the next group of neighboring
states interacts with the preceding group. Since
the augmented space includes information about
the physical interactions as well as the configura-
tions of the alloy, we are in a sense systematically
constructing the Qreen's function by bringing in a
growing number of atomic sites and their possible
configurations. This procedure is physically rea-
sonable and the resulting Qreen's function is ahvays
analytic. Many earlier attempts to extend the CPA

Expanding the determinant we obtain the recur-
1eDce relRtlon

(3.4)

Substituting (3.4) into (3.3) yields the continued
fraction expansion for the Green's functions,

to include cluster correlations and off-diagonal dis-
ordex have produced nonanalytic Qreen's func-
tions. ""

%'hile the theory we have presented is applicable
to one-, two-, or three-dimensional alloys, we
have chosen to calculate the density of states of a
one-dimensional binary alloy since it is relatively
easy to calculate exact results for one-dimensional
systems, In Fig. 1 the results of a calculation using
the augmented space formalism and the recursion
method with n, = 10 are compared with essentially
exact results obtained using the Schmidt method. "
The theory agrees reasonably well with exact
results even for this split-band case. It correctly
predicts some of the major peaks in the density
of states and approximately matches the unequal
hand widths of the two bands. The structure pre-
dicted by the theory is naturally dependent upon np.
In Fig. 2 we show calculations for the same one-
dimensional system as in Fig. 1 but with np 7 9,
and 10. Notice that with increasing np new peaks
appear in the distribution and existing ones tend
to shift and narrow. For three-dimensional alloys,
the exact density of states is considerably smooth-
er'"" and fewer levels in the recursion method
IQRy be needed. AD exRD1ple of the RppllcRtloD
of the recursi. on method to a three-dimensional
simple cubic solid for the special case of diagonal
disorder only has already been given by Mooker-
jee 12

IV. GRAPHICAL METHOD

Another technique for eva, luating the configu. a--
tionally averaged Qreen's function in the augmented
space formalism and one which may give better
physical insight into the nature of this new space

-4 -$ -2 —) 0 t 2
ENERGY

FIG. 1. The density of states calculated in the aug-
mented space formalism by the recursion method with

&0 = 10 is compared with exact results (histogram) for a
one-dimensional electronic alloy with e~= —e~ =2.5,
8'~=0.5, S'~=@g~=0.8, 8'gyp=1. 0, and &g=0.5.
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5 — (o)

nO= 7

method to this problem, let us define a simpler
notation for the set of vectors we use to span the
augmented space Z. In the description of the aug-
mented space given in Sec. II we described the
space in terms of the vectors

! P Sv' Sv' 8 ~ v~ 8'' ~ )t CL1 CL2 ~k

where i is the atomic site index and O, k=0 or 1.
Following the notation of Mookerjee we set

CA
UJ

CA

4 - (b)

2
Ch
Z
UJ0

0
—5 —4 —3 —2 —1

no=9

0 1 2 3 4 5
!if,.) =

! P,. 8 v', 8 vo S v," ' 8 v,"8v,"' ~ ~ ),
(4.1}

! zf )=, $. 8. v' 8 ~ v' ' Sv' 8v"' ~ ~ v' '
jl ( t 0 0 1 0 0

Sv'Sv"' ~ ~ ~ ), etc.

where v, is the vector in Qk orthonormal to vo and
v~ = (', } for the representation of M~ given in Eq.
(2.7}. The index i is referred to as the site index

and f&, ~ ~ ~ as the field indices.
We separate the augmented space Hamiltonian

into a diagonal part and an off-diagonal part,

0
—5 -4 -3 —2 -1

I

0 1 2 3 4 5
3C=K +Q (4.2)

(c)

no=10

Note that this division of X is not equivalent to that
given in Eq. (2.15) since Kd is diagonal in the field
indices as well as the site index. Then according
to Anderson we can write the diagonal element
of the averaged Green's function as

G (z) =(Of! (zI —K) '!Of)

goz g +of, z. Ga +a oz
k&f

0
-5 —4 -3 —2 -1 0 1 2 3 4 5

ENERGY

FIG. 2. The density of states for the same one-dimen-
sional system as is used in Fig. 1 is evaluated in the

augmented space formalism by the recursion method
with (a) '+p=7 (b) +p=9 and (c) +p= 10.

-1

of z z z z.'z.'+of
k/o f

l4kt Of

where

g, =(u! (af, -X')-'!I ),

(4.3}

(4.4)

is the graphical method of Anderson. " This meth-
od was introduced by Anderson to study diffusion
in random lattices and was later used by Bishop
and Mookerjee" to calculate the density of states
of diagonally disordered solids. In this section
we apply this method to an alloy with diagonal and
off-diagonal disorder.

In the graphical method, a diagonal element of
the Green's function is expressed in a perturbation
series in which each term corresponds to a differ-
ent self-avoiding path which starts and ends at a
particular site. In order to calculate the density
of states in the augmented space formalism [Eq.
(3.6)] we need to evaluate the inner product (g,.
8 y, ! (zf, -X)-'!zt, Sy,). .

Before describing the application of the graphical

GOf ~-1 ~ +0 @Of k~0
k +k ~ k, l l l, k

leak Of

-1
~0 Gof, k, l~~o Gof, k~0 ~ ~ ~

k~m m ml l lk
ilk, Of

mal~ k, Of

(4 5)
G'f'k, G k'', etc. are defined by similar expres-
sions.

The graphical method of Anderson eliminates
repeated indices in each term of the perturbation
expansion of Goo by defining renormalized Green's
functions G', '" which are expressed in terms of
summations which do not include the vectors
i, j . . If we draw a line connecting the points in
the sequence in which they appear in each term of
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the expansion we find that the expansion for Gpp can
be expressed as a collection of closed self-avoid-
ing paths in the augmented space. In addition each
renormalized Green's function can be expressed
in terms of a restricted subset of those closed
paths defining G„.

It is best to begin with the simpler problem of a
solid with only diagonal disorder which was treated
by Bishop and Mookerjee. " By setting W= W»
= W» = W» = W», we can reduce the augmented
space Hamiltonian given in Eq. (2.15) to

—I fp

Ofp
11

Ifo

X„.= W(I, III2 ' ~ SI» ' ' ') (4.6)

with X,, unchanged. This is equivalent to the form
of the augmented space Hamiltonian given by Bishop
and Mookerjee in Eq. (8) of Ref. 13. In approxi-
mating the diagonal element of the Green's func-
tion for this simplified Hamiltonian, Bishop and
Mookerjee included all closed self-avoiding loops
except those which connected different spatial
sites through vectors with changes in the field in-
dices. This approximation turned out to be exact-
ly equivalent to the coherent-potential approxima-
tion (CPA) of Soven' and Taylor. '

When considering the full augmented space Ham-
iltonian which includes off-diagonal and diagonal
disorder such an approximation is inadequate. It
is the paths which have different spatial sites con-
nected by way of vectors with changes in the field
indices which account for the particular structural
correlations. Since each off-diagonal element is
a function of the occupancy of the two neighboring
sites, we must at least include loops which have
pairs of neighboring sites connected by way of
vectors with changes in the field indices associated
with that pair of sites. Therefore for an adequate
approximation for the off-diagonal disordered
alloy, we need to include two sets of closed self-
avoiding paths: (i} We need all the paths which do
not allow different spatial sites to be connected
through changes in the field indices. (In fact, the
collection of all paths with only spatial index
changes corresponds to the virtual crystal approx-
imation. '9} (ii} In addition, we need a subset of the
remaining closed self-avoiding loops which allow
for the configuration dependence of nearest-neigh-
bors sites as discussed above.

This concept can best be illustrated by example.
We again choose to examine a one-dimensional
binary alloy with nearest-neighbor hopping as we
did in Sec. III. We label the real-space lattice
structure relative to a central site 0 as ( ~ ~ -2,

1,0, 1, 2 ~ ~ ~ ). Figure 3 shows a graph of ~0f)
and its nearest neighbors in augmented space. The
lines indicate the matrix elements between vectors.
(For diagonal disorder only, there are just 3 near-
est neighbors, Of, lf, lf, instead of 9.) Si-nce there

—Ifo

FIG. 3. The augmented space graph of the nearest
neighbors of vector

~ Of) for the one-dimensional alloy
with both diagonal and off-diagonal disorder.

-2f
2f

—2f 2

2f-I -2

Ofo—

—2fp

-2fo,
-2fo-z

2'o-I -2

2f

2fI

2f,
2f, &

QfI

ofp I

2fo

2foi
2fo2
2foI z

FIG. 4. The augmented space graph of the first and
second nearest neighbors of vector )Of) for the one-
dimensional alloy with both diagonal and off-diagonal
disorder.

are no closed loops connecting different spatial
sites through changes in field indices this graph is
inadequate to use for developing an approximation
for Gpp If we include second nearest neighbors as
is shown in Fig. 4, we get a considerably more
complex structure with many self-avoiding closed
loops starting at Of and returning via a path of the
desired structure. The simplest set of closed
self-avoiding paths satisfying our requirements
for having different spatial sites connected by
changes in field indices is the collection of 12
third-order loops starting and ending at Of. These
include the paths with the following pairs of in-
termediate vectors: (Of» lf), (Of„ lf,), (Of„ lf,),
(Ofo~ lfo, i) (Ofo -lf) (Ofo -f-i) (Ofay lfo} (Ofo-
lfo, ), (lf, If~-), (lfo, lfo, ), (-lf, —lf ~), (-lfo, lfo, ).

For diagonal disorder only, the shortest path in
augmented space satisfying the requirements of
different atomic sites connected through changes
in field indices is eight steps long instead of the three
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steps as it is for the off-diagonal disorder case.
This reduction in the length of the closed loops
which results from including off-diagonal disorder
is a clear indication of the increase in importance
of correlations between different sites in this
system. In a one-dimensional structure all paths
not involving different spatial sites connected by
changes in field indices correspond to hops to a
nearest-neighbor vector and back.

If we write the equations for Gpo for the Set of
paths described above, we find it is a function of
the 9 independent renormalized Green's functions:
Gof Gof Gof Gof Gof Gof~ofo Gpf~ofo gof~if

cfo& 1f& 1fp& 1f~ ~ 1fpz & 1f 0 nfl ~ f1G«" o. In order to evaluate each of these renor-Ifol
malized Green's functions, we write the equations
for the same set of paths as we used for G«except
with those matrix elements set to zero which cor-
respond to the particular set of restrictions on each
renormalized Green's function. This procedure
generates a self-consistent set of equations for
G» which can be easily solved numerically. (A
more detailed description of the approximation is
contained in the Appendix. }

The density of states evaluated by the graphical
method is compared with essentially exact results
for a one-dimensional binary alloy with e„=-e~
=2.5, W ~=0.5, TV~~= W' ~=0.8, 8'~~=1, and c@
=0.1, 0.3, and 0.5 in Figs. 5(a), 5(b), and 5(c),
respectively. The theory predicts a relatively
smooth two-band structure which adequately re-
produces the average properties of the exact den-
sity of states but which does not reproduce the
detailed structure. This result is similar in form
to the CPA results for diagonally disordered sys-
tems. The essential difference lies in the fact
that we are able to reproduce the unequal band-
widths which are associated with off-diagonal
disorder.

The solution we have presented above is for the
simplest set of closed self-avoiding paths which
are adequate to approximate a disordered linear
chain with off-diagonal disorder. In order to im-
prove the approximation, more closed self-avoid-
ing paths must be included. By choosing those
paths which connect vectors associated with par-
ticular groupings of atoms one can include whatev-
er structure is desired in the density of states.

The graphical method is not restricted to the
one-dimensional examples described above. Moo-
kerjee" has used it successfully to solve for the
density of states of a diagonally disordered three-
dimensional diamond lattice. Furthermore, Bishop
and Mookerjee" have shown that the form of the
Green's function generated by the graphical method
is always analytic. As we indicated already in
Sec. III, this is an important property which was
not found in many earlier theories.

0 I

-5 -4 —2 —1 0 1 2 3 4 5

(b)

Cp, = 0.3

V)
LIJ
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FIG. 5. The density of states evaluated by the graphi-
cal method is compared with exact results (histogram)
for one-dimensional electronic alloys with eA=-eg=2. 5,
~'AA=0. 5, +'~= &gA=0.8, @'gg=l.0, and (a) cA=0.1,
(b) ~A=0 3, and (c) c~ -—0.5.

V. CONCLUSION

We have presented a formalism for constructing
a nonrandom representation of a random substitu-
tional alloy with both diagonal and off-diagonal
disorder and have described two separate computa-
tional methods for approximating the Green's func-
tion of this system. The theory is based on Moo-
kerjee's method for averaging functions of indepen-
dent random variables and parallels his develop-
ment for the special case of diagonal disorder only.
We believe the recursion method and the graphical
method are only two of many possible techniques
for approximating the Green's function. " It is
the transformation to augmented space which is the
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essential feature of this theory. Once the augment-
ed space is constructed then it should not be dif-
ficult to devise a satisfactory approximation for
evaluating the configurationally averaged property
of interest. ""

While the theory we have presented includes off-
diagonal as well as diagonal disorder and includes
multisite correlations in a random system, it
cannot be considered a general theory for dis-
ordered solids. In order to be considered a gen-
eral theoxy it would have to be able to include
short-range order; i.e., systems which are de-
scribed in terms of functions of nonindependent
random variables. The theory as presented is
based on the assumption of independence of the
random variables. A generalization of the aug-
mented space formalism not based on independent
random variables which is applicable to disordered
systems with short-range order will be dealt with
in a subsequent paper.
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There ax'e 12 third-order self-avoiding paths
starting and ending at site Of in Fig. 4. The 12
pairs of intermediate sites on these paths are
(of, lf), (of., lf, ), (of„ lf,), (of., lf„),(of„-lf),
{Of -lf ) (of -lf.) (Of. -If.-i) (lf Ifi) (lfo lf. ),
(-lf, -1f,), (-1f„-lf, ,). If we apply Anderson's
perturbation expansion given in Eq. (4.3) and in-
clude the fact that contributions from paths includ-
ing negative sites ax"e equivalent to ones including
positive sites [i.e., the contribution from (Ofo, If)
equals that from (Of», -1f)], then

C (z) = [z —a —ban, 2A'G, —2B'(0, +—G,) —2D'G,

4bG, (BGg —DGg EG~ —ZG~)

—4AG, bGg —4BG,bG~)-',

where a and b are defined in Eq. (2.V),

m(Of, lf) =A =c'„W„„+2c„caW„a+c2aWz,

»»(Of lfo} =B=(&~ca)'"[&~W»+(ca —&~)Wza

»(of lfo.) =D =c~&a(W» —2W~a+ Was)

»{ofo If.) =E = c~&zW»+(c~+ &a)W~a+ &~aWaa

»(of. , lfo, ) = I' =(c~&a)'"[&aW»+ «~ cz)—W~a

—&~Waal

~Qf " ~3 'Glf ~ Gg Ggf{)~ G4 ~]fg & ~5 Ggfol
of P of — Of of + — Of

graf, ufo G COf, ofO C GOf ~&f 6 —gof a j fO
6 lf 0 7 1f] & 8 /fan & 9 3 fog

»(i, j) is the matrix element connecting vectors
i and j. Note that each loop must be counted twice
since you can traverse it in either direction.

In order to evaluate the x'enormalized Green's,
functions we use Eq. {4.5) and the same set of
paths as we used for G~ with the appropriate re-
strictions included. For example, C~~& is evaluated
hy setting the matrix element connecting Of and

Of, to zero (leaving only 4 third-order loops) in
order to eliminate the paths that correspond to
hops from Of, to Of We fin.d

Goo~q
——0, = (z+ a- 2A'G, —2B2G, —2B'G4 —2D G,

4AG, bG, —4BG,bG,)-'. (AS)

Similarly we find for the remaining renormalized
Green's functions,

Gz = (V~+A'G2+ 2A G,bGQ+ 2bG, BGQ) ',
G, =(C +~B~'G~+2AG bG2p+2bG, BGQ) ',
G~=(C~+2a+B'G, +2BG,bG,D+2bG, ZG,B) ',

G~ = (C, +0a2+ DG, + 2B G,bG,D+ 2bG, I'G,D) ',
(A4)

0, = (G,'+ G, ' —2AG, bGQ —G ') ',
G, = (G,'+ G,' —2a —2BG,bGQ —Co~o) ',
08=(6,'+2BG,bGQ+B'G, ) ',
G9 = (4,'+ 2BG3bGj)+D G,)"'.

These equations can be solved in less than 0.1 sec
for each value of z on the ORNL 360/91.

%'e have included the complete set of equations
in order to demonstrate the mathematical pro-
cedure. In general, it is simpler to use the com-
puter to both generate and solve the equations.
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