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Percolation and cluster distribution. I. Cluster multiple labeling technique
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J. Hoshen and R. Kopclman
Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109

(Received 1 June 1976)

A new approach for the determination of the critical percolation concentration, percolation probabilities, and
cluster size distributions is presented for the site percolation problem. The novel "cluster multiple labeling
technique" is described for both two- and three-dimensional crystal structures. Its distinctive feature is the
assignment of alternate labels to sites belonging to the same cluster. These sites are members of a simulated
finite random lattice. An algorithm useful for the determination of the critical percolation concentration of a
finite lattice is also presented. This algorithm is especially useful when applied in conjunction with the cluster
multiple labeling technique. The basic features of this technique are illustrated by applying it to a small planar
square lattice. Numerical results are given for a triangular subcrystal containing up to 9000000 sites. These
results compare favorably with the exact value of the infinite lattice critical percolation concentration.

I. INTRODUCTION

Tjle dynRDllc Rnd stRtlc Rspects of pe1 colRtloD
phenomena are well-known and to a large extent
understood. The concept of percolation has been
closely associated with the permeation of fluid
through porous media. The formation of an in-
finite cluster of identical molecules in a multi-
coIQponeDt cx"ystRl can Rlso be descl"lbed w1thln
the framework of percolation theory. Various ex-
amples of the phenomenon and its applications are
enumerated in the literature. These include among
others: Spontaneous magnetization of dilute ferro-
magnets, ' spreading of diseases in orchards, '
formation of polymer gels, ' eleetrieal conductivity
of amorphous semiconductors and metal-ammonia
solutions, distribution of grain size in photograph-
ic emulsions, and exciton percolation in isotopi-
cally disoredered crystals and photosynthetic
units. It should be noted that this list includes
only a small "random sample"' of a varj. ety of per-
colation processes occurring in nature.

Various mathematical and computational ap-
proaches to the problem, including their scope and
limitations, have been outlined in numerous papers
and review articles. The computational simula-
tion methods, broa. dly termed as Monte Carlo
methods, ' al e Rppl1ed to flnlte sublattlces) where-
as percolation theory, basically, is concerned with
the probability for locating an infinite cluster in an
infinite lattice. The question is how to treat an
infinite cluster within the framework of a finite
lattice. Furthermore, surface effects whj. ch are
encountered 1n R flDlte 1Rtt1ce do Dot pex'tRln to RD

infinite lattice.
In this paper we shall introduce a novel method

suitable for computer simulations and applicable
for a fast and accurate determination of cluster

distributions, critical per colation concentration,
and percolation probabilities. The sueeess of the
method, and its versatility in solving complex per-
colation problem, is based on the application of
alternate labels to sites belonging to the same
cluster. The basic features of the "cluster multi-
ple labeling technique" and its application to the
site percolation problem' are described in Sec. II.
In Sec. II we shall also elaborate on some varia-
tions of the basic method. In Sec. III we discuss a
newpractical algorithm appropriate for the deter-
mination of the critical percolation concentration
for a finite randomly mixed binax"y crystal. A
simple demonstration of the application of the
method is presented in Sec. IV. Also in this sec-
tion, results are given for the critical site perco-
lation concentration, percolation probabilities, and
cluster size distributions of a triangular lattice.
The results for the critical percolation concentra-
tion are compared with the known exact value of
this paraxneter for an infinite triangulax' crystal. "

II. DETERMINATION OF CLUSTER DISTRIBUTIONS

A crystal containing two types {A and B) of ran-
domly distributed molecules 18 considered, whel e
the concentration of type A. is c. The probability
that a randomly selected site is oeeupied by an A,

molecule is e, whereas the probability for a B
molecule is 1 —c. We shall focus our attention on
a finite section of the crystal which we shall de-
note as the subcrystal. It will be our goal to label
subcrystal sites, and to classify and count clusters
of A molecules in the subcrystal.

Each crystal site i, which is occupied by an A.

Inolecule, will be assigned R clus"er 1Rbel Alt,
where n is a symbolic name for the cluster in
question. A cluster e may be assigned several
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cluster labels. These are given as a set of natural
numbers:

cf C. c(I I }I ~ ) ~ ~ e
$ $ S e ~ ~ e 7I t ) ~ ~ e

In this set only one number is regarded as a ProPer
cluster label which we shall designate as m, . This
is the smallest number of the set Eq. (1). The fol-
lowing set of integers provides the connections be-
tween the m, labels:

lN(m", ), N(m,"), . . . , N(m, ), . . . , N(m,'), . . .). (2)

In Eq. (2), N(m,") is the only positive integer mem-
ber of the set, and denotes the number of A. mole-
cules in the cluster. The remaining members of
the set Eq. (2) are negative integers, providing
links between the other m, labels and the proper
label m, . The m," labels are related to the m,
label by the following type of equation set:

m„"=-N(m, ), m, =-N(m„"),

m, =-N(m, ). (2)

These equations are solved from left to right (see
example in Sec. IV). We have learned from our
experience that the hierachy of Eq. (2), in most
cases, consists of one or two levels (one or
two equations only).

The disordered subcrystal is simulated by gen-
erating pseudorandom numbers in the r ange 0 = X
&1. A site i is occupied by an A molecule if X- c;

otherwise it is occupied by a B molecule. Sites are
filled with molecules in a. consecutive order, site
after site, column after column (and layer after
layer in a three-dimensional lattice), until all the
subcrystal sites are occupied. Site labeling and
cluster classification can be performed simultan-
eously with subcrystal creation. Sites occupied by

B molecules are labeled with zeros, whereas sites
occupied by A. molecules are labeled with natural
numbers in accordance with Eq. (1). The assign-
ment of cluster labels to subcrystal sites is illus-
trated in Fig. 1. The first time an A molecule is
encountered during the inspection of the subcrystal
the label counter ~ is set to an initial value ko. The
increment Ak is a small positive integer, whose
value is set in accordance with the computer lan-
guage used. Previously labeled sites, in the neigh-
borhood of a newly created A molecule at a site i,
are searched by routine GLASSIFY which is de-
scribed in Fig. 2. The neighbors of site i are de-
fined as those sites connected by bonds ' to site i.
The number of neighbors is equal to the bond order
of site i. The neighborhood includes all the neigh-
bors of site i. If there are no A. neighbors in the
vicinity of site i, the site is assigned a new label
after 0 is incremented. If there is only one A neighbor
(at site n) site i gets the same label as site n (see
Fig. 1). The unique features of the cluster multiple
labeling technique become apparent when the site i,
which is occupied by an A. molecule, links two or
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t ~ -N(t)
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NO il

SET:
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t + -N(t)
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t -N(t)

1I
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N(S ) ~ -r
n

OUT

FIG. 2. Routine cI.AssIF&. This xoutine determines the

p~ope~ cluster labels for sites containing' molecules.

8„ is neigh'& site n.

more previously labeled cluster fragments into a
single cluster. No site belonging to any of these
cluster fragments is relabeled and once a subcrys-
t:al site is labeled, it retains its original label
throughout the simulation pre~ass. The actual re-
adjustments occur within the N(m, ) sets [see Eq.
(2)], as clusters are newly created, grown, or co-
alesced in the simulation process. The number of
readjusted N(m~) numbers for site i is equal to the
number of coalescing cluster fragments at the site
i (see Fig. I).

In summation, site labeling and cluster size
classification can be accomplished by a single scan
of the subcrystal. The sizes of the clusters are
given by the posltlve N(m ) numbers. Tile addition-
al advantage of the single scan process is that only
a fraction of the columns (or layers) have to re-
side in the computer memory concurrently. The
number of stored columns (or layers) in the com-
puter memory is a function of the site bond
order. " The entire subcrystal need not be
stored on an external input-output device because
after a segment of columns (or layers) have been
processed they are not referred to again by the
program.

There are many possible variations or ver-
sions of the basic method described above. The

choice of a particular version depends on the spec-
ific application and the computer facilities. The
following list describes some of the available op-
tions:

(a) It is possible to select the largest member of
the set Eq. (2) as the proper cluster label, rather
than the smallest member of the set. This could
reduce the range of labels applied to a particular
subcrystal column (or layer) at program execution
time.

(b) For AssEMBLER IBM 360 usage, it is preferable
to set N(m,") to be negative, the remaining mem-
bers of set Eq. (2) to be positive, and nb=4. Clus-
ter labels can be equated with actual core address-
es.

(c) Subcrystal columns (or layers) can be divided
into sections where in each section the same set
of labels can be used. This reduces the number of
labels required for a very large suberystal and
also reduces the computer storage allocation for
the N(m, ) sets. Clusters extending from one sec-
tion to the next section should be assigned new
ProPex cluster labels upon entering the new sec-
tion.

(d) Cyclic boundary conditions for the subcrystal
can be incorporated into the method in a simple
manner. (Additional internal or externR1 storRge
would be required for the boundary columns or
layers).

III. CRITICAL PERCOLATION CONCENTRATION

ALGORITHM

The difficulties in defining the critical percola-
tion concentration of a finite lattice were briefly
discussed in Sec. I. A comprehensive discussion
of this topic was given by Dean. ' We have atternp-
ted to give a practical solution to the problem, by
utilizing the seduced averaged cluster size, which
we define as

wIIere G denotes the total number of A molecules
in the subcrystal, and i„ is the number of clusters
of size n in the subcrystal. We have subtracted
from the summation the contribution of the largest
cluster, whose size is n, „. By plotting I',„versus
the concentration of 4 we find that I,'„exhibits a
very sharp maximum in the region of the critical
percolation concentration. Fisher and Essam"
introduced for an infinite crystal the mean cluster
size density S(c) function, which resembles in
shape ouri.', function. In their approach the con-
tribution of the infinite cluster is excluded from
S(c) for all concentrations above the percolation
concentration. We, on the other hand, exclude the
contribution of the largest cluster from I,'„ for all
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FIG. 3. A binary, substitutionally random square lat-
tice containing 2S &29 sites, where the nominal concen-
tration of the A molecules is 0.57. Here -1 denotes an A
molecule, and 0 denotes a B molecule.

IV. NUMERICAL EXAMPLES

As the cluster multiple labeling technique in-
volves some complex logics, a simple example
may illustrate the important sequence of steps in-
voked by the technique. We shall treat a square
lattice, shown in Fig. 3, containing 29 x29 mo-
lecular lattice sites, where the concentration of
the A species is 0.57. In Fig. 3, a symbol 0 de-
notes a J3 molecule in the disordered lattice,
whereas an A molecule is symbolized by a -1.
Due to fluctuations in the pseudorandom numbers
the actual concentration of A is not exactly 0.57.
The labeling of A sites, which is illustrated in

concentrations, since we cannot specify an "infinite"
cluster (in our subcrystal) that can be mathemat-
ically distinguished from the finite clusters. How-

ever, it should be noted that the difference re-
sulting from the exclusion of the contribution of a
single finite cluster, including the largest, from an
average pertaining to an infinite crystal, is neg-
ligible. It should be small even in the case of a
finite subcrystal &globo the critical percolation
concentration, Thus below this critical point I,'„
would increase with concentration. Above the
critical concentration the largest cluster grows
rapidly, leading to a sharp decline in the value of
I',„. This decline resembles the decline of" S(c)
above the critical percolation concentration, but
is steeper due to our different "normaliza-
tion, "

i..e. , division by G throughout the full con-
centration region (while Fisher and Essam exclude
from G the contribution of the infinite cluster).
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FIG. 4. The A sites of Fig. 3 are labeled with natural
numbers by utilizing the cluster multiple labeling tech-
nique. The bond order for the sites is 4. The increment
&& = 1 and 4Q = 0.

Fig. 4, begins with the leftmost column. The first
molecule in this column is of type A and is labeled
1. The second molecule is also labeled 1. The
next three molecules are of the B type and their
label is 0. These B molecules are followed by a
single A molecule which is not within the bond
range of cluster 1 and hence it is labeled by 2. The
possibility of cluster coalescence does not exist
for the first column, so its labeling is very simple.
The first and the second sites of the second col-
umn contain molecules of type A, and the search of
their neighbor sites in the first column reveals the
label 1, so these two sites are also labeled by 1,
and N(1) is now set to 4. The next two sites are
labeled by 7, as all previously labeled sites in
their neighborhood are labeled with 0. Cluster
fragment linking begins at the next site, since one
neighbor site is labeled by 7 and the other by 2.
The proper cluster label is the smaller of the two
and is set to 2. The linking site is labeled by 2.
The readjustments of the N set Isee Eq. (2)], in-
volving labels 2 and 7 are [see E4. (2)] N(7) = —2
and N(2) = 4. The cluster fragments labeled 2 and
4 also coalesce with 2 during the inspection of the
second column. In the succeeding columns the
cluster fragments labeled 11 and 14 link with 2.
Finally, the total number of A molecules belonging
to the cluster, which is denoted by the pzojer la-
bel 2, can be determined from N(2) by observing
that N(2) =45. The largest cluster in the subcrys-
tal retains the proper label 5. Here N(5) =209. In
order to obtain a better perception of the cluster
structure of the subcr ystal the reader is ref er red
to Fig. 5.
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FIG. 5. A display of the cluster structure for the lat-
tice given in Fig. 3. A Z denotes a site occupied by a
molecule belonging to the largest A cluster. Other A

clusters are represented by I' s. The B molecules are
denoted by blanks.

Figures 6, 7, and 8 of this paper display the re-
sults of an actual test of the technique. These re-
sults are also valuable in providing an insight to
the actual operation of the technique. Figures 6,

20

15

Z
IQ

3 6
IQ LATTICE SITES

FIG. 6. A plot of the computer central-processor-unit
(CPU) time versus the number of sites processed in the

run for a triangular subcrystal. The circles denote data
points for 750 x 750, 1500 & 1500, 2000 & 2000, 2500
& 2500, and 3000 & 3000 subcrystals. The Michigan
computer is an Ahmdal 470.

4 x 10 LATTI
0.9

O

0
0.49 0.50 0.51 0.52

FIG. 7. Iav t. see Eq. (4jl and Pm, „=&~»/G, denoted by
the long-dashed line and the solid line, respectively,
versus c, the concentration, for a triangular crystal con-
taining 2000 & 2000 sites. The short-dashed line denotes
the interpolation range of P„„.

7, and 8 apply to a planar triangular lattice where
each site is surrounded by six nearest neighbors.
The order of the cluster bonds is chosen to be six,
corresponding to the six nearest neighbors. Be-
cause we are concerned with short-ranged bonds

only, only two lattice columns have to be stored
concurrently in the computer core. The basic
method together with options (a), (b), and (c) as
described in Sec. II are utilized. The application
of ASSEMBLER language has been preferred be-
cause the program written in this language ran
about fifteen times faster than an equivalent
FORTRAN program (on the Michigan Ahmdal 470
computer).

The efficiency of the method is clearly demon-
strated in Fig. 6, where the central processor time
required for the subcrystal simulation and cluster
classification is plotted versus the number of sites
in the subcrystal. While the mere 22 sec required
to process a subcrystal containing 9000000 sites
illustrate the extreme efficiency of the method, it
is the almost perfect linearity of the time curve
that represents the most impressive feature of the
technique. It should be noted that the computer
run corresponding to the 9000000 sites utilizes
6002 4-byte words for a temporary storage of sites
and 25000 4-byte words for the storage of the
X(m, ) vector. The 25000 labels m, , which com-
prise an arithmetic series with Ak = 4, have been
used 27 times for this particular run in accordance
with option (c) of Sec. II.

The P,„(c) and the I.,'„(c) curves, which provide
the pertinent information on the percolation prob-
ability and the critical percolation concentration
z*, respectively, are displayed in Fig. 7. The I,'„
curve exhibits a sharp maximum at c = 0.4995,"
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FIG. 8. CPU time (solid line) and the total number of
clusters (dashed line) in the subcrystal, &c, ve~sgs the
concentx'ation c. Tx jangular lattice {bond order sjx).

vex'y close to the exact infinite lattice value of 0.5 for
c* given by Sykes and Essam. " The decline of
the I,', euxve is vexy steep after it achieves its
maximum value. There is a small kink at
p = 0.5005, reflecting stx'Gng fluctuations in the
81zes of cluster8 of lntermedlate size ln the re-
gion of c*. If me assume c=0.4995 to be the eriti-
CR1 pex'eolRtlon concentx'Rtlon g+ fol oux' pRrtlculRr
subcl ystRl then I „can represent the pex'colRtlon
probability P„„for c&c*. As P„„(c*)=0 by def-
inition me ean interpolate P„„in the region c - c
. g~+5e, where 5c denotes a small increment. The

interpolation is represented in Fig. 7 by the short-
dashed line,

In Fig. 8, data are given on the total number of
clusters N, in the suberystal and on the central-
processor-unit (CPU) time required to process
the subcrystal as function of e. As can be observed
fromthe figure there is very little correlation be-
tvreen the tvro eux'ves. The maximum number of
clusters of all sizes and shapes in the suberystal
occurs at a concentration close to c =0.20. The ef-
fox't required to process the suberystal is reflected
in the CPU time curve (solid line). The CPU time
increases slyly in the region 0.1-0.35. This re-
gion is followed by a plateau. A sharp rise in the
CPU time can be obsex'ved at a concentration
somewhat above g*, indicating that the largest
clustex' ln this legion 18 becoQling Mole CGIQplex.

The elustex distribution for a suberystal contain-
ing 4000000 sites is given in Table I. The sig-
nificant feature of this distribution is that there
are many clustexs of intermediate and large size
in the x'egion of c~. For c =0.525, clusters above
1000 are absent eith the exception of the largest
cluster which contains I 874653 A. molecules.

V. DISCUSSION

Several years ago, it was stated by He.mmex'sley
and Handseomb" that a solution to the percolation
px'oblem utilizing the direct simulation approach

ls Gut of the Question, R8 they estimated that it
would be necessary to keep a high-speed computer

TABLE I. (,tuster size distribution fox' a 2000&2000 triangular lattice g)ond order sjx).

Number of clusters within a specified cluster size range

1
to

1000

1001
to

2000

2001
to

6000

6001
to

15000

15 001 50 001 100001 200 001 500 001 1 000 001
to to to to to to

50 000 100000 200 000 500 000 1 000 000 4 000 000

0.40

0.505

50 091
224 364

The first line fox' each concentration & denotes the number of clustex's wlthintlM specified clustex'size x'Rnge, %'hereas
the underlined numbers denote the total number of molecules of type A belonging to the clusters of the specified size
range.
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busy for 50 yr to accomplish the task. Hammers-
ley and Handscomb came to the above conclusion
by estimating the computer time that mould be re-
quired to determine the portion of "wet sites*'
(sites belonging to the largest cluster, in our
terminology) conte, ined in a simulated cube of
8000000 sites. Their estimates were made for the
bond percolation problem, considering approxima-
tely 300 separate computer experiments. "

The results of Sec. IV, as weB as our experience
with a variety of percolation simulations for two-
and three- dimensional lattices" disprove Hammers-
Iey and Handscomb's" strong statement on the
feasibility of the direct simulation approach to the
per colation problem. Given the improvement in

computer technology in xecent years, which would
shorten the orlglnal 50-yr estimate'"" to about a
year, the reduced time span would still be several
orders of magnitude longer than the minutes it
would take to perform a complete concentration
scan on a simulated lattice containing several mil-
lion sites, utilizing the cluster multiple labeling
technique.

As was pointed out in Sec. I. , there have been
available two basically different simulation ap-
proaches to the percolation problem" besides the
one given in this paper. The method presented
hex'e shRl es some common feRtux'es with DeRn s
Monte Carlo method. ' Fur'h:rmore, e, the entitle
cluster dksA"ihution is determined by both methods
while j3roadbent and Hammersley's' Monte Carlo
method is concerned only with the largest cluster.
Dean' proposed to use the maximum slope of the

"modified second moment of cluster distribution"
as a criterion for determining the critical percola-
tion concentx'Rtlon c" of R finite crystal. Hls x'ea-
soning for choosing this criterion is very similar
to our rationale for selecting the peak of I,,', to de-
fine c . The difficulties associated with the ap-
plication of Dean's method are related to the as-
signment of a single label to each cluster. The use
of a single cluster label involves repeated scanning
and relabeling of subcrystal sites, " which may be
impractical for large subcrystals as such a pro-
cess requires both considerable storage facilities
and an extended computer execution time,

Broadbent and Hammersley's' Monte Carlo meth-
od offers some advantages for the calculation of
percolation probabilities above c.". However, in
the vicinity of c-": this method suffers from some
difficulties. " The existence of relatively large
clusters just below c', as can be observed from
Table I, may explain some of the difficulties re-
ported by Frisch et al."for two-dimensional lat-
tices.

In a future paper" we shall present results
on a percolation problem with large bond order
(which was utilized for triplet exclton migration
in molecular crystals" ). In addition, data wi1t be
given fox thl ee-dlmensionaI subcrystals with vRl led
thicknesses and on several cluster distribution func-
tions.
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