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A new approach for the determination of the critical percolation concentration, percolation probabilities, and
cluster size distributions is presented for the site percolation problem. The novel “cluster multiple labeling
technique” is described for both two- and three-dimensional crystal structures. Its distinctive feature is the
assignment of alternate labels to sites belonging to the same cluster. These sites are members of a simulated
finite random lattice. An algorithm useful for the determination of the critical percolation concentration of a
finite lattice is also presented. This algorithm is especially useful when applied in conjunction with the cluster
multiple labeling technique. The basic features of this technique are illustrated by applying it to a small planar
square lattice. Numerical results are given for a triangular subcrystal containing up to 9000000 sites. These
results compare favorably with the exact value of the infinite lattice critical percolation concentration.

I. INTRODUCTION

The dynamic and static aspects of percolation
phenomena are well-known and to a large extent
understood. The concept of percolation has been
closely associated with the permeation of fluid
through porous media. The formation of an in-
finite cluster of identical molecules in a multi-
component crystal can also be described within
the framework of percolation theory. Various ex-
amples of the phenomenon and its applications are
enumerated in the literature. These include among
others: Spontaneous magnetization of dilute ferro-
magnets,' spreading of diseases in orchards,?
formation of polymer gels,® electrical conductivity
of amorphous semiconductors and metal-ammonia
solutions,® distribution of grain size in photograph-
ic emulsions,’ and exciton percolation in isotopi-
cally disoredered crystals and photosynthetic
units.® It should be noted that this list includes
only a small “random sample” of a variety of per-
colation processes occurring in nature.

Various mathematical and computational ap-
proaches to the problem, including their scope and
limitations, have been outlined in numerous papers
and review articles.” The computational simula-
tion methods, broadly termed as Monte Carlo
methods,*® are applied to finite sublattices, where-
as percolation theory, basically, is concerned with
the probability for locating an infinite cluster in an
infinite lattice. The question is how to treat an
infinite cluster within the framework of a finite
lattice. Furthermore, surface effects which are
encountered in a finite lattice do not pertain to an
infinite lattice.

In this paper we shall introduce a novel method
suitable for computer simulations and applicable
for a fast and accurate determination of cluster

distributions, critical percolation concentration,
and percolation probabilities. The success of the
method, and its versatility in solving complex per-
colation problems, is based on the application of
alternate labels to sites belonging to the same
cluster. The basic features of the “cluster multi-
ple labeling technique” and its application to the
site percolation problem® are described in Sec. II.
In Sec. II we shall also elaborate on some varia-
tions of the basic method. In Sec. III we discuss a
new practical algorithm appropriate for the deter-
mination of the critical percolation concentration
for a finite randomly mixed binary crystal. A
simple demonstration of the application of the
method is presented in Sec. IV. Also in this sec-
tion, results are given for the critical site perco-
lation concentration, percolation probabilities, and
cluster size distributions of a triangular lattice.
The results for the critical percolation concentra-
tion are compared with the known exact value of
this parameter for an infinite triangular crystal. '

II. DETERMINATION OF CLUSTER DISTRIBUTIONS

A crystal containing two types (A and B) of ran-
domly distributed molecules is considered, where
the concentration of type A is ¢. The probability
that a randomly selected site is occupied by an A
molecule is ¢, whereas the probability for a 3
molecule is 1 -¢. We shall focus our attention on
a finite section of the crystal which we shall de-
note as the subcrystal. It will be our goal to label
subcrystal sites, and to classify and count clusters
of A molecules in the subcrystal.

Each crystal site 7, which is occupied by an A
molecule, will be assigned a cluster label m¢,
where o is a symbolic name for the cluster in
question. A cluster @ may be assigned several
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In this set only one number is regarded as a proper
cluster label which we shall designate as m{. This
is the smallest number of the set Eq. (1). The fol-

lowing set of integers provides the connections be-

tween the m § labels:

a o o
%nlaniz,'°"nzsa'

{Non§),Nm2),... ,Nm2),... ,Nm¢),...}. (2)

In Eq. (2), N(m?) is the only positive integer mem-
ber of the set, and denotes the number of A mole-
cules in the cluster. The remaining members of
the set Eq. (2) are negative integers, providing
links between the other m{ labels and the proper
label m$. The m{ labels are related to the m$
label by the following type of equation set:

my=-Nm?), mi==Nmy), ..., ...,

my==Nmg). (3)

These equations are solved from left to right (see
example in Sec. IV). We have learned from our
experience that the hierachy of Eq. (3), in most
cases, consists of one or two levels (one or
two equations only).

The disordered subcrystal is simulated by gen-
erating pseudorandom numbers in the range 0< X
<1. A site { is occupied by an A molecule if X<c;

otherwise it is occupied by a B molecule. Sites are
filled with molecules in a consecutive order, site
after site, column after column (and layer after
layer in a three-dimensional lattice), until all the
subcrystal sites are occupied. Site labeling and
cluster classification can be performed simultan-
eously with subcrystal creation. Sites occupied by
B molecules are labeled with zeros, whereas sites
occupied by A molecules are labeled with natural
numbers in accordance with Eq. (1). The assign-
ment of cluster labels to subcrystal sites is illus-
trated in Fig. 1. The first time an A molecule is
encountered during the inspection of the subcrystal
the label counter % is set to an initial value k,. The
increment A% is a small positive integer, whose
value is set in accordance with the computer lan-
guage used. Previously labeled sites, in the neigh-
borhood of a newly created A molecule at a site ¢,
are searched by routine CLASSIFY which is de-
scribed in Fig. 2. The neighbors of site ¢ are de-
fined as those sites connected by bonds'* to site i.
The number of rneighbors is equal to the bond order
of site i. The neighborhood includes all the neigh-
bors of site {. If there are no A neighbors in the
vicinity of site ¢, the site is assigned a new label
after kis incremented. If there isonly one A neighbor
(at site n) site i gets the same label as site n (see
Fig. 1). The unique features of the cluster multiple
labeling technique become apparent when the site ¢,
which is occupied by an A molecule, links two or
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FIG. 2. Routine cLAsSIFY. This routine determines the
proper cluster labels for sites containing A molecules.

S, is neighbor siten.

more previously labeled cluster fragments into a
single cluster. No site belonging to any of these
cluster fragments is relabeled and once a subcrys-
tal siteis labeled, it retains its original label
throughout the simulation prceess. The actual re-
adjustments occur within the Non () sets [see Eq.
(2)], as clusters are newly created, grown, or co-
alesced in the simulation process. The number of
readjusted N(m ) numbers for site i is equal to the
number of coalescing cluster fragments at the site
i (see Fig. 1).

In summation, site labeling and cluster size
classification can be accomplished by a single scan
of the subcrystal. The sizes of the clusters are
given by the positive N(m ) numbers. The addition-
al advantage of the single scan process is that only
a fraction of the columns (or layers) have to re-
side in the computer memory concurrently. The
number of stored columns (or layers) in the com-
puter memory is a function of the site bond
order.'!'! The entire subcrystal need not be
stored on an external input-output device because
after a segment of columns (or layers) have been
processed they are not referred to again by the
program.

There are many possible variations or ver-
sions of the basic method described above. The
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choice of a particular version depends on the spec-
ific application and the computer facilities. The
following list describes some of the available op-
tions:

(a) It is possible to select the largest member of
the set Eq. (2) as the proper cluster label, rather
than the smallest member of the set. This could
reduce the range of labels applied to a particular
subcrystal column (or layer) at program execution
time.

(b) For ASSEMBLER IBM 360 usage, itis preferable
to set N(m ) to be negative, the remaining mem-
bers of set Eq. (2) to be positive, and Ak=4. Clus-
ter labels can be equated with actual core address-
es.

(c) Subcrystal columns (or layers) can be divided
into sections where in each section the same set
of labels can be used. This reduces the number of
labels required for a very large subcrystal and
also reduces the computer storage allocation for
the N(m ') sets. Clusters extending from one sec-
tion to the next section should be assigned new
proper cluster labels upon entering the new sec-
tion.

(d) Cyclic boundary conditions for the subcrystal
can be incorporated into the method in a simple
manner. (Additional internal or external storage
would be required for the boundary columns or
layers).

III. CRITICAL PERCOLATION CONCENTRATION
ALGORITHM

The difficulties in defining the critical percola-
tion concentration of a finite lattice were briefly
discussed in Sec. I. A comprehensive discussion
of this topic was given by Dean.? We have attemp-
ted to give a practical solution to the problem, by
utilizing the veduced averaged cluster size, which
we define as

Nmax
L, =<Z i,,n2>/G—nriax/G, (4)

n=1
where G denotes the total number of A molecules
in the subcrystal, and ¢, is the number of clusters
of size »n in the subcrystal. We have subtracted
from the summation the contribution of the largest
cluster, whose size is n,,,. By plotting I, versus
the concentration of A we find that I, exhibits a
very sharp maximum in the region of the critical
percolation concentration. Fisher and Essam'?
introduced for an infinite crystal the mean cluster
size density S(c) function, which resembles in
shape ourIj, function. In their approach the con-
tribution of the infinite cluster is excluded from
S(c) for all concentrations above the percolation
concentration. We, on the other hand, exclude the
contribution of the largest cluster from I, for all
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1-1-100-1-1-100-10000000-1-100-100-1-1-10 Fig. 4, begins with the leftmost column. The first
1-100-19-1-1000-1-10-10-10-1-1-J-100-1000-1 . . ; .
000000 0<1-1-1-1-10-1-1-1-1-1-1-1 0-1-1-1 0-1-1 0-1 molecule in this column is of type A and is labeled
0-1-1000-10-100-1-1-1 0-1-1-1-1-1 0-1-1-1 0 0-1-1-1 1. Th nd mole ; .
0-1-1-1-1 0 0 0-1-1-1 0 0-1-1 000-1 00 0-1-100-100 The seco lecule is also labeled 1 Th“?
1-100000-1-1-1 0-1-1 0 0-1-1-1-100-10-1 0-1 0-1-1 next three molecules are of the B type and their
0-100-10-10-1-1-1 0-1 0-1-1-1-1-1-1-1-1 0-1 0-1-1-1-1 ;
01-1-1-1-10-11-100100-1-100-0-1-1000-1-1-1 label is 0. These B molecules are followed by a
-1-1-1-1-1 0 0-1-1 0-1-1-1-1-1-1 0 (1) 0-1-1-1 O-é [1) 0-1 } (]\ single A molecule which is not within the bond
1-1-10-1-1-1 0-1 0-1-1-1 00 0-1-1-1-1-1-1-1 0 0-1-1-1- L
01 0-1-10001-100100-100100110-1-1-100 range of cluster 1 and hence it is labeled by 2. The
0-1-1-1-10-10-1-10-1 0-1 0-1-1000000-1-1-1-100 ihili r ;
0111 0-10001-1100000001-11-1 01041041 poss1b111.ty of cluste coa}escencg dogs not ex?st
0-100-1-1000-1-1-1-10-1-10-10-1-10-1-1-10000 for the first column, so its labeling is very simple.
-1 0-1-1-1000-10-100-1-10-10-1-1-10-1-1-100-1 : -

111 01-10-10-100110011001001-1-100-1 The first and the second sites of the second col-
-1-1-1000-1-10-10-1-100-100-100-1-1-100-1-10 umn contain molecules of type A, and the search of
0000000-10-1-1-10-1-10-1-1-1-1 0-1-1-1-1-1 0-1 0 . . . ) .

0-10 0-1-1-1-1-1-1 0-1 0-1-1 0 0-1-1-1 0 0-1-1-1 0-1-1-1 their neighbor sites in the first column reveals the
0-1-1-1 0 0-1 0-1-1-1-1 0 0 0 0-1 0-1-1 0-1 0 0-1-1-1-1 0 h WO Si

01 1011100000111 0110011101304 label 1, spt ese two sites are also labe!ed by 1,
-10-1-10-100-10-1-1-1-1-1 00-1-1 0-1-1-10-1000 0 and N(1) is now set to 4. The next two sites are
1-1-1-1-1-1-1 0-1 0-1-1-1 0 0-1-1-1 0-1-1 0 0 0-1 0-1 0 0 . . .

0 01000000-11-11000-1-1-1010-1-1-1-1-100 labfaled k.)y 7, as all previously labeled sites in
0-1-1-1-1-1-1 0 0-1-1 00 0-1 0 0-1 00-1-1 00-1 0000 their neighborhood are labeled with 0. Cluster

1-1 0-1-1-1 0-1-1 0 0-1-1 0-1-1-1 0-1-1-1-1-1-1-1-1-1-1-1 o . . .

100 0111-1-1-1-1-1-1-1 0 0-1-1-1-10-1 00 0-1-1-1-1 fragment linking begins at the next site, since one
1-100-10-100-1-10-1-1-10-10-1-100-1000-100 neighbor site is labeled by 7 and the other by 2.
00-1000-1-100-1-1-1000-1-1-10-1-1-1 0-10-1 0-1

FIG. 3. A binary, substitutionally random square lat-
tice containing 29 X29 sites, where the nominal concen-
tration of the A molecules is 0.57. Here —1 denotes an A
molecule, and 0 denotes a B molecule.

concentrations, since we cannot specify an “infinite”
cluster (in our subcrystal) that can be mathemat-
ically distinguished from the finite clusters. How-
ever, it should be noted that the difference re-
sulting from the exclusion of the contribution of a
single finite cluster, including the largest, from an
average pertaining to an infinite crystal, is neg-
ligible. It should be small even in the case of a
finite subcrystal delow the critical percolation
concentration. Thus below this critical point I},
would increase with concentration. Above the
critical concentration the largest cluster grows
rapidly, leading to a sharp decline in the value of
’v. This decline resembles the decline of'? S(c¢)
above the critical percolation concentration, but
is steeper due to our different “normaliza-
tion,” i.e., division by G throughout the full con-
centration region (while Fisher and Essam exclude
from G the contribution of the infinite cluster).

IV. NUMERICAL EXAMPLES

As the cluster multiple labeling technique in-
volves some complex logics, a simple example
may illustrate the important sequence of steps in-
voked by the technique. We shall treat a square
lattice, shown in Fig. 3, containing 29 X29 mo-
lecular lattice sites, where the concentration of
the A species is 0.57. In Fig. 3, a symbol O de-
notes a B molecule in the disordered lattice,
whereas an A molecule is symbolized by a —1.
Due to fluctuations in the pseudorandom numbers
the actual concentration of A is not exactly 0.57.
The labeling of A sites, which is illustrated in

The proper cluster label is the smaller of the two
and is set to 2. The linking site is labeled by 2.
The readjustments of the N set [see Eq. (2)], in-
volving labels 2 and 7 are [see Eq. (3)] N(7)=-2
and N(2)=4. The cluster fragments labeled 3 and
4 also coalesce with 2 during the inspection of the
second column. In the succeeding columns the
cluster fragments labeled 11 and 14 link with 2.
Finally, the total number of A molecules belonging
to the cluster, which is denoted by the proper la-
bel 2, can be determined from N(2) by observing
that N(2) =45. The largest cluster in the subcrys-
tal retains the proper label 5. Here N(5)=209. In
order to obtain a better perception of the cluster
structure of the subcrystal the reader is referred
to Fig. 5.

11100181818 0 030 0 0 0 0 0 0 05 50 068 00777777 0
11001301818 0 0033 5 043 051 058 555007300 085
0000000181818 55 040 555 555055507878 085
0720002 0180055505555505%57500787878
072220001818 500550005000%5°50070°0
2200000241818 03434 0 0483131 50 065 0 5 079 0846l
020014021 01818 5 034 044443131 555505 079796161
022222021818 0034 0 0431 00505500 0796161
3222200218 0313131313131 00055507171 07961 0
32202 2201803133 000555 55550 080616161
0201 20001818 0 031 04545 0 052 0 0 55 0746161 0 0
0222202 01818 035 041 04545 0 0 0 0 0 072726161 0 0
0222019000185500000 00061616161 072 061 086
02001512 00018 55 5 0464 056 06161 0616161 0 0 0 O
42 0121212 0 0 018 0 5 0 04646 056 0616161 0616161 0 087
42201212 02 018 0 038 5 0 0535 0 061 0 0616161 0 087
4220002323 018 036 5 0 049 0 059 0 0666661 0 08181 0
000000023 018 55 04242 054545450 06666616161 081 0
0800161616 55 5 05 04242 0 0545450 0 0666161 0826161
0 8850016 0555500005 0545 067 0 061616161 0
08801717 5000 0 039292929 05750 0 0674747 06161 088
5085017 0028 03229232929 0 055 0634747 075 0 0 0 0
555555502 0322929 0 0555 06262 0 0 075 083 0 0
00500000 029292929 0 0 0505050 062 06969634747 0 0
09555550022 0004 005 006247 0 063 00 00
6 6 055502 5 0 037 5 0474747 06047 47 47 47 47 47 47 47 47 47
6 0005555555555 0 04744747 047 0 0 047474747
6600506500550 55%5 04 0474 007 0004 00
0 0100005500555 00 0474747 0O64UB4GBL 076 04 08

FIG. 4. The A sites of Fig. 3 are labeled with natural
numbers by utilizing the cluster multiple labeling tech-

nique.
Ak=1 and k;=0.

The bond order for the sites is 4. The increment
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FIG. 5. A display of the cluster structure for the lat-
tice given in Fig. 3. A Z denotes a site occupied by a
molecule belonging to the largest A cluster. Other A
clusters are represented by I’s. The B molecules are
denoted by blanks.

Figures 6, 7, and 8 of this paper display the re-
sults of an actual test of the technique. These re-
sults are also valuable in providing an insight to
the actual operation of the technique. Figures 6,
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FIG. 6. A plot of the computer central-processor-unit
(CPU) time versus the number of sites processed in the
run for a triangular subcrystal. The circles denote data
points for 750 X 750, 1500 X 1500, 2000 X 2000, 2500
X 2500, and 3000 x 3000 subcrystals. The Michigan
computer is an Ahmdal 470.
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FIG. 7. I [see Eq. (4)] and P,,, =7.,,/G, denoted by
the long-dashed line and the solid line, respectively,
versus ¢, the concentration, for a triangular crystal con-
taining 2000 X 2000 sites. The short-dashed line denotes
the interpolation range of Pjq...

7, and 8 apply to a planar triangular lattice where
each site is surrounded by six nearest neighbors.
The order of the cluster bonds is chosen to be six,
corresponding to the six nearest neighbors. Be-
cause we are concerned with short-ranged bonds
only, only two lattice columns have to be stored
concurrently in the computer core. The basic
method together with options (a), (b), and (c) as
described in Sec. II are utilized. The application
of ASSEMBLER language has been preferred be-
cause the program written in this language ran
about fifteen times faster than an equivalent
FORTRAN program (on the Michigan Ahmdal 470
computer).

The efficiency of the method is clearly demon-
strated in Fig. 6, where the central processor time
required for the subcrystal simulation and cluster
classification is plotted versus the number of sites
in the subcrystal. While the mere 22 sec required
to process a subcrystal containing 9 000000 sites
illustrate the extreme efficiency of the method, it
is the almost perfect linearity of the time curve
that represents the most impressive feature of the
technique. It should be noted that the computer
run corresponding to the 9 000000 sites utilizes
6002 4-byte words for a temporary storage of sites
and 25000 4-byte words for the storage of the
N@m§) vector. The 25000 labels m ', which com-
prise an arithmetic series with Ak=4, have been
used 27 times for this particular run in accordance
with option (c) of Sec. II.

The P, (c) and the I}, (c) curves, which provide
the pertinent information on the percolation prob-
ability and the critical percolation concentration
c*, respectively, are displayed in Fig. 7. The I,
curve exhibits a sharp maximum at ¢ =0.4995,"
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FIG. 8. CPU time (solid line) and the total number of
clusters (dashed line) in the subcrystal, N,, versus the
concentration ¢. Triangular lattice (bond order six).

very close to the exact infinite lattice value of 0.5 for
c* given by Sykes and Essam.'® The decline of
the I}, curve is very steep after it achieves its
maximum value. There is a small kink at

¢ =0.5005, reflecting strong fluctuations in the
sizes of clusters of intermediate size in the re-
gion of c*. If we assume ¢ =0.4995 to be the criti-
cal percolation concentration c* for our particular
subcrystal, then P, can represent the percolation
probability P, for ¢>c*. As Py (c*)=0 by def-
inition we can interpolate P, in the region c*<¢
<c*+0c, where 6c denotes a small increment. The
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interpolation is represented in Fig. 7 by the short-
dashed line.

In Fig. 8, data are given on the total number of
clusters N, in the subcrystal and on the central-
processor-unit (CPU) time required to process
the subcrystal as function of ¢. As can be observed
fromthe figure there is very little correlation be-
tween the two curves. The maximum number of
clusters of all sizes and shapes in the subcrystal
occurs at a concentration close to ¢=0.20. The ef-
fort required to process the subcrystal is reflected
in the CPU time curve (solid line). The CPU time
increases slowly in the region 0.1-0.35. This re-
gion is followed by a plateau. A sharp rise in the
CPU time can be observed at a concentration
somewhat above c*, indicating that the largest
cluster in this region is becoming more complex.

The cluster distribution for a subcrystal contain-
ing 4000000 sites is given in Table I. The sig-
nificant feature of this distribution is that there
are many clusters of intermediate and large size
in the region of ¢*. For ¢=0.525, clusters above
1000 are absent with the exception of the largest
cluster which contains 1874653 A molecules.

V. DISCUSSION

Several years ago, it was stated by Hammersley
and Handscomb'* that a solution to the percolation
problem utilizing the direct simulation approach
“ is out of the question,” as they estimated that it
would be necessary to keep a high-speed computer

TABLE L. Cluster size distribution for a 2000%2000 triangular lattice (bond order six).

Number of clusters within a specified cluster size range?

1 1001 2001 6001 15001 50001 100001 200001 500001 1000001
to to to to to to to to to to
c 1000 2000 6000 15000 50 000 100000 200000 500000 1000000 4000 000
0.40 209072 0 0 (1] 0 0 0 0 0
1599456
0.45 134450 34 0 0 0 0 0 0 0
1758222 41479
0.48 93526 190 117 15 1 0 0 0 0 0
1151159 271436 373307 108058 15643
0.495 76 315 67 62 23 12 4 1 0 0 0
681 904 90443 222831 229447 315708 293580 145683
0.50 71118 51 18 14 7 0 1 0 1 0
567 824 71674 64 531 136815 198 652 138 955 821087
0.505 66 287 32 5 3 2 0 0 0 0 1
470284 43452 13671 26 668 57792 1407500
0.525 50091 0 0 0 0 0 0 0 0 1
224 364 1874 653

2 The first line for each concentration ¢ denotes the number of clusters withinthe specified cluster size range, whereas
the underlined numbers denote the total number of molecules of type A belonging to the clusters of the specified size

range.
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busy for 50 yr to accomplish the task. Hammers-
ley and Handscomb came to the above conclusion
by estimating the computer time that would be re-
quired to determine the portion of “wet sites”
(sites belonging to the largest cluster, in our
terminology) contained in a simulated cube of
8000000 sites. Their estimates were made for the
bond percolation problem, considering approxima-
tely 300 separate computer experiments.'®

The results of Sec. IV, as well as our experience
with a variety of percolation simulations for two-
and three-dimensional lattices'® disprove Hammers-
ley and Handscomb’s'* strong statement on the
feasibility of the direct simulation approach to the
percolation problem. Given the improvement in
computer technology in recent years, which would
shorten the original 50-yr estimate'*' to about a
year, the reduced time span would still be several
orders of magnitude longer than the minutes it
would take to perform a complete concentration
scan on a simulated lattice containing several mil-
lion sites, utilizing the cluster multiple labeling
technique.

As was pointed out in Sec. 1., there have been
available two basically different simulation ap-
proaches to the percolation problem?®? besides the
one given in this paper. The method presented
here shares some common features with Dean’s
Monte Carlo method.® Furthermore, the entire
cluster distribution is determined by both methods
while Broadbent and Hammersley’s® Monte Carlo
method is concerned only with the largest cluster.
Dean® proposed to use the maximum slope of the

“modified second moment of cluster distribution”
as a criterion for determining the critical percola-
tion concentration ¢* of a finite crystal. His rea-
soning for choosing this criterion is very similar
to our rationale for selecting the peak of 7/, to de-
fine ¢*. The difficulties associated with the ap-
plication of Dean’s method are related to the as-
signment of a single label to each cluster. The use
of a single cluster label involves repeated scanning
and relabeling of subcrystal sites,® which may be
impractical for large subcrystals as such a pro-
cess requires both considerable storage facilities
and an extended computer execution time.

Broadbent and Hammersley’s® Monte Carlo meth-
od offers some advantages for the calculation of
percolation probabilities above ¢*. However, in
the vicinity of ¢* this method suffers from some
difficulties.'” The existence of relatively large
clusters just below ¢*, as can be observed from
Table I, may explain some of the difficulties re-
ported by Frisch et al.'” for two-dimensional lat-
tices.

In a future paper'® we shall present results
on a percolation problem with large bond order
(which was utilized for triplet exciton migration
in molecular crystals'®). In addition, data will be
given for three-dimensional subcrystals with varied
thicknesses and on several cluster distribution func-
tions.
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