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Ordering of the commensurate charge-density waves(CDWs) from layer to layer in 1 T-Ta, .„Zr„Se, is observed

by neutron diA'raction to give superlattice Bragg peaks at 2c~/13, 5c*/13, and 6c~/13 for x (0.015. With
larger Zr concentration (x = 0.03), a broad peak(full width at half maximum of 0.1c~) centered at c~/3 is

found. Nearest- and next-nearest-layer interactions are required to explain the implied stacking sequences in

the pure limit. As impurities are added, the random potential dominates the next-nearest-layer interaction and
a disordered CDW stacking structure develops. A simple model of this disorder is presented which accurately
fits the observed scattering profiles.

I. INTRODUCTION

Charge-density waves (CDWs) are now known
to develop in materials having quasi-one-dimen-
sional" (1D) or two-dimensional' (2D) electronic
character. As a result of weak interactions among
the 1D or 2D units (i.e. , chains or layers), the
ground states of these systems either have, or
tend to have, three-dimensional (SD) long-range
order. This order can be viewed as a particular
choice of CDW phase shift from unit to unit. It is
thought that structural imperfection may drastical-
ly upset such ordering by randomly pinning the
CDW phase to vacancies or impurities. For exam-
ple, Sham and Patton4 have recently suggested that
the intrinsic disorder of the Br atoms in potas-
sium cyanoplatinide (KCP) prevents the develop-
ment of long-range order between the chains, and
McMillan' has studied the effects of impurities
using a Landau theory of the CDW transition. In
addition, Sham and Pattone have shown generally
that within the Landau theory, a random impurity
field destroys long-range CDW ordering in less
than four dimensions.

In this paper we report a neutron-diffraction
study of the ordering among CDWs in successive
layers in 1T-Ta, „Zr„Se,with varying impur ity
(i.e. , Zr) concentration. In the clean limit (x=0)
the CDW superlattice has 3D long-range order.

At higher Zr concentrations (0.02&x&0.06), order-
ing is well-described by a disordered stacking
model. To successfully explain the observed
structures we will consider the competition be-
tween the CDW-impurity interaction and the inter-
layer interactions.

In order to establish the role of impurities in the
present system, it is necessary to understand the
pure material. Transmission-electron-diffraction
studies' have revealed an incommensurate CDW
superlattice in 1T-TaSe, at high temperatures,
which becomes commensurate in a discontinuous
transition at T„=473 K. In both phases, there are
three distortion plane waves having wave vectors
q, , q„and q,, related by trigonal symmetry. The
basal plane projection of the superlattice in the
commensurate phase is shown in Fig. 1. The lat-
tice parameter a' = @13a is appropriate for the
"unit cell" of this superlattice, which is the pri-
mary concern of the present paper. Throughout
our discussion we will refer the data to the con-
ventional hexagonal reciprocal lattice. Vectors
a,* and a,* are defined in Fig. 1, and c* is perpen-
dicular to the layer with length 2v/c.

Although 1T-TaSe2 has significant 2D anisotropy,
the superlattice has 3D long-range order. Pre-
vious x-ray powder data" indicated the complexity
of this superstructure. A unit cell derived to fit
the data was incorrect. ' The proper interpretation
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FIG. 1. Basal plane projection of the hexagonal recip-
rocal lattice (open circles) and the ~13a superlattice
(filled circles). The three rvave vectoe vec ors q&, q2, and q3
colnprlsing the CD% are shove}..
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was made, however, after a suggestion by Scruby
et al.' in a single-crystal x-ray study of 1T-TaS,
was confirmed in the present neutron experiments.
Scruby et al. viewed the 3D superstructure as a

a la
stacking sequence in which the atomic positions '

1 lons ln

a ayer are generated by translating the positions
in the preceding layer by a vector T; =n;a, +m a,
where n.ere ni and I, are integers. Since the undis-

i i i

torted lattice (IT structure) is invariant under
slatlon, the operation may be co s d d

a translation (or phase shift) of the CDW and its
concomitant lattice distortion.

II. NEUTRON-DIFFRACTION RESULTS

Elastic-neutron-diffraction (Z, =14 meV) mea-
surements were performed on a triple-axis spec-
trometer {set for zero energy transfer) at the
BrookhRven high-flux beRm I'eRctol'. Pyl olytlc
graphite crystals were used for monochromator,
analyzer, and filter. All data presented here were
taken at 300en a K. Preparation and physical proper-
ties of single-crystal samples of 1T-Ta, „Zr„Se,
are described in a paper' on the effect of doping
on CD%8 in layered compounds. The samples
used vax'ied i.n size from 10 to 100 mg.

Figure 2 shows scans as a function of Q~ (per-
pendicular to layer) with Q~~ =q =—' i*-—' i*is i is
In a sample with low (» =0.015) Zr concentration

FIG. 2. Scancans along ( 13,
—()s Q~) ln samples th Z

concentrations x =0.015 (a) and x =0.03 Line shapes
calculated using the model described in text are shown
normalized to best fit the data. The two different data
sets in (a) are normalized independently.

[Fig. 2(a)], we find narrow peaks at Q = ~2+—'(,„'c,and (2+»)c*. To ~~de~stand the interlayer-
stacking order implied by these data, we must first
consldex' the supex'lRttice Unit cell fox' R 8lngle lR er

n in ig. . The description of the ordering
I'equlx'es thedeflnltlon of 13 trRQslat, ion vectox'8
T, which shift the oI'lgln of the CD% to the vRI'ious
TR atom sites l,n the flgUre. The sites have been
numbered ln R sequence given by successive tran-
slations by the vector T =2a +a, Th,+ R, . ls vector is
defined as T, because it connects Ta site 2 to the
origin {Ta site 1), but it is easily seen that, in
general, it connects Ta sublattice i +1 to sub-
la't'tice t. In Fig. 4(b) we depict a stacking se-
quence in which each successive layer is shift d
by T, with respect to the previous layer. Se-
quences may also be described b ' thy glvlng e tx'Rn-

slation vector fox' each layer relative to the first
layer. In the particular sequence of Fig. 4(b),
the second layer is shifted by T„ the third by T
the fourth b Ty 4, etc. Since each translation vec-
tor is defined only within the first supercell, one

the e ui
must draw extended patterns in xeal spa tRce 0 see

e equivalence of the two descriptions.
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1T —Ta Se& SUPER STRUCTURE

DISORDERED STACKING ORDERED STACKING

FIG. 3. Schematic representation of the CD% super-
structure is superimposed on the hexagonal lattice of
Ta atoms. Se atoms (not shown) are located at positions
+ (3a&, m2, 4c). The inner hexagon is the primitive cell
of the superstructure. The outer hexagon (heavy line)
and the triangles (dashed line) connecting Ta sites 2, 4,
and 10 help to interpret Fig. 4. The translation vectors
T; defined in the text connect the ith Ta site with Ta site
1 at the origin.

To make connection with the data of Fig. 2(a), it
is convenient to characterize the stacking super-
structure of Fig. 4(b) by modifying the three wave
vectors of the single-layeI CD% to include a com-
ponent in the z direction. %'e define neer wave
vectors of the 30 lattice as follows:

qi =4 ('li ' T2~c) s =%i —i3c

q2=% ('O'T2~c)~ =&4+inc

gi = i4 —(i4 ' T2 /& ) s = g3 + i i c

Superlattice peaks occur at momentum transfers
Q =v +q,'. where v is any reciprocal-lattice vector
of the 1T structure. Stacking sequences derived
from the vectors T4 and T» are equivalent to that
shown for T, in Fig. 4(b) by trigonal symmetry.
A macroscopic crystal vrould naturally have do-
mains of the three stacking types. As a result,
three superlattice peaks occur at fractional e*
values given by

7-qi Tp~c = —ii ~
-&4'T4~c =+ n~

in agreement with the data of Fig. 2(a).
A question arises as to why trvo adjacent layers

are always related by vectors T„T„T,O since

FIG. 4. Stacking models describing bvo extremes of
CD& interlayer ordering are shown. In structure (b)
CD%s have long-range order characterized by the rela-
tive translation vector T2. In case (a) a disordered
CD% structure having translations T2, T4, T,o chosen
randomly is shown.

there are thirteen possible translations. It is
easily seen that translations from the set (T„T„
T,o) or the set (T„T„T»)move charge maxima
in one layer far thest from similar maxima in a
neighboring layer. " However, the trigonal sym-
metry of the lattice implies that different interac-
tion energies will characterize each set. On the
basis of the data me conclude that the second set
(T„T„T„)must not be energetically as favorable
as 'the set {T2,T4, Tio).

Further analysis of the data in Fig. 2{a) shows
that the peak widths are slightly greater than the
instrumental resolution, which is 4Q ~ =0.016c*
for all data shorn. Therefore, the correlation
length g~ (perpendicular to the layer) must not be
much longer than 150 A, or about 25 layers
(c =6.27 A). Since pure 1T-TaSe, has long-range
order, "we conclude that the addition of impurities
has decreased the length of the stacking doma. ins.
As expected, the correlation length is further re-
duced in samples with larger Zr concentration.
Materials with x =0.03, 0.05, and 0.07 have been
studied and each exhibits scattering similar to that
shown for the x =0,03 sample in Fig. 2(b). There
is a broad I.orentzian-shaped peak centered about
Q, = (2+-', )c*, with a correlation length $„=13.3 A

{about two layers) for each of these concentrations.
Although the addition of Zr impurities induces a

rapid decrease in (~, the in-layer correlation
length (I~ remains long, producing peaks with
widths (along Qt, ) just larger than instrumental
resolution. Crude estimates of these correla-
tions are: (Ij-140 A for the x =0.015 sample and

EI~ =110 A for the x =0.05 sample. AppaIently
these widths are much less sensitive to impurity
concentrations in this range than those indicative
of 1.nteI'layer dlsorde I'.
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III. CALCULATION OF SCATTERING PROFILES

As demonstrated in Fig. 2, both sets of data are
well fitted by theoretical scattering profiles.
These functions are derived for a model-layered
system in which each layer is assumed to have a
CD% with long-range coherence in the layer. The
system is comprised of stacking sequences which
are characterized by. one translation vector from
the set (T„T„T„).The sequences are separated
by "stacking faults" which occur when the tran-
slation vector changes from one vector in the set
to another. The probability n that a stacking fault
will occur is a variable in the model. The results
of calculations to be described presently are
shown in Fig. 5 for four values of o. For o. =0.033
the average number of layers between faults is
1/n =30, and the profile fits the data of the
x =0.015 sample [Fig. 2(a)] where the peak width
indicated a correlation length of about 25 layers.
Since the instrumental resolution is not negligible,
we expect that the fit would be improved by in-
cluding it in the calculated profiles.

The value a =0.667 (or n = —',) represents com-
plete disorder. The choice of stacking translation
T„T„orT, is made randomly in going from
one layer to the next, as shown schematically in
Fig. 4(a). The scattering profile calculated for
this model fits the data for the sample with x
=0.03 [Fig. 2(b)].

Ne now discuss the details of these calculations.
The CD'-induced displacements for the Ch atom
in the fth unit cell (1T structure) in layer m are
expressed as

u„(l, m) =Q g, u'„(l),

where the operator g; is unity if layer nt is in
"configuration" i, and zero otherwise. The 13
possible "configurations" are given by u~, (l),
i =1, . . . , 13, which are obtained by translating
the CD% displacement pattern centered on the
origin (Ta-atom site 1, Fig. 3}by vectors T, .
Thus the atomic displacements in configuration i
are

u~„(f) =Q e„(q)e"' & ~'+c.c. ,

where the sum includes contributions from the
three waves (q„q„and q, ). Here e, (q) is the
(compiex) displacement eigenvector.

To leading order in displacement, the elastic
scattering of the superlattice (i.e., Qw&) is given

by

xg[e""'T~ r~'G (k)]6(Q+v+q —kz),

I I

2/I 3
I I

5/ I 3 6/13 where

a =0.033

In this expression, b„and r „are the coherent
neutron-scattering length and the position respec-
tively of the I(th atom in the 1T unit cell. All in-
formation on the stacking order is contained in the
disorder correlation function:

(5)

2.0 2. I 2.2 2.3 2.4 2.5 2.6

(4/I3, —I/13, Q1)

I IG. 5. Calculated scattering profiles show the de-
terioration of long-range order which occurs as the
stacking fault probability & is increased.

where ( ) denotes ensemble average. The func-
tion ($, g,„)is the joint probability that layer m

is in configuration i and layer m' is in configura-
tion g. It may be expressed as

($, (, ~ ) = PP,.~(m' —m),

where P = —,', , the probability of a given configura-
tion occurring in any layer, and P, ~( mm) is the
conditional probability that layer m' is in con-
figuration j when layer m is in configuration i.
By translational invariance this probability de-
pends only on the difference M—= m' —m, and we

will write it as P, &(M) henceforth. Since Eq. (6)
ensures that P„( M) =P„(M), we wil. l -take M &0 in
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the following analysis.
It is instructive to first assume that only near-

est-layer interactions are important in deter-
mining the interlayer ordering. In this case we

may write P„(M) as the matrix product

a»)=xp(r F[»ta)"+»'[a)"j)
M&p

where I is the unit matrix, N is the number of
layers in the sample, and

P(k) =c"P(I). (10)

gl «J2 ~ Jg « ~ «» «dg~ j.

x P, , (1}~ .P, , (1)

Carrying ou't 'the summation tn Eg. (9) we find

G(&) =IvPf[I —P(~)1-"[I-P'(I )]-'- I).
=[P(I) l...

where P, &(1) is the probability of finding layer
~n +1 in configuration j if layer m is in configura-
tion i. The elements of P„(1)are .determined by
the nature and symmetry of the interlayer forces.
Ne assume that only relative translations T, T4,
T» are needed to explain the data in the impurity
range of interest. Therefore, only three nonzero
elements occur in any row of P„(1), Since the
translations associated with these elements are
equivalent by trigonal symmetry, and conserva-
tion of px'obability requires

Q P;;(1)=1,

every finite element in the matrix must be —,'.
The full matrix is given by

1 «I"

f$5 ~0 lf Tg k+1 T2$ T4% ox Tlo i

0~ otherwise .

ThUs if layer ~ ls ln conf lgul"Rtlon s, 1RyeI'

» +1 is equally likely to be a configuration given
by translating the pattern in layer» by T~, T~, or
T10~ l.e.„conflgUI Rtlons s +1

y
1 +3y OI' 't + 9

(modulo 12).
To calculate the disorder correlation function,

we combine Eqs. (5), (6), and (7) to obtain the
matrix equation.

gee have used this form of G(~) ln a computer
caiculation of S(Q) [Eq. (&)]. To c»ry o« this
calculation we have had to assume xeasonable
values" for the displacement eigenvector compo-
nents. However, the calculated profile is insensi-
tive to this choice, except for normalization. Re-
markably, the calculated profile [solid line in Fig.
2(b)] fits the data in the crystals with Zr concen-
trations 0.03 ~ x ~ 0.07. The profile is broad, indi-
cating the lack of long-range interlayer order.
Since we have described a system with only neax'-
est-1Ryel intel"RctloQs we dl"Rw two conclusions:
(i) the development of long-range order must re-
quire longer-range interactions, between next-
nearest layers for example; (ii) impurities can
suppress these longer-x'ange fox'ces.

Physically it is clear that R system with only
nearest-layer interactions will not have long-range
order. Since there are three possible configura-
tions for each layer which minimize its interac-
tion energy with the preceding layer, the stacking
ls chR1 Rc'terlzed by R 1RndoIIl choice of tl RnslRtlon
vectol" T2, T~, ox' T&o ln going from lRyel to 13yeI'.
For systems with longer-range correlations (i.e.,
the x =0.015 sample) we reformulate the problem
to include the effects of next-nearest layer inter-
actions. First we introduce the conditional proba-
bility P„,(1, 2) that laye. r m+2 is in configuration
& given that layers m and ~+1 are in configura-
tions & and ) xespectively. Then the expression
for P;, (M) analogous to Eq. (7) is

P„.(M) =
2l «22 «Jg « ~ «« llg~1

P&& (l)P& & (I& 2)Py g g (11 2)' ' 'P j j & (11 2)

The requirements of trigonal symmetry and con-
sel"vRtlon of probRblllty, togethex' with the stlpllla-
tion that neighboring layers be related by one of the
relative translation T„T~, or T,o, lead to the
conclusion that all the elements of P„„(1,2) may.
be expressed in terms of a single variable e, the
"stacking-fault probability. " The elements of
P„,(1, 2) are assigned a,s follows:

(I) If the translation relating configurations J
a.nd k (T~ &„) is not the same as that relating f

and 2 (T„;+,), but both vectors are from the set
(T„T„T„),a stacking fault has occurred with
probability P„.«(I, 2) = ~ n.

(ii) If T, ,+, =T, ;+, =T„T„orT„, then a fault
has not occurred and P„;(1,2) =1 —n.

(iii) Otherwise P„,(1,2) =0.
To calculate the scattering profile S(Q} as a

function of e, we must evaluate the disorder-
correlation function. The summation of Etl. (12}
may be cRx'I'led Gut to give
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P, , (M) = g f „(1)g (R" ')„, ,
X.

where the matrix R is defined by

with

pP fJ

g =13(i —1) +j„v=13(&—1) +j.

IV. CONCLUSIONS

A consistent picture emerges to describe the
effects of Zr impurities. The CDW superlattice
can be characterized in terms of three domains,
one for each relative stacking translation T„T4,
or T„. In the pure system these domains are of
macroscopic size. As Zr is added, the number
of stacking faults increases and the domain
sizes are reduced. When x =0.015, ordered se-
quences are, on average, at least 25 layers long.
For concentrations 0.03 &x &0.07, the correlation
length is independent of concentration at a value
of about two layers.

We have shown that both nearest- and next-

Then the correlation function may be evaluated
analytically, as we have done in Eqs. (9)-(11)for
the case of nearest-layer interactions. Computer
calculations of S(Q) have been made for different
values of n, as shown in Fig. 5. In the limit of
small e, the scattering is that expected for do-
mains of the three stacking translations T„T4,
Typ each having long- range order . At the other
limit, n =3, the profile is characteristic of a
system with only nearest-layer interactions, since
the probability of a given configuration is inde-
pendent of the configuration of the next-nearest
layer

nearest-layer interactions are important in deter-
mining the interlayer order, The next-nearest-
layer interaction is weak and rapidly overwhelmed
by the addition of Zr impurities. The nearest layer
interaction, which appears to be predominantly a
Coulomb interaction between CDWs, is much
stronger and continues to control the interlayer
order in systems up to x =0.07. Presumably much
larger impurity concentrations would be necessary
to override the nearest-layer coupling forces in
order to further reduce the correlation length.

Although the interlayer correlations decrease
rapidly with increasing impurity concentration,
the CDW in the layer maintains reasonably long-
range coherence. At higher impurity concentra-
tions, the CDW structure should be driven in gen-
eral from a commensurate to an incommensurate
one, and finally with enough disorder the CDW
instability might be suppressed completely. " In
the present study, samples having an impurity
concentration of x =0.05 exhibit a coherent, com-
mensurate CDW covering an area in the layer
(P~ =1.2&&10' A') containing some 50 impurities.
Thus, we can conclude that the locking energy,
responsible for the commensurability of the super-
structure in a single layer, is greater than the
CDW-impurity interaction. In previous studies,
Zr impurity concentrations of x =0.08 were needed
to suppress the commensurate structure at 300 K.
We hope to extend the present studies to measure
the temperature dependence of both in-layer and
interlayer impurity- induced disorder.
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