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R. V. Kasowski
Central Research and Development Department, E I. du Pont de 1Vemours and Company, Wilmington, Delaware 19898

(Received 1 March 1976)

The linear combination of muffin-tin orbitals method has been used to calculate the electronic properties of
thin films of transition metals. A detailed discussion of these calculations is presented. We have also applied
the method to calculate the energy levels of a single N, molecule. Finally, we show that the muffin-tin orbital
basis set can be augmented with either Slater-type or Gaussian-type orbitals to facilitate more accurate
molecular calculations.

I. INTRODUCTION

Recently, much attention has been devoted to the
related problems of calculating the electronic
states of transition-metal surfaces and the energy
of atoms and molecules adsorbed onto these sur-
faces. An accurate description of electronic ener-
gy states would be valuable in unraveling some of
the mystery surrounding the role of transition
metals in catalysis. However, such calculations
are difficult to perform because lattice periodicity,
which is so helpful in three dimensions, is lost
normal to the surface. New theoretical approaches
must be devised to treat the semi-infinite solid.

One approach is to perform ab initzo calculations
of the electronic states of a semi-infinite film of
finite thickness. ' ' Such a model has great flexi-
bility in that clean surfaces, reconstructed sur-
faces, and surfaces with chemisorbed atoms or
molecules can be studied.

However, a serious complication in studying
thin films is that the unit cell extends across the
entire thickness of the film and thus contains at
least as many atoms as there are layers. A par-
ticular surface structure such as c(2 x 2) will
double the number of atoms in the substrate part
of the film's unit cell. The linear combination of
muffin-tin orbitals (LCMTO) method"' will be
shown to be ideal for thin-film studies since large
unit cells can be treated easily and the muffin-tin
orbitals (MTO) can be chosen to satisfy proper
boundary conditions.

The first ab initio thin-film calculations were
performed by Alldredge and Kleinman for Li(001).'
Their method utilized the pseudopotential approach
and is limited to sp bonded systems not transition
metals. Kleinman and Caruthers' have recently
supplemented their plane-wave basis set with
localized numerical functions so that it is appli-
cable to d-band materials. Their results for Fe
agree qualitatively with those of Kasowski' for W
and Mo whose band structure is similar to that of

Fe. They have not yet demonstrated that their
revised method can be used to calculate the effects
of surface relaxation' and atomic chemisorption'
as Kasowski has already demonstrated with the
LCMTO method. The only other thin-film method
is that of Schluter and co-workers. ' It is similar
to the Alldredge and Kleinman' approach except
that they use a basis set of traveling plane waves
instead of standing waves; they impose periodic
boundary conditions in the direction normal to the
film surface, which is equivalent to the construc-
tion of a hypothetical solid composed of a periodic
array of thin films, each separated by an open
interval of several interatomic distances from the
neighboring film.

In Sec. II, we describe the LCMTO method as
applied to bulk crystals and discuss the modifica-
tions that are necessary to apply the technique to
thin films. We also show how the basis set can be
improved considerably by using the hypothetical
solid of thin films devised by Cohen (see Ref. 3).
In Sec. III, a prescription for constructing poten-
tials for films is described. In Sec. IV we com-
pare the results of localized basis MTO functions
as compared to long-range MTO basis functions.
We also show how the calculated surface proper-
ties are effected by the film thickness.

In Sec. V, we treat the nitrogen molecule, the
purpose of which is to demonstrate that the LCMTO
method is applicable to covalently bonded mole-
cules as well. Nitrogen was selected because the
ordering of the energy levels is well character-
ized experimentally and because several other
theoretical calculations that have been carried out
may be used to compare with the method presented
here.

II. LCMTO THEORY

Before describing the thin-film LCMTO forrnal-
ism, we will briefly review the general theory of
the LC MTO method. "' The potential, formed by
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of finding the electron within site AWS. This will
be very valuable especially for thin films where
little ambiguity exists about how to divide the unit
cell into AWS cells.

These considerations concerning choice of basis
functions are directly applicable to the study of
thin films. LCMTO equations for 3 single thin
film are the same as in the bulk except that (i) the
Bloch functions are two dimensional, and (ii) we
must restrict K' to being negative. The K'&0
MTO's are not normalizable in the free-space
region for a single thin film. This does not pre-
sent a problem for the study of most transition
metals since from Fig. 1 the eigenvalues of Cu
are well represented by MTO's that have z'&0.
Similar results are obtained for Ni. However,
the study of Si would require rc'& 0 MTO's.

The restriction on &' can be overcome easily by
treating a hypothetical solid consisting of thin
films each separated by several angstroms from
a neighboring film. Equation (2) is then applicable
since v'&0 MTO's are normalizable for this geom-
etry. One thus regains the full power and simpli-
city of the LCMTO approach. In Sec. IV we report
successful application of this idea to Ni.

III. POTENTIAL

Potentials are constructed by overlapping atomic
charge densities' and taking the cube root of the
sum to approximate exchange and correlation.
This potential has proved extremely successful
in describing the electronic properties of the cubic
and hexagonal close-packed transition metals. "
We feel it should also be successful in describing
the surface, a state intermediate between bulk
and atom.

The first step is to expand all of space into non-
overlapping atomic Wigner-Seitz (AWS) cells such
that the distance to the furthest corner of the cell
is less than the nearest-neighbor distance. 4 For
a thin film, we divide the region near the surface
into AWS cells by choosing empty lattice sites as
cell centers.

The potential is then expanded in spherical har-
monics [ZV~'(r)Y~(r)] within the AWS. We use
L = lm throughout this section. In order to reduce
all integrals in Eq. (2) to radial integrals times
a Clebsch-Gordan coefficient, the AWS potential
ZiY+Vvzs is again expanded in spherical harmonies
[ZVr (r) Yz(r)] A particular V~(r) =Z~. f~, ~V~8(r),
where fz.~ = J vsY~ Y~. dilvs. The expansion in
angular momentum is usually truncated at l= 8
and l'= 8. The potentials V~, (r) and coefficient
fz, ~(r) we obtained by Monte-Carlo sampling tech-
niques.

The potential is formed by overlapping atomic

charge density tails and Coulomb contributions
of all neighbors out to convergence. Bulk poten-
tials are constructed from a full set of nearest
neighbors. A potential at the surface is different
only in that one has fewer nearest neighbors over
which to sum charge density and Coulomb tails.
Thus all symmetrically inequivalent atoms in the
film have different potentials.

It is also appropriate to define an abrupt termin-
ation potential. It is formed by placing a bulk
potential at all AWS sites in the film including the
surface layer. The potential is zero outside this
surface layer and forms a corrugated surface.
In Sec. IV we will show what magnitude of error
results from such a drastic cutoff. Our abrupt
termination potential differs from that used in
low-energy-electron diffraction (LEED) calcula-
tions" which is planar and often called a Cam-
bridge potential.

IV. SURFACE CALCULATIONS

A thin film or slab is a simple model designed
specifically for the calculation of surface proper-
ties of solids. It is approximate in that the film
is finite in the direction perpendicular to the film,
whereas a real crystalline material can be thou-
sands of layers thick. The value of this model is
that ab initio calculations can be easily performed
for a variety of surface conditions: clean, recon-
structed, relaxed, chemisorption, etc. In this
section we investigate several aspects of this
thin-film model that greatly influence the accuracy
of the results and guide its applicability. We also
will indicate how to improve the basis set used
previously' so that it is applicable to a wide range
of materials.

First, the accuracy of surface properties cal-
culated with the thin-film approach depends
strongly on the number of layers. To illustrate
this point, the eigenvalues at k= I'(0, 0) are plot-
ted in Fig. 2 for Cu films one-, two-, three-, and
five-layers thick, respectively. Abrupt termina-
tion potentials constructed with the bulk Cu Cho-
dorow potential" were used for these four films
as we wish to introduce the effects of surface po-
tentials separately.

For a thin film, there is no Bloch vector k.
perpendicular to the film. Despite this the levels
do resemble closely bulk bands if one arbitrarily
plots the film eigenvalues at equal intervals in the
z direction as is done in Fig. 2 for I'(0, 0). A
one-layer thick film has only 6 eigenvalues for
each k= (k„,k, ) corresponding to the s and d val-
ence states. A two-layer film has 12 states at
each k as there are now two Cu atoms per unit cell.
An n-layer film has 6n eigenvalues for each k:



14 APPLICATION OF THE LINEAR COMBINATION OF. . 3401

i.e. , an n-layer film is plotted in Fig. 2 as 6
bands with n points per band. For an infinitely
thick film, the 6 bands of n discrete states would
become bulk bands where k, is a real quantum
number. For example, at I"(0,0), the eigenvalues
for a very thick film would become the bulk bands
from I (0, 0, 0) to X(0,0, I) and contain approxi-
mately 10"discrete states.

In a previous publication' we showed in detail
that the eigenvalues for a five-layer Cu film are
within 0.02 Ry of the corresponding bulk band
states. Thus the one- and two-layer eigenvalues
in Fig. 2 do not reproduce the bulk band shape
whereas a five-layer film does. Another limitation
of one-, two-, and three-layer films is that the
two surfaces of the film are too close together for
surface states to develop. Surface states are
labeled only for the five-layer film. The proba-
bility distribution from layer to layer for the
lower-energy surface state in Fig. 2 is 0.36, 0.12,
0.04, 0.12, and 0.36. The distribution of the
higher-energy state is 0.30, 0.15, 0.10, 0.15, and
0.30.

One limitation of the five-layer film is that there
is no band edge with which to directly determine
the splitting of the surface state. Within LCMTO,
this deficiency is overcome by performing a bulk
calculation with the identical basis set. One then
finds that the surface state (E= —0.87 Ry) in Cu
at I'(0, 0) is split from the bulk band edge by
-0.007 Ry. However, such an estimate of the

splitting can be in error depending on how strongly
the surface states associated with the film faces
overlap.

Next we wish to investigate the dependence of the
thin-film results on the potential at the surface.
A 20-layer film is chosen so that surface-state
energies relative to band edge can be determined
directly and so that the surface states on different
surfaces do not overlap. We have chosen a Ni
film here although similar results are obtained
for Cu. The calculation is carried out at I'(0, 0)
where symmetry reduces the Hamiltonian matrix
to a manageable size.

Two different surface potentials were used. In
the first case a bulk potential is placed on 18
layers and a surface potential (as defined in Sec.
III) is placed on the two layers at one surface. The
surface potentials on this face differ from bulk
potentials and each other in that they are construc-
ted with different number of nearest neighbors.
The other surface is abruptly terminated. The
A, (s,z,) symmetry states (SS) are plotted in Fig.
3 (states connected by solid line). SS at —0.873 Ry
is the surface state localized at the surface poten-
tial face whereas CSS at —0.892 Ry refers to the
state at the Cambridge-type abrupt termination
potential face. This 0.02-Ry difference between
SS and CSS is directly attributable to how the sur-
face is terminated. The band edge is at —0.900 Ry.
LEED" type calculations with a planar abrupt
termination give a surface state -0.01 Ry above

-0.5 -0.9

SS

~ RSS

CSS

2 ~
0 7&t 5I! -1.0

2'+

—0.9&

FIG. 2. Eigenvalues at 7'(0, 0) for a Cu thin film one-,
two-, three-, and five-layers thick, respectively.
Solid line is drawn through states of a given symmetry
type (SS).

FIG. 3. Eigenstates (4& symmetry) at 7(0, 0) for (a)
20-layer film with two layers having surface potentials
(see text) and (b) 20-layer film with one layer relaxed
so that bond length is reduced by 3.2%. Surface state
associated with corrugated Cambridge potential surface
is CSS. Surface state with relaxed surface is RSS.
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the band edge which agrees closely with CSS which
is 0.008 Ry above the band edge.

In the second calculation only one surface was
allowed to relax inwards such that the bond length
between atoms in the top two layers is reduced by
3.22%. A new surface potential is calculated for
the layers on this face. The other surface remains
abruptly terminated with a bulk potential. The
20 & symmetry states (connected by dashes) are
plotted in Fig. 3. CSS still occurs at —0.892 Ry,
but SS has shifted by 0.011 Ry to —0.884 Ry and is
labeled RSS for relaxed surface state. Thus for
Ni, the surface states are very sensitive to the
particular choice of surface potential. In a recent
paper we have shown that the choice of surface
potential is even more important in W and Mo. '

In the previously discussed calculations, the
basis set consisted of nine sPd decaying MTO's
with w'= —0.25 Ry. However, with LCMTO,
oscillating MTO's with K'&0 can be used if we
choose the hypothetical solid composed of thin
films separated by several empty layers. We will
make a comparison of the two approaches for a
five-layer Ni film with a Cambridge-type abrupt
termination potential. For the hypothetical solid
the films will be separated by three empty layers
thus giving a eight-layer unit cell.

In Fig. 4, the eigenvalue at I'(0, 0) of a five-
layer film are connected by dashes. We choose
K'= —0.25 Ry to define the MTO basis set. The
solid lines represent the corresponding bulk ener-
gy bands from I'(0, 0, 0) to X(0,0, 1). For a very
thick film the two sets of states would become
identical. However, even for five layers the en-
ergy difference between the bulk states and film
states is less than 0.03 Ry. Also, the surface
state at the top of the lower &, symmetry band is
at —0.892 Ry in Fig. 3 and LEED calculations. "

In Fig. 5 we plot the eigenvalues at v'= (0, 0, 0)
for a hypothetical solid of five-layer Ni films
each separated by three empty layers from neigh-
boring films. The basis set consisted of extended
or oscillating MTO's with w'=0. 5 Ry. We see that
the agreement between thin-film and bulk states
is much poorer than that for the localized basis
set in Fig. 4. The surface state now occurs at
—0.84 Ry, which is an error of 0.05 Ry. Thus a
thicker film is required for a plane-wave type
MTO basis set.

A basis set consisting of only nine sjd MTO's
(z'& 0) as used in our thin-film calculations con-
tains limited variational freedom. Such a basis
set appears adequate for materials such as Ni and
Cu because they are close-packed metals and sur-
face effects are small. However, in materials
such as W and Mo, surface effects cause large
changes in energy (-0.1 Ry). It would appear

necessary to allow for greater variational free-
dom in the basis set. The above results for a
K & 0 MTO basis set indicate that it will be possi-
ble to mix MTO's with I(,'&0 and K'&0 as is done
successfully in bulk solids. " Such a mixed basis
set has recently been used to calculate electronic
spectra in excellent agreement with experiment
for CO molecules on Ni." The enlarged basis set
was necessary to represent the molecular levels.
We believe this mixed basis set will be applicable
to films of covalent materials such as Si and MoS, .

One of the advantages of the thin-film approach
is that chemisorption can be treated rather easily.
However, the requirements of film thickness are
different than for studying the surface states of a
clean surface. In Fig. 6, we compare the effect of
chemisorption of electronegative O and electro-
positive Na on a five-layer Ni(001) film at Tc

= I'(0, 0). The surface structure is c(l && 1) with
the atoms chemisorbed in the fourfold hollow sites.
The 0 on Ni calculations were carried out for

—0.7&

a -0.9~

LLI

FIG. 4. Comparison of eigenstates at 7(0, 0) of a five-
layer Ni film with those of corresponding bulk state
(solid line). The same MTO parameters are used in
both calculations. Dashed lines connect thin-film states
of a given symmetry.
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V. MOLECULAR CALCULATIONS

The LCMTO formalism is also applicable to
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performed for a N, molecule. The potential was
formed by overlapping atomic charge densities'
and using Slater exchange.

The ionization potential (IP) of a molecular level
is equal to the difference in total energy of the
initial state and the ion. Such calculations are ex-
pensive to perform. Slater and Wood" have de-
vised the transition-state approximation whereby
the IP is equal to the one-electron energy of the
molecular orbital with & an electron removed.
This procedure is economical and accurate for use
with free-electron exchange potentials and a = 0.7.

These transition-state calculations'"" have
shown that the difference between the one-electron
eigenvalues and the corresponding IP's is nearly
a constant. Also, the IP calculated for a potential
with n = 0.7 is approximately equal to the eigen-
values calculated with an n = 1.0 potential. Thus
we will simply approximate the IP's of N, by their
one-electron eigenvalues since n = 1.0 is used.
In this calculation, we are primarily concerned
with obtaining the correct ordering and interlevel
spacing.

There are numerous calculations with which to
compare. In Fig. 7 we compare our calculated
ionization potential energies with those of experi-
ment, "Hartree-Fock, "the scattered wave (SW)
method, "and the discrete variational method"
(DVM). Our ionization potentials are taken as the
one-electron energies with no relaxation or other
final-states effects taken into account. The
LCMTO basis set consisted of only 4 MTO's per

3cr
e

N atom. An incorrect spacing of the 3o~ and 1g„
resulted as seen in Fig. 6. The Hartree-Fock
calculation obtains an incorrect ordering of these
two levels (Fig. 6) although a correct ordering is
obtained if configuration interaction is included. "

The major deficiency of the LCMTO method for
molecules is that the MTO's decay too rapidly,
e '"/r. This deficiency can be overcome by mixing
a few Gaussian-type orbitals (GTO) or Slater-type
orbitals with the MTO basis set since these orbi-
tals have appropriate long-range tails. The secu-
lar equation now reads

&&oro+ &MTo I

V'+ V(+) E
l

' MTo+ &oro& = 0.

Implementation requires that GTO's be expanded
in terms of spherical harmonics and radial numer-
ical functions about one center. Such a calculation
was performed for N, with a basis set of 4 MTQ's
and 3 GTO's per atom. The results in Fig. 7(f)
compare favorably with experiment. We note that
the SW method [Fig. 7(c)] overestimates the 3o
—1m„separation by —0.20 By. The DVM method
overestimated the 3o~ —171„splitting by -0.1 By.

An alternative to mixing GTO's and MTO's could
be to form a hypothetical solid of molecules. One
could then mix long-range oscillating MTO's with
the short-range decaying functions. This approach
has been used to study chemisorption of CO mole-
cules on a Ni surface. "
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APPENDIX A

In this section, Eq. (2) is derived using the defi-
nition of the muffin-tin orbital )fz(E, , tc„y,) in Sec.
II. In previous work, ' we found that continuity of
the logarithmic derivative at the muffin-tin sphere
(5) requires

2cr
U

1~U - 2cr-
U

2cr
U U

2cr
U

s, (E, fC) = S'[J,(x)(pI(E) —JI (v) y, (E)]„,

y, (E)(VMT —E+ tc2)J, (a)r2dr'
-1 5ii

2cr
U

and

c,(E, v) = —S'[K,(E)y', (E) -KI(x)y, (E)]„„

(a) (b) (c) (d) (e) (f)

FIG. 7. Ionization potentials of a N2 molecule. (a)
experimental ionization potentials, ' (b) Hartree-
Fock, 5 (c) SW method, 6 (d) DVM, (e) LCMTO using
4 MTO's, (f) mixed MTO's plus GTO's.

where the prime indicates the radial derivative.
Contrary to previous work, ' we will normalize pf
so that s, (E, t&) = I always.

A multicentered MTO Block function expanded
about site Q is formed for parameters Ky and E,
with r, = r —q, .
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p,
"

~ (r, ) = ~ g exp(ik' Rn}X~ (r„v, , E,)

.1

Jy +qyLy qgeQ L3 @ QL3, qj L~
3

to 8 —E yields the general matrix elements (let
l =q, L):

—(P," ~ (E„~„r,) ~H E-~ P,
'

~ (E„~„r,))

BQL L is the Korringa-Kohn-Rostoker matrix. 4
QL3~q&L I

Substitution of Eq. (3) yields

B =C 5QL3eqyLy qyLg ql, LlL3

+[4sC1LL, ii K ~

LN 1 3

+ Q(q, ~E,&...+&V E~J,)—T„+H.o.

+ Q (l '5o, z)e Ez, "(qg Q).
R 3 4

3 VMT+ &V+ K'2 —E J4 T42.

Application of the linear variational principle &V is the non-muffin-tin part of the potential.
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