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We consider energy flow in a semi-infinite spatially dispersive absorbing dielectric bounded by vacuum, on

which light is incident from the vacuum, with the direction of propagation normal to the surface. While the
total energy flux in the vacuum is given by its electromagnetic Poynting vector, the total energy flux in the

crystal is given by the sum of the electromagnetic Poynting vector and a mechanical Poynting vector, which

arises from the energy transported by the excitations in the medium. We consider two models, the first of
which is a semi-infinite medium in the dielectric approximation, which consists of assuming that the nonlocal
dielectric function of the semi-infinite crystal is that of the infinitely extended medium, so that the surface of
the medium enters the theory only through the restriction of the coordinates normal to the surface to the half-

space occupied by the medium. We show that this model fails to conserve energy in the sense that the surface

acts as a source of energy, because for this model the mechanical Poynting vector is positive on the surface,
while the electromagnetic Poynting vector is continuous across the surface. The second model considered

includes the effects of a surface in a phenomenological way in the dielectric function. We find that for this

model energy is conserved; that is, the surface acts neither as a source nor sink of energy. Finally, we find

that for normal incidence, when the additional boundary condition for a given model of a spatially dispersive
dielectric medium may be expressed in terms of the polarization %(z) associated with the dipole-active

excitation in the medium as [a%(z)+ P dP(z)/dz], 0 = 0, the coefficients a and P determine whether or not

the surface is a source or sink of energy. The mechanical Poynting vector is proportional to Im(a/P), so that
when this quantity vanishes, the surface is neither a source nor sink of energy, but when it is nonzero, the
surface is either a source or sink of energy, depending on the sign of the other constants entering into the

expression for the mechanical Poynting vector.

I. INTRODUCTION

Considerable interest has arisen recently in the
optical properties of bounded absorbing spatially
dispersive dielectrics. Properties that have been
studied include ref lectivities at normal and non-
normal incidence, the dispersion relation for
surface polaritons, and the attenuated-total-re-
flection spectrum. However, energy flow in such
systems has been little studied to date. Energy
flow in unbounded, absorbing dielectric media,
in which effects of spatial dispersion are neglec-
ted, has been studied in considerable detail by
Loudon. ' Recently, Maddox and Mills' have briefly
considered this problem for an unbounded spatially
dispersive dielectric, with the neglect of damping,
and showed that the energy flux vector 8 in such a
medium is the sum of the electromagnetic Poynting
vector Sz =(c/4v) E &&H and a mechanical Poynting
vector S~, which is the contribution to 8 from the
energy transported by the excitations in the medi-
um.

In this paper we extend the work of Loudon and
of Maddox and Mills by considering energy flow
in a system consisting of a semi-infinite spatially
dispersive absorbing dielectric separated by a
plane interface from the vacuum outside it. For
simplicity, we consider only the case in which the
energy flux is normal to the dielectric-vacuum

interface.
The present work is prompted by the following

considerations. In the existing calculations of the
optical properties of bounded spatially dispersive
absorbing media models of the nonlocal dielectric
constant of varying complexity have been employed.
Some of these models depend on the microscopic
properties of the crystals studied, ' while others
are purely macroscopic in nature. ' It is the latter
class of models that concerns us in this note. Of
particular interest is the model that assumes the
dielectric approximation, because it is used fre-
quently. The dielectric approximation consists
of assuming translationally invariant dielectric
functions all the way up to the boundary.

One of our purposes in this paper is to caution
those who would depend on such a model for the
prediction of the optical properties of interest
about an important failure of that model. We find
that, for electromagnetic radiation incident nor-
mally on the surface of a semi-infinite crystal,
the dielectric-approximation model fails to con-
serve energy; that is, the surface acts as a source
of energy. This is due to a discontinuous flux of
energy across the boundary. This occurs because,
at normal incidence the electromagnetic Poynting
vector is continuous across the boundary, but the
mechanical Poynting vector, which arises from
the energy transported by the excitations in the
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medium, is discontinuous, since it is nonzero on
the surface for this model.

As in the work of Loudon' and of Maddox and
Mills, ' the spatially dispersive and absorbing
medium in our work will be described by a collec-
tion of damped noninteracting harmonic oscilla-
tors, driven by a macroscopic electric field.
These oscillators represent the optical vibrations
of a diatomic cubic polar crystal or, with a suit-
able redefinition of the coefficients in their equa-
tions of motion, the relative motion of the electron
and hole constituting an exciton in an insulating
crystal. The effects of spatial dispersion are in-
corporated in the equations of motion of the oscil-
lators through the presence of terms containing
spatial derivatives. In Sec. II we display the oscil-
lator equations of motion used in the dielectric
approximation for the determination of the dielec-
tric constant of a semi-infinite medium. We also
obtain the relation between the oscillator coordi-
nates and the driving electric field, as well as
expressions for the electric fields inside and out-
side the medium. In Sec. IV we derive the form
of the energy conservation condition for this mod-
el, and show that the dielectric approximation
leads to the surface being a source of energy.

In order to understand the reasons for this, we
consider in Sec. III a more-general model of the
dielectric medium in which the effects of a surface
are taken into account explicitly. We show in Sec.
IV that for this model the surface is neither a
source nor sink of energy, since for this case the
mechanical Poynting vector vanishes on the sur-
face. In Sec. V, we consider the general condi-
tions on a macroscopic model that the surface
be neither a source nor sink of energy.

A rather general, but brief, discussion of the
conditions under which the surface of a spatially
dispersive dielectric medium is neither a source
nor sink of energy has been given by Hopfield. '
However, this di scus sion i s incomplete, in our
view, because Hopfield assumed that the energy
flux in the dielectric medium is given by the elec-
tromagnetic Poynting vector, and it is now known
that there is an additional contribution, which is
given by the mechanical Poynting vector.

II. MODEL OF A SEMI-INFINITE MEDIUM IN TIiE
DIELECTRIC APPROXIMATION

In this section, we consider a simple model for
the dielectric constant of a semi-infinite homo-
geneous isotropic spatially dispersive medium
that has been used by several authors. ' It is as-
sumed in this model that the dielectric function
of the semi-infinite crystal is that of the infinitely
extended medium up to and including the surface.
In particular, this approximation, called the di-

g = Wp[u(+) —u(-)], (2.1)

where u(+) and u(-) are the actual displacements
of the positive and negative sublattices and p, is
their reduced mass. The equations of motion for
the semi-infinite crystal for z ~ 0, in the presence
of spatial dispersion are assumed to be

ep d'( d(F= +y —+a ( —DV'(. (2.2)

Here eP is the transverse effective charge, ~2 is
the transverse optical frequency for the mode of
interest, y is a phenomenological damping con-
stant, and D is a phenomenological parameter
that describes the amount of spatial dispersion
and is determined by the curvature of the disper-
sion relation for the mode of interest.

We assume an oscillatory dependence of the
electric field E and of the relative displacement
( on the spatial variables parallel to the surface,
i.e. , in the xy plane, and on the time. That is, we
assume

((x, t) = g(z) e' "~~' "~~ ' (2.3a)

E (» f ) = E(z) e' (2.3b)

With this assumption, Eq. (2.2) may be written
in the form

d'
E(z) = —„,-+r' g(z), (2.4a)

where

1' = [(- 1/D) ( a'r —uP —i ay + Dk;-~) ]
' ~' . (a.4b)

We solve Eq. (2.4a) using Green's-function tech-
nique. That is, we introduce a Green's function
G„(z, z') by the equation

d2
, +r' C. z, z')=Sz-z'), (2.5a)

whose solution is

electric approximation, requires that the nonlocal
dielectric function e(x, x'; t —f') depend on the posi-
tion coordinates x and x' only through their dif-
ference.

We assume that the surface of the semi-infinite
crystal lies in the xy plane and that the crystal
occupies the half-space z -0. In order to derive
the dielectric function, we begin with the equations
of motion for the infinitely extended crystal, which
we assume to be the same as the equations of mo-
tion for the semi-infinite crystal in the region z ~ 0.
We consider a diatomic cubic crystal in which the
macroscopic electric field E in it couples with the
long-wavelength optical displacements of the ions.
We write the equations of motion in terms of the
relative displacement $, defined by
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~ irIz-z'l
6 (z, z')=

2s I'

In terms of this function we obtain

$,(z)= ~ G, (z, z')E (z')dz'.
vp, D

(2.5b)

(2.5c)

(
Q) (jg Qp, +z„—,E(z)+e„—,—

(

srlz z']@, 0
0

(2,9)

Since the polarization in the crystal is given by

&(z) = ~ k(z)+y. E(z),

where X„ is the background dielectric susceptibil-
ity, and the total dielectric susceptibility is de-
fined by the relation

for an isotropie dieleetrie, we may write the di-
electric constant for the medium in the form

e(k".zz)) —z 5(z zi)+ ~ ~ ~&rig-s'Ig Q2
! m

( 2fZ)D

To solve this equation we employ the method of
Ref. 4c of operating on both sides of Eq. (2.9) with

the operator

(2.10a)

in order to convert this integr'o-diffe rentia l equa-
tion to a differential equation, which is given by

(
co Qp Qp, +I', +e„—,E(z)= —,e„—'E(z).

(2.10b)

We seek a, solution of this equation in the for m

E(z) = e'". (2.11)

Substitution of this expression into Eq. (2.10b)
yields the following quartic equation for g:

2 2 2

(g —r ) g —z„—,— , e. —=0.—(8 (d Qp
2 +2 (2.12)

0', =4v(et)'/e pv. .

Using this result, we may solve for the electric and

magnetic fields in the crystal (z ~0) and in the
vacuum below the crystal (z &0). For simplicity
in what follows, we will assume that light is in-
cident on the crystal from below and propagates
along the positive z direction (i.e. , normal to
the surface}.

At normal incidence, the pr oblem of solving
Maxwell's equations reduces to solving the equa-
tion

, E(z) = —,a(z)
dz

E(z)= QE,e"l', z&0. (2.12)

This expression must also satisfy the original
integro-differential equation (2.9}. If we use the
result that

g rt z-z" t
f. q.z'

l(g', —r') l(g, —r}'

Since Eq. (2.12) is quadratic in g', two of the four
roots g j of this equation are the negatives of the
other two. In writing an expression for the total
electric field in the crystal, we require that the
field goes to zero as z- ~. Thus, we superpose
the two solutions corresponding to f, and („ the
two roots with positive imaginary parts

EZ dz
0

(2 9) (2.14)

subject to the requirements that the tangential
components of the electr ic and magnetic field s be
continuous across the plane z =0. Here z(&u; z —z')
ls given tly Eq. (2.7a), whel'e e((d)z —z )
=e(0'; z —z') and I' is given by Eq. (2.4b) with
k=0. Also, without loss of generality, we assume
that the electric field and relative displacement
for normal incidence of light are parallel to the
x axis, and, for convenience, we drop the sub-
scripts. Equation (2.8), when written out explicitly
for this model, becomes

we find that the expression given by Eq. (2.13)
satisfies Eq. (2.9) provided that the coefficients
E, and E, are related by

This relation is called the additional boundary
condition.

We now turn to a determination of the electric
field in the vacuum below the crystal, z &0. With



14 ENERGY FLOW IN A SEMI-INFINITE SPATIALLY. . 3387

the assumption of normal incidence, the electric
field in the vacuum may be written

d( 2

E(z) z) ( )IJ/D)D+ ate )( )/DD) D z (0 (2.16)

1+R =E, +E, ,

((u/c) (1 —tt) = g,E, + (,E, .

(2.17a)

(2.17b)

Thus, from Eqs. (2.15) and (2.17), we determine
E„E„and R to be

The first term describes the incident wave, and

the second describes the reflected wave.
We must now match the solutions (2.13) and

(2.16) across the plane at z =0. For an isotropic
crystal at normal incidence, this requires that the
tangential components of the electric and magnetic
fields are continuous across the boundary, which
reduces to the requirement that E(z) and dE(z)/dz
be continuous across the boundary. These condi-
tions may be written explicitly as

' gE-e()p c„„~,, ',
P X ttu +v

(3.1a)

where 8(z) is the Heaviside unit step function. We
further assume that the system is subject to a dis-
sipative force, which may be derived from Ray-
leigh's dissipation function for this system, given
by

(3.1b)

—85 9Z d Bg

a(d(„/dt) a$ dt a(d( /dt)

d aZ

dx„a (a g, /ax„)

By the use of the general form of Lagrange's equa-
tion of motion in the presence of this dissipative
function

E, = 2(g, —r)/(g, —&,)(1+0),

E, = -2(g, —r)/(g, —g, )(1+n),

&= (1-n)l(1+v),

where

n = (c/(o) (g, + g, —r) .

(2.18a)

(2.18b)

(2.18c)

(2.18d)

we may obtain the equations of motion for the mo-
del system, and from these proceed to calculate
the dielectric constant, the electric fields, and the
displacement vector $. All the quantities appearing
in Eq. (3.1), except the C~ „, are the same as those
defined in Sec. II. The C~„„are additional constants
related to the spatial dispersion present in the
crystal. The equations of motion for this model
may thus be written

In addition, we find the expression for the relative
displacement $(z) from Eqs. (2.5b), (2.5c), and

(2.13)-(2.15) to be

(2.19)

where E, and E, are given by Eqs. (2.18a) and

(2.18b).

III. MORE-GENERAL MODEL

In Sec. II, the equations of motion for the system
[Eq. (2.2)] contained no information about the pres-
ence of a surface at ~=0, other than the restriction
of the range of applicability of the equations to the
upper half- space. In the present section, we in-
clude the effects of a surface in a phenomenological
manner by beginning the analysis with a Lagrangian
density subject to a dissipative force, assuming
that the Lagrangian density and the dissipative
force are nonzero only in the upper half-
plane (z ~ 0). Then, given these assumptions,
we derive the equations of motion for the system.
For the model under consideration, we assume that
the Lagrangian density for the system is given by

E,=, + y "+ ~2r) 9(z)DV't
e* cP(

+6( ) g (C„„—C, „)

2
C~~g = —&CO~, (3.4)

independent of a. The simplified form of the equa-
tions of motion thus becomes

E=, + y + ~'r $ —D'7'P
V JLt.

+5( )( ' ) —D —,—O.
ja'

(3.5)

—))( )(Q C, $,+ D').

(3.3)

We assume that the C z, are symmetric in the
first two indices A. and p, and from consideration
of the symmetry of the semi-infinite crystal, we
find that the only nonzero components of C~, ap-
pearing in the equations of motion are those of the
form C, (o) =x, y, z). For simplicity, we assume
that these are given by
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%'e assume that the temporal and spatial depen-
dences of the electric field E and of the relative
displacement $ a.re those given by Eqs. (2.3). Thus,
the problem of solving the equations of motion
(3.5) reduces to the problem of solving the equation

CO

ekingd&i' efC'& @see'(8+a')
i(f)+ I) (3.11)

to obtain the condition on E, and E, so that Eq.
(2.12) will be a solution of Eq. (3.10):

Ez = ~+I" @ (4+0) (3.12a)

P = i(aid'„/D) . (3.12b)

where I' is given by Eq. (2.4b). Using the Green s-
function technique, we find that the $„(z) are given
in terms of the E (z) by the relation (2.5c), pro-
vided that Eq. (2.5a) is solved subject to the fol
lowing boundary condition at &= 0:

Next we solve the two equations given by Eq. (3.1, 2a)
together with the two Maxwell boundary conditions
[Eqs. (2.17)] in order to obtain expressions for
E„E2, and R, which appear in the solutions for
the electric fi.elds in the crystal and vacuum, Eqs.
(2.13) and (2.16). In this way we obtain

In thi, s way, we find that the Green's function
G (z, z') is given by

(3.8a)

(3.13a)

(3.13b)

(3.13c)

= (iD - i)id'r)/(iD+ a&a'r) . (3.8b)

Now, by the use of Eqs. (2. 5c), (2.6a), and (2.6b),
we obtain an expression for the dielectric constant
ln the medium

e(k„id; zz') = e„6(z —z') + [&.0~2/(- 2iI")D]

(3.9)
%'e now follow the methods outlined in Sec. II in

order to obtain the electric and magnetic fields in
the crystal (z «0) at normal incidence to the crys-
tal surface. We thus wish to solve Eq. (2.8) with

E(E0;zg ) = «(0(d zz ) glve11 by Eq. (3.9), and wllel'e
I' 1s glve11 l)y Eq. (2.4b) wltll k„=0. As 111 Sec. II,
we assume that the electric field and relative dis-
placement for normal incidence of light are paral-
lel to the x axis, and we again drop the subscripts.
With this, we may write Eq. (2.8) explicitly as

+ Qe'r'""))E(z') = 0. (3.10)

When we act on Eq. (3.10) with the operator 6 de-
fined by Eq. (2.10a), we obtain the differential
equation (2.10b). Thus, the analysis of Sec. II
follows in this case„and we obtain the form of the
electric field in the crystal given by Eq. {2.13).
This expression must now satisfy the original in-
tegro-differential equation (3.10). We now use
Eq. (2.15), together with the relation

P &+ —g, —g~ +—f,g, . 3.13d

In addition, we find that, in the determination of
((z) in terms of E(a'), the evaluation of Eq. (2.5c),
together with Eqs. (2.13), (2.14), (3.11), and
(3.12), exactly yields the form of Eq. (2.19), where
in this case E, and E, are given by Eqs. (3.13a) and
(3.13b).

In this section, we derive Poynting's theorem
in the presence of damping and spatial dispersion,
for a semi-infinite crystal in the upper half-space
{z «0) and vacuum in the lower half-space («0).
The starting point for our analysis is Maxwell's
equations, from which we wiH. obtain. the energy-
conservation condition. The equations of interest
ar"e

(4.1a)

%e assume nonmagnetic media, so that 8 =H,
and that no external charges or currents are
present. %'e combine these two equations, to-
gether with the identity from vector analysis,
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V ~ (ExH) =H ~ (VxE ) —E ~ (VxH), (4.1b)

and the relation connecting the electric
displacem-

entt vector D to the polarization P,

D=E+4mP,

to obtain the following relation:

(4.1c)

V ~ ExH = E ~ +H ~ —E ~

SE —— —E XH) (4.3a)

and the e lectromagnetic ener gy dens ity

1
Uz = —(e„E'+ H ')

8z (4.3b)

in order to write Eq. (4.2) in a simplified form

(4.2)

We now specialize to the case of a diatomic cubic
crystal, where the polarization P(z) is given by
Eq. (2.6a), with $(z) defined by Eq. (2.1). We
now introduce the electromagnetic Poynting vec-
tor

We now introduce what we will call the mechanica, l

Poynting vector, which is nonzero only in the
crystal, (z)0), and which is given by the relation:

D~ d$
S =- —Z x e(z) —V

v, ~s ~ dt ex~
(4 7)

D ()d$ s)
v, dt Bz

(4.8)

If we define a mechanicaL-energy density

U„= —+ ~2r $'+ D(V $)',
2v, dt (4.9)

then we may write Eq. (4.4) in the following simple
form:

V (Sz+S„)+ —(Uz+U„)
dt

where x8 is a unit vector along the P Cartesian
axis. Therefore, the divergence of the mechanical
Poynting vector is given by

D 2 d$ D dE
V S„=——(V'$) ———V$

v, dt v, dt

&'8 + —U + — E' —=0 (4.4)
——6(z); (4, 10)y d$ D dg a$

v, dt v, dt Oz

It is now desirable to write the term proportional
to E d$/dt in a form similar to that of the other
two terms in Eq. (4.4) by defining a Poynting vec-
tor and an energy density that arise from the
mechanical vibrations in a crystal in the presence
of spatial dispersion. In order to complete this
task, we need an expression for E in terms of
$ from the equations of motion of the crystal,
which are model dependent. Therefor e, in what
follows, we consider the two different models
described in Secs. II and III.

A. Poynting's theorem for a model of a semi-infinite medium in
the dielectric approximation

or, if we take the time average of both sides of
the equation, then

If we now specialize to the case of normal in-
cidence, so that the components of E and E nor-
mal to the surface vanish, we may write the time
averages of the electromagnetic and mechanical
Poynting vectors in terms of the complex forms
of the electric fields by the use of Eqs. (2.19),
(4.3a), and (4.7). Thus, we have

We use Eq. (2.2) of Sec. II in order to write
E d( /dt as a function of $ alone. Thus, we have

- dEE' —=
dt

(S )=z-
8n

—Re E, e"J'

2

x g g+E+e '~ ~' 8(z)
J= 1

(4.5)
We note that this is equivalent to the following
form, in which we have written some of the terms
as a total time derivative:

+ z —(I —
Iffy l')e(- z),

8v

(4.12a)

E = — —+«&' ('+D(V$)'
dt e P dt dt

—D (V'() ~ +V] ~ V +@-de - d'$ d$
dt dt df

(4.6) (4.12b)
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where E„E„and R R,re given by Eqs. (2.16).
The electx'omagnetic Poynting vector 8& is con-

tinuous across the surface of the crystal at z =0.
This is assured by the Maxwell boundary con-
ditions of conservation of tangential components
of E and H across the boundary, as we see by
rewriting the quantity (1 —iAi') in terms of E,
and &, with the help of Eqs. (2.17):

1 —iffi' = Re[(1 +if}(1—ft *)]

On the other hand, the mechanical Poynting vec-
tor 8 is discontinuous at z =0, since its value is
nonzero at z =O. In order to see why this is true,
we I'ewl'lte 'tile condltlon (2.16) 111 tel'nls of F(z).
This yields the relation, for z =0:

irg(z) + „=0.(
d ((z)

Z z-0

—(c/(d) Re[(E + @ )(f eE e y g eE 4)]

(4.12C)
We write the time average of [d$(z)/dt] [ d$(z)/
dz] at the plane z =0 as

«(z) d$(z)
N dz

d h*(z)=-, Re —i u)$(z)
z-0

i&a dg*(z) . „d](z)((*) d,
—()'('(*) —('(i) q, ')'((*)) ~ T'I((i)l' TI((z)l' . ,

44. 1.4a)

VVe see that since the first two terms of Eq.
(4.14a) satisfy the condition (4.13), we may write

(
"R (r)l~(0)i',

Qf dZ z-() 2
(4.14b)

so that the value of the mechanical Poynting vec-
tor at the surface becomes

&3&}I,=.= z (z(u)(D/~. ) Re(r) I h(0) I', (4.15)

which is nonzero whenever Re(r) is nonzero,
since $(0) is nonzero for this model. This is be-
cause, if $(0) =O, byEq. (4. 13), [dt(z)/dz], =0,
which violates Eq. (2.19), since E, and E, are
not both zero. In much of the existing litex'ature
on spatial dispersion, the additional boundary
condition, Eq. (4.13) is expressed in terms of
the polarization Pz(z) RssociRted with 'tile dtpole-
active excitation in the medium, or the "mechan-
ical" polarization, where

P„(z)=(Cp/~il )k(z). (4.16a)

Therefore, for comparison with other work on
spatial dispersion, we rewrite Eq. (4.13) as

(4.16b)

where for this case of normal incidence, P„(z)
lies al.ong the x axis.

Tile equality (4.11) may lie 8Rslly vel Ifled lly us-
ing Eqs. (4.12) if one notes the following identities,
which are obtained from Eq. (2.12), and where we
let g» =n&+ jx»:

That is, the divergences of the electrical and me-
chanical Poynting vectors, or the left-hand side
of Eq. (4.11), combine to give the term proportion-
al to y and the 5-function term on the right-hand
side. The term pxoportional to y, which is nega-
tive, gives the amount of radiation absorbed by the
medium per unit ti.me. The 5-function term in-
dicates that the surface of the crystal serves as a
soulce ol sink of energy. If the coefflclent of the
6 fullc'tloll ls Ilega'tive ('tile SRII18 slgll Rs 'tile Rb-
sorption term), then the surface is a sink of en-
ex'gy, or the surface absorbs energy. If the coef-
ficient is positive, then the surface is a source of
enex'gy. In the present case, in the presence of
damping, this tex'm ls always posltlve, and the
surface acts as a source of energy. In the absence
of damping, this quantity vanishes for a range of
frequency, with the result that for these frequen-
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cies the surface acts neither as a source nor sink
of energy, but it is nonzero and positive for all
other frequencies, where the surface acts as a
soux'ce of enelgy.

In order to understand more clearly the conse-
quences of the delta function term, it is useful to
consider the flux of energy through planes para-
llel to the surface of the crystal, both in the vac-
uum and the cx'ystal, in the absence of damping
(i.e. , for y = 0). The flux of electromagnetic radia-
tion through any plane in the vacuum parallel to the
crystal surface is the same constant value given
by

& 8,&. ,=~(c/8v)(1 —Iftj ') =C8,&. „(4.18a)

as can be seen from Eqs. (4.12a) and (4.12c). The
total flux through a plane in the crystal at z =l,
however ls given by the sum of the contx'lbutloQS
of the electrical and mechanical Poynting vectors,
Eqs. (4.12a) and (4.12b). In the absence of damp-
ing, this quantity simplifies greatly. This is be-
cRuse, ln the RbseDce of dRIIlplng, R given x'oot g.
of Eq. (2.12) is either purely real or purely imag-
inary, so that either z& or n& vanishes, respect-
ively. Therefore, Eq. (4.1"la) is identically satis-
fied and, since &', x &2, Eq. (4.17b) becomes

e'
8~~ 2D «(t-', F)(~,*—' F*')-

(4.18b)

This relation requires that all the terms in the sum
of the two Poynting vectors that are proportional
to E,Ef and E,*E, must cancel. To see this, we
considex' the electl OD1RgQetic Rnd mechanical Poyn-
ting vectors separately. %e add and subtract the
values of these quantities at the surface and make
use of Eq. (4.18b) in order to rewrite Eqs. (4.12).
TI1e sepRIRte electromagnetic Rnd mechaHlcRl en-
ergy fluxes through a plane at z = I thus become

+2(c'/8m co) [n, iE, ['(e '" i' —1)

+n, lE, I'(.-""'-l)7+8 „(0,
(4.19a)

C8.&. , =&&.&. .
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&&,&, =, =(8,&.=.+&„(I),

&8 &, , =&8,&.=, -4„(I),

(4.20a.)

(4.20b)

where 8,,(l) is given by Eq. (4.19c). Therefore,
although separately the electromagnetic and me-
chanical Poynting vectors depend on I, the z co-
ordinate of the plane through which the flux is con-
sidered, the total flux, the sum of Eqs. (4.20a) and
(4.20b), is independent of the position of the plane
and is the same as the sum evaluated at z =0.
That is,

&K.&. , &8,&, , =&&.&. ..&8„&, „. (4.21)

Thus, we see that the flux in the crystal is larger
than that in the vacuum by exactly the va. lue of the
mechanical Poynting vector evaluated at the sur-
face, whose magnitude is identical to the value of
the coefficient of the delta function term in the ex-
pression for Poynting's theorem equation (4.11).
In the absence of damping for D&0, this quantity
vanishes for &u &

d'or,

but is positive for ar & ~r [see
Eqs. (4.15) and (2.4b)]. For D& 0, these inequali-
ties Rx'e I'evex'sed. However, ln the pleseDce of
dRIQplng, tI1e cRse of gx'eRtex' lntex'est, this quRntity
is positive for all ~, regardless of the sign of D.

B. Poynting's theorem for a more-general model

The derivation of Poynting's theorem for the
more-general Inodel that was discussed in Sec. III
proceeds in the same way as the analysis of Sec.
IVA, except that in this case the equations of mo-
tion contain additional terms proportional to 5(g).
The deflnltloD of R mechanical Poyntlng vectol fol
this case is identical to that given by Eq. (4.7).
Howevex', the mechanical energy for this system
is defined by

~2
U~ = —+ &u r P + D(V t )

' + au& ~r g '5 (z )
2v, dt

4 „(I)=2(c'/8v~)Re[(g, + g;)E,E,*(e'«~-"&' —1)].

(4.19 c)

Since (,. =e,. +iI(, is either purely real or purely
imaginary (i.e. , either n& or z. = 0) in the absence
of damping, the terms in these expressions that
are proportional to n, (e "&' —1) or to n, (e '"2' —1)
vanish identically, and we are left with the expres-
SlODS

n, ~E,)'e '""
+

I
~2' ~ 2) 2 —&„(I),

(4.19b)

The enex'gy conservRtlon condition, the RDRlog to
Eq. (4.10), thus becomes

(4.28a}

or, after taking the time average of both sides, we
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(4.23b)

The forms of the electromagnetic and mechanical
Poynting vectors for this model a,re given by Eqs.
(4. 12), where E„E„and"are given by Eqs.
(3.13). HeI'e, Rs foI' tile Illodel descl lbed 111 Sec.
IVA, the electromagnetic Poynting vector is con-
tinuous across the boundary at z =O. However, un-
like that model, the mechanical. Poynting vector
here is continuous across the surface at z = 0, that
is, lt VRnlshes on the surface of the clystRl. IIl

order to demonstrate this, we consider the condi-
tion given by Eq. (3.7) in order to rewrite the time
average of [dg(z)/dt] [d g (z)jdz ] at z = 0:

dt(z) d$(z), . d(*(z)

(4.24a)

Since the condition (3.7) requires this quantity to
vanish, we have

(4.24b)

Tile equRllty 111 Eq. (4.2311) 111Ry be vel lf led, Rs
in See. IVA, through the use of the equalities given
by Eqs. (4.17). Also, the flux through planes para-
llel to the crystal surface in the crystal and the
vacuum may be calculated as in Sec. IVA, with the
same general results obtained, that is, those of
Eqs. (4.18R), (4.20), and (4.21). However, the im-
porta, nt difference here is that the mechanical
Poynting vector vanishes on the surface, so the
total Qux in the crystal is the same as that in the
vacuupl» Rnd the surfRce ls nelthel R soul'ce nol
sink of energy. We note that although the mechani-
cal Poynting vector vanishes on the surface in this
case, its. value inside the crystal is nonzero, as
can be seen from Eq. (4.20b). Here, as in Sec.
IVA, for comparison with the existing literature
on spatial dispersion, we rewrite the additional
boundary condition (3.7) in terms of the "mechani-
cal" pola. rization as

damping. One of these, namely, the dielectric
approximation model, has been widely used re-
cently in the study of the optical properties of
such crystals. As we have seen, this model, in
which the effects of the surface are not properly
taken into account, leads to a situation in which
the surface acts as a source of energy. Clearly,
care must be exercised in employing a model with
such properties for the investigation of the optical
properties of spatially dispersive bounded media.

The condition that we have obtained for normal
incidence ref lectivity in order that the surface not
be a soul"ce or sink of energy, namely, thRt the
mechanical Poynting vector vanish on the surface,
is actually a much more general result than one
might think on the basis of the two specific models
considered here. For normal incidence the Max-
well boundary conditions of conservation of the
tangential components of E and H across the surface
of the crystal demand that the electromagnetic
Poynting vector S~ be continuous across the sur-
face. Therefore, in order that the divergence of
the total flux not contain a 0-function term de-
scribing an emission or absorption of energy by
the surface, the total flux S~+S„must be contin-
uous across the surface. This can only happen if
the mechanical Poynting vector S„vanishes on the
surface, since it vanishes identically in the
vacuum.

In view of these findings, it is desirable to know
under what conditions a given microscopic model
of a bounded spatially dispersive medium will not
have a source or sink of energy at the surface.
This question ean readily be answered when the
additional boundary condition expressed in terms
of (, may be expxessed generally as

where e and I3 are both complex. For the models
we have considered here, Eqs. (4.13) and (3.7) are
the analogous conditions. As in Secs. IVA and
IVB, we may express this Eq. (5.1) in terms of the
"mechanical" polarization in. the medium for com-
parison with existing theories on spatial disper-
sion. Thus, condition (5.1) becomes, in analogy
to Eqs. (4.16) and (4.25),

BP
aa& r P(z) —D

Bg g o (4.25)

V. CONCLUSIONS

In the pl'ecedlng sections, we hRve discussed
energy flow at normal incidence on the bases of two
simple models for a semi-infinite isotropic spa-
tially dispersive dielectric in the presence of

In the following, we will work with Eq. (5.1) rather
than (5.2), but the conclusions that we make con-
cerning the coefficients n and P apply, obviously,
to both equations. Since for normal incidence the
mechanical Poynting vector at the surface of the
medium is directly proportional to the quantity
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d$ d$
z =o

Im — $0) ', (5 4)
it is this expression that we study.

Obviously, if either $(0) or [d((s)/ds], o vanish,
then this quantity is zero, and so is the mechani-
cal Poynting vector on the surface. In fact, the
boundary condition ((0) = 0 was the one introduced
by Pekar, ' so that for this boundary condition the
surface is neither a source nor sink of energy.

If, alternatively, we consider the case in which
n and P, $(0) and [d$(z)/ds], 0 are nonzero, we
have

iw ( d(* d$pg + +g$g p2 P* dz P dz

(5.3)

so that for $(0)WO, this expression vanishes only
If the Imaginary part of cv/P vanishes. Thus, if
a and P in Eq. (5.1) or (5.2) are complex, the
surface is a source or sink of energy. It is a
source if jD 1m(n/P) is positive and a sink if this
quantity is negative. If e and P are real, then the
surface is neither a source nor sink of energy.
For the dielectric approximation model, n =iF
and P = 1, according to Eq. (4.13), so that the
mechanical Poynting vector does not vanish at
z=0, as was shown in Sec. IV. However, for the
more-general model considered in Secs. III and

IVB, e =awz and P =-0, so that a and P are both
real and the mechanical Poynting vector vanishes
at z =0, as was also shown in Sec. IV.

The property of the dielectric approximation
model exposed here, viz. , that it gives rise to a
source of energy at the vacuum-medium interface,
should be kept in mind in all subsequent applica-
tions of this model to the study of optical proper-
ties of bounded media.

Since the first two terms in this equation vanish

by the condition (5.1), the mechanical Poynting
vector at z = 0 becomes
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