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Interaction of electrons with acoustic phonons via the deformation potential in one dimension
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We investigate the one-dimensional polaron in the case where the electron couples to the acoustic phonons via

the deformation potential. In addition to the fact that this model may apply for some quasi-one-dimensional

systems, it has several interesting features. The model exhibits the same type of divergence as the piezoelectric
polaron but in a mathematically more tractable form. Realistic values of the deformation potential suggest
that strong coupling applies. We show that in the strong-coupling limit the theory reduces to another polaron
model that Gross has shown to be exactly solvable. We also obtain a soliton-like model for the moving polaron.
The first correction to the strong-coupling limit has an ultraviolet divergence which is caused by the fact that
the short-wavelength phonons follow the motion of the electron in its self-trapped state. This situation is also
analogous to the piezoelectric polaron.

I. INTRODUCTION

In every crystal where there is band conduction
the electrons are coupled to the phonons via the
deformation potential. ' In ionic crystals electro-
static coupling usually is more important, but
even in these the deformation potential scattering
often dominates in some temperature region.
Electron-phonon interaction in metals can gen-
erally be thought of as deformation-potential
coupling, and it dominates transport phenomena
in nonpolar semiconductors over a wide range of
temperatures. In almost all cases where deforma-
tion-potential coupling is important it is thought to
be sufficiently weak to be treated by the lowest
order of perturbation theory.

It was, however, suggested some time ago by
Toyozawa" that in some instances the strong-
coupling theory may apply. We will first present
a very simple heuristic version of Toyozawa's
theory, and show that the same theory in one di-
mension is not only much more manageable but
that reasonable values of the parameters suggest
that strong coupling should apply in quasi-one-
dimensional systems. In the strong-coupling
polaron theory' the electron causes the lattice to
deform in such a way that an attractive potential
is set up for the electron. The electron then be-
comes trapped in this potential well and its pres-
ence in turn maintains the lattice deformation.
I et us assume that this has happened and calculate
the energy. We assume that the electron is trapped
in a region of radius R giving rise to an electronic
kinetic energy of S'/2mR'. Since the electron-
phonon interaction is short range (see Sec. III) the
lattice will deform primarily where the electron
is, and hence we assume a constant dilation 6 in
a sphere of radius R. This gives rise to an elastic
energy of (CL'/2)(4v/3)R' where C is an average

a = D/2CR' (2)

E = S'/mR' -D'/4CR' . (3)

If we next minimize this energy with respect to R,
we see that for R small enough the negative term
must dominate and E ——~ as R -0. Hence when

we treat the crystal as an elastic continuum the
solution is unstable. However, in a real crystal
R is limited by the lattice constant a, and then if
the deformation potential is large enough, we can
have a stable bound solution if

0&E = 5'/ma' D'/4Ca'—

or

D'm /h '4Ca & 1 . (4)

In addition to this requirement, which is peculiar
to this type of polaron, there is the usual require-
ment for the validity of the strong-coupling polaron
theory, namely that in order for Eq. (1) to be cor-
rect is necessary that the electron in its bound
state move faster than the lattice can respond, or
else the lattice well will start to follow the elec-
tron in its internal motion and the bound state
will break up. In the bound state the electron
moves with a frequency =S/ma' and the lattice
well is made of phonons whose approximate wave
vector is q =v/a and whose frequency is sv/a. So
we need for the consistency of Eq. (1)

elastic constant' (i.e. , CA'/2 is the energy per
unit volume). The electron-phonon interaction
contributes a term -DD, where D is the deforma-
tion potential. Dropping all numerical factors, we
have for the energy

E = S 'jmR'+ C L'R' Dr . -
If we set aE/sa = 0, we then find that
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8/ma'» s/a

or

A/ms»a.

This condition is usually satisfied. 8/ms is the
analogy of the Compton wavelength for an electron
interacting with acoustic phonons instead of
photons. For the band effective mass m equal to
the free-electron mass 5/ms =2x 10 ' cm.

More elaborate versions or variations of this
theory have received alot of attention in the litera-
ture. ' In the present paper we want to consider a
one-dimensional version. The heuristic theory
proceeds in much the same way as the above ex-
cept for the calculation of the energy stored in the
strain field. The term Cn' (with C an appropriate
elastic parameter) is the energy stored per unit
length and hence the total elastic energy is Cb, 'R
rather than CA'R', which completely changes the
character of the solution. The analogy of Eq. (1)
in one dimension is

E = 8 '/mR'+ CZ'R Dn. . -
We set

(6)

az—=0
ab,

and get that

n =D/2CR,

and for this value of h we have

E = 5 /mR D'/4CR, -
which unlike the three-dimensional case has a
minimum for any D at

Rmm = K8'C/ Dm'.

We then always have that the minimum energy is

E = D~/64C25~. - (8)

Hence there is always a stable bound state like the
original polaron problem, ~ providing the adiabatic
condition is satisfied. In this case, as in three
dimensions, we need that the electron moves
faster in its bound state than the phonons that make

up the lattice well. The frequency of the electron
is h/mR';, while the most important phonons in
the lattice distortion have wavelength R;, and
hence frequency sw/R . Therefore we need that

8/mR »s/R.
hence

In Sec. II we will show that this is essentially
the condition that the coupling constant n be large
in comparison to one. Hence this is the standard
strong-coupling theory which has stable solutions
for all coupling in one dimension without the com-
plexities that beset the three-dimensional theory.

The two-dimensional theory has a lattice energy

E = 8 '/mR'+ C n. 'R' D6—.

Then

BE—= 0a+

gives that

& =D/2CR'

E = 8'/mR' D'/4CR'. -
This result is qualitatively like the three-dimen-
sional theory in that it requires a minimum D for
a bound state with the binding energy becoming
deeper as R gets smaller. We will not discuss
two dimensions further in this paper.

II. HAMILTONIAN

Since the deformation potential interaction is
usually used only to calculate transition rates in
first-order perturbation theory, the Hamiltonian
has not been cast in the standard dimensionless
form of polaron theory, '

H~= —~V'„'+ a, a, (d q

(10)

We will show that the Hamiltonian for an electron
interacting with acoustic phonons via the deforma-
tion potential can be put in the form of Eq. (10) by
an appropriate choice of units and identification
of the coupling constant u. We will see later that
n is not the only parameter in the theory but that
the cutoff wave vector q plays an essential role.
Once we have the form for three dimensions, that
for one dimension will follow immediately.

Consider an electron moving in an energy band
whose energy momentum relation is e(k) =8'0'/
2m. Then in the effective mass approximation we
write an effective Hamiltonian

H = -(5'/2 m)V'+ DV u+ H„,„

or

fi/ms»R

D2/gas C» 1.

We will consider a wide band with one electron of
effective mass m in it. [In the case of a narrow
band which might be appropriate for some quasi-
one-dimensional system of interest we would have
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to use a more complicated function for e(R) and

also for the interaction term DV ~ u. ] The deforma-
tion potential D is the constant of proportionality
for the shift of the bottom of the band with lattice
dilation (V ~ u).

The displacement of the lattice' at the point r is
u(r).

1/2

u(r) = Q e(qo)
2NMu q, c)

x(a'~, +a,', )e'~ ' '
z

The phonon wave vector is q, and 0 is the polar-
ization index which runs from 1 to 3 for acoustic
phonons. We assume that o = 1 is a longitudinal
wave and o = 2, 3 are transverse waves. We
choose e(q, 1) = i q insuring that e (q, 1) = e(-q, 1)
and e*(q, 1) ~ e(q, 1)=1. The number of unit cells
isN and the mass of an ion core is M. The phonon

frequency &u(ql) =-~(q) = s~q~. Hence the interaction
term is the Hamiltonian involves only the longi-
tudinal phonons and is given by

the elastic constant in our dimensionless units.
In terms of this coupling constant we see that the
condition, Eq. (4), for the existence of the stable
bound solutions in three dimensions discussed in
the introduction is

D'm/fl'4Ca= 2n, q' & 1.
Here we have defined q' = izs/msa and the adiabatic
condition Eq. (5) reads

q' »1.
Hence we have the peculiar situation that the con-
dition for the strong-coupling theory depends not
only on n but also on the cutoff wave vector q .
This has been realized by Toyozawa and Sumi' but

we have repeated it here in the present form to put
in the context of the polaron problem.

Our main purpose in the present paper is to dis-
cuss the one-dimensional problem where the equa-
tion correponding to Eq. (14) is

Z/2

H;„, =DV ~ u= — D q

x (a,', + a' t,)e" (12)

D m~q'~ "(t ).. . (18)
m s' 2NM

Since the interaction in the polaron problem
traditionally has a positive sign we make the sub-
stitution a,', = -a, and obtain for the Hamiltonian

k2
H= — V,'+ gaza, &u(q)

2 m
Q

Z/2

+ D- q "2a&+a e"''

Again putting this in the standard form for a
polaron [Eq. (10)], when we replace the volume

by the length L'= L/(fz/ms) we have

4p~ 1/2+, Q (Iq'I)"'( t, a+a, )e'""', (17)
a'

If we use ms' as a unit of energy and II/ms as
a unit of length, we have H'= H/m s', x' = xm s/Iz,
q'=izq/ms, and hence

where

1 a* h'i )*
8m kms' ' a

(18)

H'= ——,'V„' + a, a, q'
a

(a„+at, .)e'" ' ' .
pz

(14)

It is interesting to note that a» 1 for most rea-
sonable values of the parameters. In these terms
the result of the heuristic theory [Eqs. (7) and (8)]
with C = ps'= (M/a)s' becomes

R = (1/zzu)fz/m s

Comparing these with the last term in Eq. (10),
we see that Q(q') = (~q' ~)"' and that E =-m cams . (20)

o, = Dznz '/8vpfl's, (15)

where p =MN/V is the mass density of the crystal
and n, is the coupling constant for three dimen-
sions. This expression can also be written, by
use of the relation C = ps', as

D"/C', =

where D' and C' are the deformation potential and

We will see in Sec. IV that this is very close to
the exact answer for the strong-coupling theory.
The adiabatic condition Eq. (9) is that o»1. We
note that the cutoff wave vector q' plays no es-
sential role in the one dimensional strong-coupling
limit, however, we will see in Sec. VI that the
first corrections to the theory are cutoff depen-
dent.
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III. WEAK COUPLING

Although the value of a» 1 for most quasi-
one-dimensional systems, we will investigate
the weak-coupling theory for two reasons. First,
we are interested in this problem partly for aca-
demic reasons, and therefore we want a complete
view of it. And second, we will see in Sec. VI
that the short-wavelength phonons couple to the
electron essentially by perturbation theory even
when n»1.

-l,4

E(P}

A. Perturbation theory

Starting with the Hamiltonian given in Eq. (17),
and treating the last term in second-order per-
turbation theory, we obtain for the energy of a
polaron with wave vector P

4&~ ~
P( )

2 L ~ P2 1(p )2

P' q'„+4q +4(1 —P')
2 4(1-p')

P&1. (22)

For convenience we have dropped the primes that
we used in Sec. II to indicate that all quantities
are dimensionless. For small P we write

(28)

E,(O) = -Bo. ln(-', q + 1),
1/m'=1 —Bo.+ Bo/(2q + 1}'.

It 1s 1nterest1ng to note that lIl the Q ~ao llm1t the
self energy diverges but the effective mass is
finite. Also these results are essentially the
same as those obtained for the three-dimensional
piezoelectric polaron. '

For larger P we see that as P-1 the energy
[Eq. (22)] diverges. See Fig. 1. This is typical
of the unphysical behavior that we have come to
expect from nondegenerate perturbation theory
near the threshold for emission of phonons. 7'
For P» 1 we would again expect reasonable re-
sults from perturbation theory by taking the
principal value of the sum in (21).

In the analogous three-dimensional piezoelectric
polaron problem we found' that the behavior below
the phonon emission threshold was more reason-
able in the intermediate-coupling theory. There-
fore we consider that theory now.

B. Intermediate-coupling theory

%e wi11 next consider a well known polaron
theory first devised by Lee, Low, and Pines, '
and also by Qurari, ' which although it is called
intermediate coupling applies primarily in the

-l.6

weak-coupling range, and is in some respects
an improvement on perturbation theory.

This theory is an upper bound to the ground-
state energy for each value of P (the total momen-
tum), because it can be formulated variationally
using a trial state which is an eigenstate of total
momentum. '

The energy is given by"

E,(p}= —.
' P' - -.'[P —v(p)]'

4m+ ~ lql

lql- qv(p)+ kq' '

and v(P) is given by the equation

(p) p
4"& ~ Iqlq

[qv(p) -kq'- lql]'
(27}

By differentiating Eq. (26) and using Eq. (27) we
can show that v(P) = &E/'dp, and hence it is the
polaron velocity. By replacing Q, by ( / f&)2J
in Eqs. (26) and (27) we get that

E (P) = , P —2(P —v) -—4o. ln1 2 l 2 (1+ -', q„)' —v'
2 1-v

~ &1, (28)

and that

(P —v) = Bo.v](l —v') ' —[(1+-;q )' —v'] j,
v&1. (29)

Note that the integral that leads to Eq. (29) does
not even have a principal value when v & 1. For
small P, Eqs. (28) and (29) give a self energy

I I I
' 0 0.2 0.4 0.6 0.8 l,0 1.2 l.4

P

FIG. 1. Energy-momentum relation for perturbation
theory and the intermediate-coupling theory of Lee, Lour,
and Pines (LLP). Curves are for q =200 and & =0.05.
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E~(0) =E(,(0) = —Bu In(~q + 1)

and an effective mass

1/rn*=[I+Bo. —Bn/(-,'q +1)'j ', where

4vo' "'
Q(q) (p. + p-, )

V (v(q) 2
(33)

which are essentially the same results as pertur-
bation theory, as is always the case with this
theory. However for larger P the theories are
strikingly different. E~(P) goes to —~ as P-l,
but

E~ (P)- 8o. In ,' q + P——4n lnP /4c( (30)

and v(P) —1 —4a/P for q„» 1. These curves are
compared in Fig. 1.

As we have discussed at length in connection
with the piezoelectric polaron, ""we feel that the
intermediate coupling gives the more plausible
result. At least for some region of P space the
polaron should be locked below the speed of sound.
We will see below that the exactly soluble strong
coupling has the same qualitative behavior.

IV. STRONG-COUPLING-STATIONARY POLARON

A. Three dimensions

The strong-coupling theory was first done by
Pekar4 in a variational form. He uses a trial
wave function of the form

i» = e(r - R)e""'10),

where

&T I(II& IT) = d'~ y*(r —R)ifog(r - R),

where

—Qd, (r (r l (
X (e

- i (( ' ( r - (() + e i r( ' ( r —(())

gives that

S(R)= Qd, (a,e"' a —aJe '~'
) (32)

w

The operator e '"' makes a deformation of the
lattice centered around the arbitrary point R. The
shape of the deformation is determined by the
variational parameters d, . The electron is then
put in a bound state q)(r —R) in the potential caused
by the lattice deformation. We determine p and

d, by minimizing the expected value of the Hamil-
tonian, E(I. (10),

For the stationary polaron we expect Q(r —R) to
be spherically symmetric and real, which gives
that

4ao' "' l(q)
6f p

If we now vary &T ~H~~ T) with respect to ((()(r- R}
subject to the constraint that

(35)

Q r —R dr=1,

we obtain a nonlinear Schrodinger-like equation
for the best p(r R):

&T)II)r& =E.
The equation is nonlinear because p(q) given by
E(I. (34) depends on the solution g(r —R). Although
we arrive at Eq. (36) variationally its solution
has been shown to be the correct strong-coupling
limit for the polaron problem by several authors. ""

We would like to point out that the physical
properties of the system enter this theory only
through the factor

(«o'/V) 0'(q)/(v(q) .

The dimensionless volume t/" is cancelled in any
calculation by the volume factor that appears
when we repla. ce Q, by V/d'q/(2v)', and we will
show below that o. appears only as a scale factor.
Hence the character of the solution is determined
entirely by the factor Q'(q)/(d(q). For the original
polaron problem" (coupling to the longitudinal
optical mode in an ionic crystal) Q'(q) = q

' and

(d(q) = 1, hence @'(q)/~(q) = q '. For the coupling
to acoustic phonons in a piezoelectric crystal
Q'(q)=q ' and (v(q)=q, hence again Q'(q)/ (q)(=dq '.
Therefore as we have pointed out before" the
strong-coupling limit is identical for these two
otherwise different systems. Thex e is another
pair of systems that are identical in strong coup-
ling. The first involves the interaction with
optical modes via the deformation potential. For

(
4'~ r 2@'«)

p(q), '. .(.—.)
(~)q

r» (r'(r)r*(r() ~(- ~( @@(- ~)
V (d(q)

(38)
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this case Q(q) =~(q) =1, and hence Q'/~=1. This
case is often used as the simplest fox'm for the
II with no reference to deformation potentia, ls.
It mas ln this splx'lt, that Gross 1Dtx'oduced lt when
he shomed that the strong coupling could be solved
exactly in one dimension. However for the very
common case of an electron intexacting with
acoustic phonons via deformation potential, Q(q)
= (lql)"' and ~(q) = q, so Q'(q)/co(q) = 1. Therefore
th6 stx'oDg-coupllDg llmlt of this system, which
may have considerable practical application, can
also be solved exactly in one dimension.

The reason mhy these pairs of systems reduce
to the same strong-coupling limit" (as we have
explained in detail before) is that in the strong
coupling one considers only a static deformation
of the lattice, and hence the dynamics of the lat-
tice play no role. It is only the shape of the
static lattice defox'mation that counts. In the tmo
examples when Q'/~ = q

' the mechanism of coup-
ling is through lattice polarization, and hence it
is essentially Coulombic where as the deformation
potential is essentially short range. This is most
clearly seen by putting Eg. (36) in position space.
When Q'/~=q ' Eq. (36) becomes

(
--,'V„' —2n d'r', &p(r —R). , Iq(r'-R)I'

=eq(r —R). (37)

When Q'/&v=1, Eq. (36) becomes

[-—,
' v„' —Bwn

l y( r —R)l'] y( r —R) = e q ( r —R) .

r
8 tran ~ g(~ g)

2 ex' I. ~~"'

+ Q — p,
' y(x - ft) = e P(x -A) (45)

4m~

ox'

., —Bony'(x —R) y(» -A) = ep(» -&) 1 (46)
(

8

2 ~x

This i.s exactly the same equation that ma, s ob-
tained by Gxoss" for deformation-potential optical-
type coupling [i.e. , ~(q) = Q(q) =1], and which he
showed i,s solved by

P(x -8)= (2&u)"' sech4&~a(x -ft),

(48)

&=3(«~)',

(T, lfflT„) = E = —pm'n'.

Restoring units and substituting Eg. (18) for n we

get

(39)

B. One dimension

Folloming the same procedure as in Sec. IVA,
but starting from Eg. (17), we get

IT,) = q (x ft)es™l0),- (40)

S(R)=gd(ae"" a e ")

In each of the above the constant term in the effec-
tive Hamiltonian has been combined with the
elgeDvRlu6 E to give 6 =S -C, mhex'6

We see by comparing with Eq. (8) that except for
the numerical factox this is the same result as
that obtained fxom the heuristic theory.

This one-dimensional model is very convenient
and most of its properties are easily calculated
in closed fox m. For instance, the lattice dis-
placements are

4mo. lq l

"' 1
Bo. sinh(lql/Bu) '

and the Fouxier transfoxm of the electxonic
charge density ls

p, = q/Bn sinh(q/Bo. ),

d. = («o/L ~e)p, ,

p, = dx ly(x-g)l'e*"" e', (43)

and the lRttlce dlsplRcemeDt ln posltlon space~
ln cgs units ls

(T, lu(x) lT,) = —(ID/2@ps)

x tanh[(4»txm s/h)(x —R)]. (6&)

dx ly(x -ft) l'=1.

p is the solution of the nonlinear eigenvalue prob-
lem

Befox'e me proceed to corrections to this theory
me mould like to show that the e dependence in the
above equation can be essentially removed by a
scale transformation. If me write



y=41(u(x -B),
(4vo)"'X(4vn(x B-))= y{x-B),

)((y) = (1/u 2 ) sechy,

(56)

(57)
gives se=v, and

6I/5Q* = 0

which is normalized to unity. Equation {46) then
becomes

j. 8 .—2X'(y) X(j))= e'X(y)2 Bp

leads to the eigenvalue problem

82

2 BX2

4ne "'
P (lel)"*(& ~ d )e'"* "]

is clearly independent of n because it is deter-
nlllled by Eq. (59) which colltR111s llo Q.

If we multiply Eq. (59) by ay/sy, it becomes a
perfect diffexential, and from this we can easily
see that (1/v 2) sechy is the only solution for which
X(j)) -0 as y-~ ~.

e.=!v'- gd,'(lql —qv)+~.

Setting

BI

8dg

gives

41III "' (~q~)"'p, (v)

%'e can extend the analysis in Sec. IV to a moving
polaron by x'eplacing the trial wave function Eq.
(40) by

v.(~)=p-.(~)=I l(.(*)I*~"*d*.

~T„)=e'""4) (x-B)e"~'~0),

S„(B)= gd, (w)(a, e"e-ate "~)

(61)

(62)

Using these expressions for the d, in Eq. (65)
gives

(
1 82 Brnot

* ('!(*-))))g.(* ) e.))(.(x--))=).

g(z) = &(-z) .
Although Eq. (61) is not an eigenfunction of the
total momentum

8
(P = „—+ QqQqg,Bx

This is just the same as Eq. (46) except that

(I -u/(1 —v') .
The only bound-state solution is then

j./2 4mo.(.(x-)))= - --; sacs . (x —)))) (()8)1 —v

we will xequire that

(63)
e„= -SII'(r'/(1 —v')'. (69)

and then minimize the expected value of the Ham-
iltonian Eq. (17) subject to the momentum con-
stl'Rlllt Eq. (63) Rnd the nol'IIIRllzRtioll constl Rllli

This procedure xequlxes mlnlmlzlng

I= (T, w iII —v(P —&iT, w)

with respect to au, Q, and d, . The Lagrange multi-
pliers v and A, are then determined by the con-
straint Eqs. (63) and (64).

Setting

Hence the only effect of the motion on the elec-
tronic wave function is a scale change. Note that
in this form it is particularly clear that the effec-
tive electron-phonon coupling increases as v- l.
The energy of the system

&.= (» IIIITv)

E, =-,'v'+ e„+Qd,'~q( =-,'v'-
—,
' (41Iu)',

tf (& -~')'

Note that it is only the electronic wave function
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not E, that scales with a factor (1 —v') '.
The constraint equation for eliminating v is

2 (4&n)'vP-5= ~d~Q=— (71)

the preferred theory. Homever in order to make
this inference binding me should use a strong-
coupling trial function which is an eigenfunction
of 6', such as that used by Hohler. "

The dependence of E, on the momentum P is given
parametrically by Eqs. (70) and (71), and is shown
explicity in Fig. 2. One can check from Eqs. (70)
and (71) that

and hence v, is the polaron velocity.
In limiting cases, me first note that for I'-0

E,(P) = —~ m'o. '+ p'/2m*, m* = 1+ ~3' s'n',

where we note that the effective mass is propor-
tional to n' as in the piezoelectric polaron. " On
the other hand, for P-~ we see that

v-1 and E,-+P--,'[-', (2«)']"'P"' —-'
~ (72)

At large I the energy becomes increasingly below
the unperturbed continuum (P —~). In fact com-
paring Eq. (72) to the corresponding expression
for weak coupling Eq. (30) we see that for suf-
ficiently large I' the strong coupling mill become
lower. Although E~ is an upper bound for each
value of I' unfortunately E, is not. Nevertheless
this suggests" that as v- 1 the strong coupling is

20

VI. CORRECTION TO STRONG COUPLING

The first corrections to strong coupling are
usually broken into tmo terms, one called the
localization energy and the second called the fluc-
tuation energy. " In order to estimate the local-
ization energy we mould have to use a trial func-
tion which is an eigenfunetion of momentum, or
utilize one of the extremely involved versions of
polaron theory" "that maintain translational
invariance from the begining. Although both of
these projects are feasible, they are very in-
volved and me have not undertaken them here. The
other part of the first correction (the fluctuation
energy) can be calculated easily and has the inter-
esting property that it depends on the high-mo-
mentum cutoff q . Since all of the calculations
for the adiabatic limit of the one-dimensional
deformation-potential coupling are cutoff inde-
pendent, it mould be natural to assume that the
whole theory is. However since the high-mo-
mentum phonons have a large frequency they can
follow the electron in its fluctuations in the bound

state, suggesting that these phonons should be
treated by perturbation theory. In Sec. III me

showed that perturbation theory is cutoff dependent,
and hence me are not surprised to find cutoff-de-
pendent corrections to the strong-coupling theory.

We start with the Hamiltonian Eq. (17) and apply
the unitary displaced oscillator transformation

a'=e 'He',

where S is the operator given by Eq. (41):

S(R) = gd, (a,e"e a,"e "e) . — (41)

IO

The transformed Hamiltonian can be written

Il'= HO+0 h+8, , (74)

Ho= —
2 + 4~+4

20
+ Qd; lel,

FIG. 2. Energy-momentum relation for the strong-
coupling moving polaron and the intermeditate-coupling
theory of Lee, Lour, and Pines. Curves are for q~
=200 and & =0.05. The slope of the LLP curve has al-
ready approached very close to the speed of sound. The
slope of the strong-coupling curve will also approach
unity at higher I'.

Hph= Qq Qq g )

4m+ "'
+int Qq+0 q 8

+ Q (q~d, (a, e""+ate "e).
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We note that d, is at this point arbitrary. We
Qom choose d, according to the variational analysis
of See. IV on the static polaron in which me found

4v fq/
"'

Bo sinh(fqf/Bn)
'

With this value of d„ the various parts of the
Hamiltonian H' become

., —{4vo)' sech'-4vo(x -R)+ ,'( 4-vn)',

We nom apply Bayleigh-Schrodinger perturbation
theory to the ground-state energy E. From Eq.
(79) it is easy to see that H,„h asa zero expecta-
tion value in the ground state of Ho, and hence
there is no first-order correction. In second-
order perturbation theory there mill be intermed-
iate states of the type

y(x - ft)n', ~O).

However, we again see from Eq. (79) and the de-
finition of p, that states of the type in Eq. (82) do
not contribute to the energy shift. The lowest
correction to the ground state is then

h @q~4f

1/2

H, = aq+ g~~

x(&|ax p &ias)

p, = q/8 o sinh(q/8 o) .

(76)

(79)

(54)

~E(3)
4(4vn)'

dqdk ~q~' sech'(q/Bn ——,'vk)
(k'+1) [1+&'+2 iqi/(4vn)']

'

~ E —(4vo)' —,'k' —3(4vn)'- fq f

We mould like to emphasize that there is no ap-
proximation ln golQg from H to this final form of
H'. %6 further note that with the above choice of
dq the lowest elgeQvalue of Ho+ Hph ls~ by deslgnq
that obtained from the previous static variational
eRleulRtlon.

We nom treat H, as a perturbation on H, + H„„.
This approach, which we call "adiabatic perturba-
tion theory, "was first derived by Hohler and has
been used extensively. " The aspect that is unique
about the present application is that the eigen-
fuQetlons of H() CRQ be fouQd exRetly. %6 hRve Rl-
ready noted that the bound-state solution is given

y(x) = (2vo)"' sech(4vnx), (48)

with elgenvRlue

E= —Bv' o.'+ (4vn) '/3,

with eigenvalue

Z, = {4vn)2 2'+ (4va)'/3 . -

and this is the only bound state. It has been
shown by Yukon'0 that the continuum eigenfunetions
of H{) R16

4v ~ '~',-„„„,(k+ i tanh 4v~x)

(84)

We next make a scale change q' =q/Ba and obtain
for the energy shift

~E{'&= —Be lnq. , (86)

which is just the leading term in perturbation
theory, Eq. (24). This analysis suggests" {as
me have pointed out at length in connection with
the piezoelectric polaron) that whenever a» 1
me have strong coupling for the long-wavelength
phonons and meak coupling for the short-wave-
length phonons.

~g(2)
~eco IIaoo

~

q' ~' sech'{q' ——,
'

vk)
(k'+ 1)(k'+ 1+

~

q'
~

/v'a) '

(85)
If the integrand falls off sufficiently rapidly for
large q' me ean expand the energy denominator
in powers of q'/v'o. 'thereby generating a series
in 1/a, with the first term in &E' ' being pro-
portional to e as me mould expect in analogy with
the piezoelectric case." Homever, me can see
that as both q' and k become large, with q' ——,'mk

fixed, the integrand behaves as 1/k and then the
integral diverges logarithmically. If me set the
maximum value of q' and k as q, then the leading
term in the case q» 80, is
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