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The form of the magnetic-susceptibility formula given by Roth and by Wannier and Upadhyaya for
noninteracting Bloch electrons is generalized to include all many-body effects. The arguments used do not

involve any approximations and are entirely based on the translational-symmetry property of the system. Spin

and orbital susceptibility of some well-known cases, Fermi liquid and strongly correlated electrons in a narrow

band, are shown to follow from the most general formula for the magnetic susceptibility of interacting free

and Bloch (with or without spin-orbit coupling) electrons derived in this paper.

I. INTRODUCTION

For over three decades' several studies of the
many-body effects on the magnetic susceptibility

y of free and Bloch electrons have been made. Us-
ing a field-theoretical Green's-function technique,
but neglecting the current vertex corrections,
Fukuyama' has recently given a formula for X of
interacting Bloch electrons. Philippas and
McClure, ' among other things, have established the
validity of the Sampson-Seitz prescription applied
to the Landau-Peierls formula. In their work it
was an essential assumption that the self-energy
function does not depend on the energy variable.
Consequently, Fukuyama and McClure' investiga-
ted the orbital X of an interacting free-electron
gas, taking into account the exact functional form
of the self-energy. Their results yield a general-
ized form of the Landau-Peierls formula.

Thus far, it appears that all studies made in-
volve some kind of approximation, either in obtain-
ing the self-energy part, current vertex function,
or in the band model considered. It would certainly
be more revealing if a straightforward and a most
general type of analysis to the problem could be
employed enabling us to see, and perhaps, under-
stand the exact form that the total y takes for in-
teracting Fermi systems possessing translational
symmetry. It has been the author's belief that an
analysis, entirely based on the translational sym-
metry property of the system, ' should provide the
most general considerations appropriate to the
problem. Indeed, the generalized form of the Lan-
dau-Peierls formula obtained by Fukuyama and
McClure' already supports this view. We shall see
that symmetry arguments enable us to generalize,
in a unified manner, the derivation of X for non-
interacting to that of interacting Fermi systems
possessing translational symmetry.

The purpose of this paper is twofold. First, we
present a more rigorous formulation of the de-

scription of the dynamics of a Fermi system, pos-
sessing translational symmetry, in p-q space la-
beled by a band index A, where p is the crystal mo-
mentum hk (limited to the first Brillouin zone) and

Q is the lattice-point coordinate. Second, we give
a derivation of the exact expression for y of inter-
acting Fermi system possessing translational sym-
metry by use of symmetry arguments.

Section II discusses the effective one-particle
Schrodinger equation for many-body systems pos-
sessing translational symmetry in terms of crys-
tal- momentum and lattice-position operators. The
transformation to these canonically conjugate oper-
ators appropriate for solid-state problems' is car-
ried out by means of the lattice Weyl transform. "
The effective Hamiltonian is then diagonalized with
respect to the band indices defining a new set of
Bloch functions and Wannier functions which are,
in general, energy dependent and biorthogonal. "
In the absence of the magnetic field, the transfor-
mation that diagonalizes the effective one-particle
Hamiltonian operator is just the transformation
from the Bloch function and Wannier function (in
the absence of interaction) to the Bloch function
and Wannier function (in the. presence of interac-
tion) which are, in general, biorthogonal and ener-
gy dependent. In the presence of a uniform exter-
nal magnetic field, the diagonalized effective-
Hamiltonian operator determines a set of magnetic
Wannier functions and magnetic Bloch functions (in
general, both energy dependent and biorthogonal).
Using these biorthogonalbasis states, the free energy
is then calculated up to second order in the magnetic
field strength, using the temperature Green's-func-
tion formalism of Luttinger and Ward, for obtaining
the susceptibility X. The most general expression for
y is then applied to the calculation of spin and or-
bital susceptibility of some well-known cases:
Fermi liquids and highly correlated electrons in a
narrow band represented by the Hubbard model.
Further discussion on the general formula for y,
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regarding the presence of spin indices which are
suppressed in the developments of Secs. III and IV,
is given in Sec. VI.

II. EFFECTIVE SCHRODINGER EQUATION FOR
MANY-BODY SYSTEMS: TRANSFORMATION TO
CRYSTAL- MOMENTUM AND LATTICE-POSITION

OPERATORS FOR SYSTEMS POSSESSING
TRANSLATIONAL SYMMETRY

In this section, we will set up an eigenvalue
problem whose solution fox a zero-field case de-
termines the transfox rnation from the Wannier
functions and Bloch functions of the noninteracting
case to the Wannier functions and Bloch functions
of the interacting case which are, in general, en-
ergy dependent and biorthogonal. The solution to
the eigenvalue proble, in the presence of an ex-
ternally applied uniform magnetic field, determines
the transformation which diagonalizes the effective
HRmiltonlRn with I'espect to the bRnd lndlces Rnd

thus, also determines the transformation from the
magnetic Wanniex functions and magnetic Bloch
functions' ' of the noninteracting case to the ei-
gensolutions of the effective Hamiltonian labeled by
the band index A. . The corresponding "diagonal*'
effective-Hamiltonian operator. in turn, deter-
mines new sets of magnetic Wannier functions and
magnetic Bloch functions of the interacting Bloch
electrons in a uniform magnetic field. These new
basis states are used in calculating the free ener-

gy, exact up to order 5', in Sec. IV.
The effective one-particle Schrodinger equation

in the presence of a uniform magnetic field is de-
fined by"'

[~. Z(z)]y( ) = ~(z) y(z), (2 l)

where Z(z) is the nonlocal energy-dependent (z is
the energy variable) complex quantity called the
self-energy operator. K is given by

3C = —. V; ——A(r) + V(r) —gpss, B, .
e

2ppl g
(2.2)

A(r) is the vector potential [symmetric gauge,
A(r) = —,'Bx r, will be used], B is the magnetic field
strength (directed along positive z axis), and V(1 )
is the average periodic local potential. V+Z(z)
represents the effective potential which is a non-
Hermltlan opex'Rtol leRdlng to the use of blortho-
gonal eigenfunctions, with the dual sets obtained
from the eigenfunctions of K, +Z(z) and its ad-
joint. "'

We will transform the effective-Hamiltonian op-
erator K=X,+Z(z) to an effective Hamiltonian ex-
pressed in terms of the crystal-momentum oper-
ator and the lattice-position operator. ' This is
conveniently done by the use of the lattice Weyl
transform' (lattice Acyl transform and Weyl trans-
form will be used interchangeably) and is clarified
in Appendix A. We obtain

xx„.;)p, 0, )=(xx) Z xxx (p — X(i));8, ]exp —)p —p)'T') xxxx( (t) —i —0)' )fizz
p,q, X, X, '

where the lattice Weyl transform of 3C is defined by

= pe&" ~"~)"(|l—v, z~z, +Z(z)~q+v, Z'),

(2.4)

(2.5)

netic field (often referred to as magnetic Bloch
function and magnetic Wannier function in the
presence of magnetic field), of the noninteracting
Bloch electrons represented by 3C,." If we expand
the eigensolutions oi' (2.3) in terms of the complete
set of magnetic Wannier functions or of magnetic
Bloch functions'

e(r, z) = Pf, (p, z)lp, »,

The summation over p = kk and u is limited to the first
Brillouin zone and the summation over |l and v is
over all lattice points. P and Q are, respectively,
the crystal-momentum opex"atox and lattice-posi-
tion operator. ~p, » is an eigenfunction of P with
eigenvalue p and ~q, » is an eigenfunction of Q with
eigenvalue fl, where ~p, » and ~Q, » are the Bloch
function and Wannier function, respectively, both
without or with an externally applied uniform rnag-

(2 7)

p iV~~ (v;»z)fx % z) =&(z)fx(q, z) (2 8)

and the corresponding eigenvalue equation in p

an equivalent eigenvalue problem is obtained. In

Q space we have
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space is

g W„„,( w; B,z)f, (p, z) =E(z)f (p, z), (2.9)

ber). The eigenfunctions f(p, z) of H~~, and those
of its adjoint define a similarity transformation
which diagonalizes H'„~,. We have

U 'H U=H)5g) i, (2.16)
where

xexp —(p' —v) v

(2.10)

(8/i)V- —(e/c)A(q) in q space,

p+ (e/c)AI(K/i)v&] in p space.

(2.11)

(2.12)

Wyye(z& B&z) = (N)), ) P H) ) g(p B&z)
p', v

where the matrix of U is given by f„, wh. ere f,, de-
notes the ith component of an eigenvector belonging
to the jth eigenvalue of the matrix H», . The ma-
trix of U ' is the matrix formed by e,*, , where e&,.

is the ith component of the jth eigenvector of the
adjoint matrix. U and U ' also determine the
transformation from the Wannier function and
Bloch function of noninteracting Bloch electrons to
the Wannier function and Bloch function of inter-
acting Bloch electrons, which are, in general, en-
ergy dependent and biorthogonal. Denoting these
by ~q, A, z) and ~p, X,z), we have

Since W), „,(n", B,z) is a non-Hermitian operator,
one also needs to solve the adjoint problem, ' either
in q space or p space,

g Wf, z(v; B,z)e~, (q, z) =E'(z)e~(q, z), (2.13)

lp, &, z) = gf;z(p, z)lp ~&,

(p, &,zl =g e~;(p z)(p fl

(2.17)

(2.18)

g W&~, &()); Bz) &e, (p, )z= E*(z) e&(p, z). (2.14) ~q, ),z) =(Nn'')-' ' g e" " P'q~p, z, z), (2.1~)

We have indeed transformed the original integro-
differential eigenvalue equation, ' Eq. (2.1), into a
diagonalization of a matrix operator whose ele-
ments are themselves complex functions of a Her-
mitian operator v. W(w; B,z) may be viewed a.s a
generalized Hamiltonian of the Dirac type' occur-
ring in the relativistic quantum theory of elec-
trons. Since we are using magnetic Wannier func-
tions and magnetic Bloch functions of the noninter-
acting Bloch electrons in a uniform magnetic field
as basis states, Xo is diagonal in band indices and
we may write

W~), ~(w; B,z) = W,(v; B)~5~~.+Z(v; B,z)~~~,

(2.15)

where W, (v; B)~ is the effective magnetic Hamilto-
nian, belonging to the band A. , of noninteracting
Bloch electrons in a uniform magnetic field.

Let us first discuss the solution of our eigenvalue
problem for the zero-field case. The functional
form of W~~, , which we denote by Hzz, , is then
given by the lattice Weyl transform of X,+Z(z) us-
ing Wannier functions or Bloch functions of non-
interacting Bloch electrons. The eigenvalue equa-
tion becomes a pure matrix problem in p space, as
well as in q space if one writesf(fi, z) =f(p, z)e')'q+.
The matrix H~z. can in general be diagonalized if
all the eigenvalues are different; therefore we
make the assumption that all the bands are nonde-
generate (i.e. , band index)). is a good quantum num-

(q, ~, z~ =(Nh')-' ' p e' " )'q(p, ~, z~. (2.2O)

f10(pz)pe(2'I /h)Pv

x(q- v, )). , z~3C, +Z(z) ~q+v, X,z),

(2.21)
or equivalently by

0(pz)pe(2i /h)q ~ u

x(p+u, k, ziX, +Z(z)ip —u, A, z).
(2.22)

Hz(p, z) may be interpreted as an energy-dependent
band function. The one-particle energy z~ belong-
ing to the band index X is, in the quasiparticle pic-
ture, ' given as usual by the solution of

z„-H'(p, z ) =O. (2.23)

III. REMOVAL OF INTERBAND TERMS IN EFFECTIVE
HAM ILTONIAN

The problem of diagonalizing the effective-Ham-
iltonian operator of interacting Bloch electrons in
a magnetic field can proceed in either of the two

In terms of these basis states, H~(p, z)5~&, is given
by
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equivalent routes. The basic idea"'" is that in-
stead of diagonalizing the operator W~„,(Tr; B,z}di
rectly, one tries to diagonalize the lattice Weyl
transform' of K [Eqs. (2.4) and (2.5)j. The power
and advantage of this approach lies in being able to
deal with ordinary numbers instead of quanturn-
mechanical operators. Since the operator and its
Weyl transform are related one to one through Eq.
(2.3), to diagonalize the operator W~~, (v; B,z) we
seek a transformation S,p such that

S,@C,ff S, = H(p —(e/c)A(|l); B,z)&5&z„(3.1)

where we have used = to denote the one-to-one
Weyl correspondence between operator and its

Weyl transform. Using the diagonalized Weyl
transform the transformed effective Hamiltonian
W~ ( v, B,z) for each band index X is thus given, in
pla, ce of Eq. (2.10), as

W~(v, B,z) =(Nh ') ' Q Hq(p', B,z)
p ~ v

22 MIxexp —(p' —v) v
h

(3.2)

The general expression for the Weyl transform
of a product of three operators" applied to the
left-hand side of Eq. (3.1) gives

iheB
2c Bk„ Bk, BR Bk„ Bk„ BE, Bk, Bk„

&(~) z( ) z(~) z( )-
+ ~ @

— - XS '& i(R B~z~)H ~(EBz)S~ &(Q B z), (3.3)

where we have changed variables, p —(e/c)X(q)
-kR;S.p'=S '%, B,z), X„,=,'I(k, B,z), and S,
=S(R, B,z). The procedure is to diagonalize the
effective-Hamiltonian operator, and hence the lat-
tice Weyl transform of X, by means of success-
ive similarity transformations

(3.3), we have

ieI-a a( ) a(') a(~) e(»

x U '~'(k, z) 8'i(k, z), (3.7)

(3.4)

Once S',„can be found, G,', ) can easily be deter-
mined. To find S', we expand H(k; B,z) in powers
of B

H(R, B,z) =H'(R, z)+BH~(k, ) z~+ , (3.5)

and require that the zero-order term on the right-
hand side of Eq. (3.3) be diagonal. Denoting the
matrix which diagonalizes H'(R, z) by U(k, z) we
have

where lv„'U„) indicates that the product is not to
be interpreted as exact product of an operator and
its inverse.

We now prove a theorem useful for making U,p a
similarity transformation up to an arbitrary order
in the magnetic field strength without affecting the
zero-order term H (R, z)&6&~, on the right-hand
side of Eq. (3.3). The theorem states that (U,,'U, „I.
can be made equal to unity up to an arbitrary order
in the magnetic field strength B by means of suc-
cessive multiplication by exponential operators on
the left- and right-hand sides. We have

'(k, z)H (R, z) U(E, z) =Hq(k, z) 6 (3.6)

Equation (3.6) is a pure matrix diagonalization
problem and was already solved in Sec. II for the
zero-field case. There, we have assumed that the
eigenvalues of H (R, z) are nondegenerate; the re-
sulting eigenvectors of H'(k, z) and those of its ad-
joint define a similarity transformation from Wan-
nier function and Bloch function for Z =0 to the
Wannier function and Bloch function for Z c 0, which
are, in general, energy dependent and biorthogon-
al. ' The operator corresponding to U(fc, z), Eq.
(3.6), is, however, a similarity transformation
only for the zero-field case; thus writing U,,'
= U '(E, z), U„= U(k, z), and setting H, ff =1 in Eq.

1 tg

'"&v-.,' '"iv., = g e".'fu-.,'v.,) g e'~'

= 1+ 0(B"), (3.8)

where each successive g,', ' is so chosen so as to
make the product unity up to order i in the magnet-
ic field strength. To prove the theorem we need
the expression for the lattice Weyl transform of an
arbitrary operator A,„raised to any power n. This
is given in Ref. 6, which can be rewritten, for
problems involving uniform magnetic field and pos-
sessing translational symmetry, analogous to Eq.
(3.3) a,s
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~(s) ~(~) ~(S) ~(~)—

x- IIA~'&(k B)+IIgi'&$ B) (39)1

7=n

The lattice Weyl transform of an exponentia, l oper-
ator +op can therefore be expressed as'

exp(g'0 &}=e"'"~:z&+B

= 1+g~' & (k, B) + + R, (3.10)

where B represents the remaining terms and g,' &

=g'&(R, B). A complete iteration procedure for
obtaining S,~ in Eq. (3.4), up to an arbitrary order
in B can now be defined. Let us write Eq. (3.7) as

(U.-,'U„]= 1+Bd'& (R, z)+ B'0'& (k, z)+ ~ ~ ~,

(3.11)

where the explicit dependence of B comes from the
exponential "Poisson-bracket operator. " We
choose g,t& = ——,'BS"(R,z), obtaining

e~ot fU&,'Up)& p =1+B &'&0'&(k, z)+~'&dz.

(3.12)

We next choose g~„'& = —,'B' ''&S~'—&(%;z)resulting
ln

(~) (2)
z 0P e ~P 1U U )e0~ 8 ~ 1+B ~ &S (R z}

+ "&n,. (3.13)

In general order n, we have

(n) U
1 (n&U 1+gP+1 (n)S(n+1&(f z)+(n&~

OP OP 1 R~

(3.14)

and P.", "& can be chosen such that g.", "&

,'B"" ~ "&S~"'"—(%,z). This completes the proof
of the theorem. A trivial example is the following.
Let (U,,'U„] = ezo'Peso» = 1+2BO(k)+ hz, where

0,„=O(B. Choosing g, ', & = —BO(Q we immediately
obtain g &vg op g - p g op= 1 to all orders inB
and the similarity transformation S',

p
= 1.

We now proceed to the diagonalization of X,«-,

Eq. (3.1). We assume that, by the method dis-
cussed above, we have obtained a similarity trans-
formation which make the zero-order term in Eq.
(3.3) free of interband terms. We denote this sim-
ilarity transformation as S,'„Eq. (3.4), and let us
write

-H&', (k, z)5q&, , + BH,„',&

showing that the right-hand side of Eq. (3.16) is
even up to order B. Since H (%, z) is even,
G '

(%, B,z) can be chosen odd. Its matrix ele-
ments is related to that of H„')(R, z) and IZ'(%, z) by
the relation

GI,'&(%, B,z) =(

B[VQ $,z)],,
x [H,

' (Rz) . H, ;(k-z).],
(3.17)

) ~

(3.18)

The procedure can now be reiterated, choosing
d"-&- 4'&(R B z) suet t at [d"(R, B,z), H'(R, z)]
=B' ~'&4~~&(k, z) resulting in

(S,'p) K ft S p Hg(k, z)5&z, +B(H '&(k, z)z&, )+ hz.

(3.15)

Our task now is to diagonalize 3C,ff by method of
successive similarity transf ormation starting with
S,~, Eq. (3.4). For convenience in what follows,
let us define "odd" and "even" operators and ma-
trices. An even matrix is a diagonal matrix and
the corresponding operator is called an even oper-
ator. An odd matrix and its corresponding opera-
tor is one where all diagonal (intraband) elements
are zeros. Even operators and matrices commute,
products of even matrices are even, whereas
px oducts of even and odd are odd. The zero-order
term on the right-hand side of Eq. (3.15) is even,
the remaining terms may be written as a sum of
even and odd matrices. The rest of this section
describes an iterative procedure for removing odd
terms on the right-hand side of Eq. (3.15) up to ar-
bitrary orders in the magnetic field strength. Odd
terms in Eq. (3.15) correspond to the presence of
interband terms in the effective Hamiltonian and
its Weyl transform. To obtain the transformation
represented by Eq. (3.1) up to any order in B, first
we choose G~,'& =G~'&(E, B,z) such that [G~'&(% B z)
H'(%;z)]=BC~](k,z), where H~'„&(k, z) is the odd

part of H '&(k, z) in Eq. (3.15), then it is easy to
see that

"~ e '~ S.', 'X„,S'.,z'" z-"~ =H'(R, z)+aN„'& +B' t'&N. „'& +B'("'H'.„".„+"HQ&)+"&z, (3.19)

with G~'&(R, B,z) given by
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~B'[")H".«) (R, z)], [H,'(R, z) -H', (R, z)] ', I&j,
G(„')(R,B,z) =(

0, i=j.

(3.20)

(3.21)

In general order n, we can choose G(,",")= G("")(k, B,z) such that if

1 n

II e-a, p 3o-X so II ec,"p Ho(k z)+. . .+B"( —)H ) (k z)+B"+ [ H «+ (% z)+ H( ' (g z)]~

then we have
(3.22)

gp+1[(n)g~n+ 1) (f )]
H,'(%,z) fI', $, z—). (3.23)

(3.24)

We now have a complete iterative procedure for
removing the interband terms in the lattice Weyl
transform of R and, through Eq. (3.2), the result-
ing effective Hamiltonian becomes free of inter-
band terms, yielding an effective SchrMinger equa-
tion for each band index A, . The procedure can, of
course, only be guaranteed to converge for very
small fields; for calculating the low-field sus
ceptibility the removal of the interband terms up
to second order in B is all that is required since
higher-order terms do not contribute.

The removal of the lnterband terms ln the lat-
tice Weyl transform of K, described above, sug-
gests a second alternative but equivalent route for
obtaining the lattice Weyl transform and effective
Hamiltonian free of interband terms. This alter-
nate route is believed to be straightforward for
general Bloch bands although the first method may
prove to be quite neat and elegant when there are
very few bands involved, especially in cases where
a small region in the Brillouin zone is all that is
important.

First of all, we note that a lattice Weyl trans-
form of X which is free of interband terms sug-
gests the existence of magnetic Wannier function
and magnetic Bloeh function of interacting Bloch
electrons. One can then proceed in a manner anal-
ogous to that used by Wannier and Upadhyaya,
which is a straightforward perturbative calculation
employed for noninteracting Bloch electrons in a
magnetic field, for obtaining the lattice Weyl
transfox m and effective Hamiltonian, free of inter-
band terms. As in the first method discussed
above, we make the assumption that a well- defined
Wannier function and Bloch function (in the absence
of a magnetic field), which are in general energy
dependent and biorthogonal, exist. This corre
sponds to having obtained the matrix U(%, z) in Eq.

(3 6)-
The starting point in obtaining the lattice Weyl

transform of X, which is free of interband. terms,
is the equation defining the magnetic Wannier func-
tion on the corresponding equation defining the
magnetic Bloch function. In the magnetic Wannier
function representation we have

X= g &)(, q', z, B~X, + Z (z) ~X, q, z, B&

X, q', q

36~)), , q.z. B& = p &)(, fi .B~X,+Z(z)~)(, q.z.B&

x ~)(, q', z, B), (3.26)

and that for &A, , q, z, B~ is

&&, -q', , B~36= p &)). , q .z. B~36,.Z(.)~~, q...B&

ql

x&), q, z, B~.

The form of &X, Q', z, B~K, +E(z)~)),g, z, B& is given
in Appendix B which may be written

&X, q', z, BiX,+Z(z)iz, q, z, B)

= exp[(fe/hc)A(fl). I|']H&(q-fi', B,z)6x), , (3 26)

x
~
X, q', z, B&&)(, q, z, B~, (3.25)

where the matrix elements of K, +Z(z) in general
have dual magnetic Wannie r functions on the left-
and right-hand sides instead of the same wave
function. The equation defining ~X, Q, z, Efj becomes
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l~, q, z, B& = T( - q) IA, o, z, B&

= exp[( —ie/ric)A(r) Q]wx(r —q, z, B),

(3.29)

X,wx(r, z, B)+ d'r'Z{r, r', z, B)wx(r', z, B)

= P ff, (-q', z, a)l~, q', z, a&. {3.3o)

where T( q) -is the magnetic translation operator
defined in Appendix B and wx(r —q, B,z) is the
modified Wannier function centered at the lattice
point q. The equation satisfied by l((. , o, z, B) can
explicitly be written

It is then easy to show that

xl~, q, z, B& = T(- q)zl~, o, z, B&,

which can be written explicitly as

(3.31)

exp ——A(r} q X,(r-q)wx(r —Q, z, a)+exp A(r) qkc Pic
d'r'Z(r —q, r', z, B}w),(r' —O, z, B)

=Z-.(—*'X(q) (( a, (q-((, , a)-s -*'X(') q), ('-s ...a). (s.ss)
qt

Changing the variable of integration r' to r'- q, noting that by symmetry'

Z(r, r', z, B) = exp[( —ie/)ic)A(r) ~ r'] Z(r, r', z, B), (3.33)

where Z(f' —4, &'-Q, za) = Z(r, r'z, a), dividing both sides of the equation by exp[(- ie/8c)A(r) q] and taking
the lattice Fourier transform [i.e., multiply both sides by (1/Nh')'tap-e 'i")a'q] we obtain

K,(p —(e/c)A(r+iVt), r)bx(r, E, B))z+ d'r'e &sai"a&A(s) " Z(r, r', z, B)bx r', k+—A(r —r');B, z
C

= Zs'q "a (q a)s"'"*'""'s
(

q ~ —X(q) a *, (s sq)

where the modified Hloch function bx(r, k, B,z) is defined by

bx(r, lc, B,z) =(Nts') 'i' Q e' "wx(r —q, z, a) =-e' 'ux(r, k, z, B). (3.35)

The equat1011 satisfied by ux(k, 1', z, B) ls

x, j«ks- —1( qs);s, (,k, , a) ~ I s' '«' "' 'z(a, )',, *(, k x, ( ~— '), , a)
C

= Q«' a, (q, z, a)«(s, k. s X(q),...a (s.ss)

Thereafter, a straightforward perturbative solu-
tion can be carried out by expanding all quantities
in powers of B with zero-order terms given by the
field-free quantities. To calculate the low-field X

we only need to expand all quantities to second or-
der in B. The procedure is similar to that used by
Wannier and Upadhyaya for noninteracting Bloch
electrons except for the fact that here matrix ele-
ments are taken with dual wave functions, owing to
the non-Hermitian nature of the self-energy. Let
us write

K =X'+LPC ' +8'K '
'0 0 '0 '0

u x (r, K, z, B) = u'„(r, k, z ) + Bu{' ) (r, k, z )

+ B'u&„') (r, k, z) + ~ ~ ~,

(3.37)

{3.38)

Z(r, r', z, B)=Z'(r, r', z)+BZ(')(r, r', z)
+B'Z&') (r, r', z)+ ~ ~ (3.39)

ux [r, fc+ (e/)sc) A((x), z, B]

=e& i"')A~")'ku, (r, R, z, a). (3.4O)
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We expand both sides of Eq. (3.36} up to sec-
ond order in B and equate the coefficients on
both sides. Multiplying both sides of the re-
sulting equations by the dual set of wave
functions (u5(r, k, z) ~, determined by Eq. (2.18)
biorthogonal to ~u(, (r, k, z)), and integrating, we

(3.41)

We have the following:

obtain for 5 =X the expression for H&~'& (k, z) and
H(&'&(R, z), where

H(,*&(k,z) = P e'~'H('&(q, z).

H&'&(%, z)= u' 36],"+ [ A(Vt)H'(fc, z)] Vg u'
Bhc

+ u) (r, R, z) d 3rez'~ &' '-''&Z"(r, r', z) A(r —r'} ~ V],u~(r', k, z
C

+ uz(r, k, z}
J

d'r'e' '('' '&Z~'&(r, r', z)uz(r', R, z) (3.42)

2
H'z" ()z, *)=( ', ])zan' I "z& ("zlzz'' I"", &

—
( ', Z z'" '~,'(v z)—

Q

(X(vV)ir;((z*)] vV",, ) ~ '', (A(vV)g" (&z)] zvV ', —zz(,"()' )(;z]zP, )

+ uo~(r, k, z}
2d'r'e' '(' '&Z'(r, r', z) 2, A(r —r'). Vg uo~(r', k, z

zv

+ u], (r, K,z), d'r'e'~"(" ' '&Z'(r, r', z) X(r —r') Vgu('&(r', K, z

+ u), (r, k, z)
J

d'r'e' '&'' '&Z('&(r, r', z) A(r —r') Vg u'„(r', k, z)

+ u~(r, R, z) d'r'e' (' '&Z ' (r, r', z)u('&(r', k, z

+ u~(r, k, z) ]

d'r'e' ']' 'Z"'(r, r', z) u'„(r', k, z) (3.43)

To obtain H(,'&(R, z) we need u())&(r, k, z), which can
be written

~

u(' & (r, k, z)) = Q P~ ~ ~ uq (r) %, z)) ) (3.44)

and for A. 0 6, P yq can de determined from the same
set of equations X which determined H~" (k, z). It
is given by (P q (;

= (uo(,
~
u'~&))

(u', (u", ) = —[H', (R, z) —H&(k, z)] '(u', (H(,"')u', ),
(3.45)

where (u(, ~Hz'& 'p ~u'„) is given by Eq. (3.42) with the
band index A. replaced by 6 on the left-hand wave
function. It is easy to see that had we started with
Eq. (3.27) we arrive at

P = —[H', (E,z) —H~(R, z)] '(u~~H('&" ~u(;), (3.47)

which is nothing but the complex conjugate of Pz~
if Q'&" is a Hermitian operator and H (k, z) are
real quantities. Thus our results here serve to gen-
eralize the result of Wannier and Upadhyaya obtained
for the cases where X is a completely Hermitian oper-
ator and its Weyl transform (and hence its eigenval-
ues) is real. For 5= A, Pqqcanbe obtainedfrom the
requirement that the magnetic Wannier functions are
biorthogonal. '" This is expressed by the equation

d'r exp ——(8 x r) ~ (q' —q) 0+~(r —Q', z, B)

xu)), (r —Q, z, B) =5-„-,, (3.48)

where we have written

(u('&(r, R, z)~ = Q p, )(u', (r, k, z)~,

where for 5cA.

(3.46)
(&]. , q', z, B] =exp ——(8xr).Q' Ov~(r —fl', z, B).1 'LO

26c
(3.49)
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Expanding the left-hand side of Eq. (3.48) in powers
of B we obtain the following relations:

(X', q', zj~, fl, z) =5„„ (3.50)

where 0'„+{r—Q', z) -=(x,Q', z ) and M&0&, {r—q, z)
= (X, q, z}. By virtue of the identity

(8 x r) ~(q' —ll) =g.[{r—ii') x (r —il) —{fl'xQ)]

and of Eq. (3.50) we obtain from Eq. (3.51), after
lattice Pourier transformation,

(1) 0
(~l~l 'i'& ( 'i" Iwl& =2~—,g»- g»}

(3.M)

a
"x f0 0

8
(3.53)

8
Yy= Qy 'L ~ Qy ~

0 0

8
(3.54)

Equation (3.52) yields the expression for P~&„

(3.55)

The last result completely determines H('i (R,z)
and H{„'i (k, z) in the expansion of H„(R,z) in powers
of B. The lattice %'eyl transform, which is free
of interband terms, is obtained by replacement of
A R by [8'% —(e/c)AQ)] in H„(%,z) (see Appendix B).
Thus the right-hand side of Eq. (3.1) written up to
second ordex in its explicit dependence in 8, be-
yond the vector potential, is given by

H, [p- (e/c)X(Q}, a, z]
= 8~[p - (e/c)XQ), z]+a@'[p- (e/c)X(|I), z]
+ B'H&~' & [p —(e/c)X(Q), z]+ ~ ~ ~ . (3.56)

IV. DERIVATION OF GENERAL FORMULA FOR x

In this section we will derive the most general
expression for X using the temperature Green's-
function formalism of Luttinger and Nard. " The
magnet lc susceptibility for a system of volume V
ls given by

)( = —llm (4.1)

where Z is the grand partition function. At zero-
temperature limit, we may wx'ite'

{A., Q', z(~{„'&{r-q',z)}+(Q~~'*(r-Q', z)~X, i|,z}

+-,'(je/hc)((Z x r) (q' —q)00~*{r-Q', z)

&~~(r-~l, z))=0, (3.51)

(4.2)

The expression for lnZ as a functional of the tem-
perature Green's function 9& is given by Luttinger
and Vizard

I~-=e(9,, ) T-r Z(9,,)9,, +Trl ( 9-,,), (4.3)

where the temperature Green's-function operator
g& is defined formally by

Q '=g -X —Z

g, = (2I+1)vf/P+ i&.. (4.5)

Tr is defined as Q, Tr, where Tr refers to taking
the trace in any convenient representation. The
functional C {9& ) is defined" "as

y ff

4(9~ ) =lim Tr g —Z~" i(9~ )9~ . (4.6)

Z&"&(9~ ) is the nth-order self-energy part whe~e

only the interaction paxameter A, occurring ex-
plicitly in (4.6) is used to determine the order.
Indeed, C(9~, ) is defined through the decomposition
of Z~" &(9 ) into skeleton diagrams. There are 2n

9 lines )or the nth-order diagram in 4&(9, ). Dif-
f)

ferentiation of 4&(9~ ) with respect to 9& has the
2

effect of "opening" any of the 2n lines of an nth-
order diagram and each will give the same contri-
bution when Tr is taken. " The reader is referred
to Ref. 13 and to the work of Baym, "Bloch,"and
the book of Nozieres" for more discussion of the
functional 4 (9~ ).

It is convenient to work in the coordinate repre-
sentation as a first step to simplify the right-hand
side of Eq. (4.1). The total Hamiltonian in this
representation takes the fox m

(4 4)

d'& 0'.{r)30.&.(r)

where repeated spin indices are summed over, and
for simplicity, we may take Eq. (2.2) for X,.
v 8„,(r, r') is the interaction between a pair of par-
ticles assumed to be velocity independent; this
immediately implies that in coordinate representa-
tion the field dependence of InZ in (4.3) occurs only
through the field dependence of 9& {r,r'). To take

~r
spin into account explicitly, both g&, and Z&, must
be considered as 2~2 matrices in spin indices.
The form of 9~ (r, r') and Z~ (r, r') is given by Eq.
(3:33)by gauge invariance. It is convenient for our
purpose to expand Z z (r, r') in powers of its ex-
plicit dependence on the magnetic field (beyond the
Peierls phase factor) and write
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Z& (r, r') =Z'„(r, r')+BZ&)&(r, r'}
+B'~&'&(r r')+ ~ ~ ~ (4.8)

where the remaining field dependence of Z
&

(r, r'),
&g

Z('&(r, r'), and Z(&'&(r, r') occurs only through the
Peierls phase factor. We now wish to evaluate
921nZ, 'dB2 using Eq. (4.3). We have, using the
definition of C (9& ), the following relations:

4)( 9(, )

aB'
=Z Jd d "('z'('(r, ') "(, ', ii)'l

B ~0 B~O

)2
(4.9)

2

TrZ 9„=—p d'rd'r' 2Z(&'&(r, r')9~ (r, r', B)
~l ~r

B ~0 E

02
+Z' (r, r') —,9, (r, r', B)

+ 2Z&&'&(r, r') —g„(r, r', B)

(4.10)

The above relations lead to a more convenient expression for X,

1 8' 1 1 1 -, - 1
,, —Trln(- 9 ) + — —Tr2Z('&9. +—TrZ '& —9

V gB'P p K~ (g
B~0 B~0

(4.11)

where Z~&' ' are field-independent quantities. The
1

advantage of this expression, aside from calcula-
tional convenience in what follows, is that it al-
ready displays some familiar features. The first
term in Eq. (4.11) has exactly the sa.me form" as
that of the noninteracting Fermi systems, except
for the replacement of the "noninteracting 9&

"
by

the exact g& for the interacting, free, or Bloch,
electrons. The second term can be immediately
recognized as correction to the "crystalline in-
duced diamagnetism" calculated from the first
term. The last term turns out to contain correc-
tions to both the "crystalline paramagnetism" and
"crystalline induced diamagnetism" as calculated
from the first term in Eq. (4.11).

We now take advantage of the fact that, for sys-
tems possessing translational symmetry, the trace
over wave vector K and band index X can, conve-
niently, be carried out in terms of a Weyl trans-
form, discussed at length in Sec. III. We are, in
the present case, of course, interested in the ef-

fective one-particle Schrodinger Hamiltonian"

KO + Z g (4.12)

which is formally the same as that of Eq. (2.1),
with the replacement z —&', (we have chosen to in-
dicate the discrete frequency dependence of opera-
tors by a subscript). Therefore, all the results of
Sec. III can be formally carried over to apply to the
effective Hamiltonian given above. The beauty and
power in the use of the Weyl transform isthat the
Weyl transform of an operator is a physically
meaningful quantity and faithfully corresponds to
the original quantum- mechanical operator. More-
over, it provides a, natural way of calculating the
trace of any function of 3C as a power-series ex-
pansion in h, Planck's constant, which is equiv-
alent to an expansion in the magnetic field strength
for Fermi systems possessing translational sym-
metry. We have, for an a.rbitrary function I'(X& ),

1
the following expression' '.

3 1 I' g 2~rO 2—

T F(x, )=(& Z d'kd'i)F( $H, ) ii- ()i2,
ii'"(0', t(, i, )) ~' 'k. —

& k
()(8')'

(4.13)

where, p —(e/c)A((q) in (3.56) is replaced by II% in
Eq. (4.13). In the above expression, it is assumed
that if~(k, g, ) is diagonal in spin indices; this is
generally true for nonferromagnetic systems. ' The
first term in Eq. (4.13} can then be expanded up to
second order in B using the expansion given in Eq.
(3.56). Applying this result to the first term of

Eq. (4.11), we obtain

1 8' 1—Trln( —9 )VaB' P ~s
B ~0

where

=
X Lp+ X cp+X~D

(4.14)
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1 e 1

&& 9', (%, f, ), (4.15)

—
g 200 g 2~v g2 ~P 2

~
L sp sp s}&„sk,

even in the Hartree-Fock approximation and in the
noninteracting case."

We consider the correction terms represented
by the last two terms of Eq. (4.11). As we have
mentioned earlier, these corrections only modify

y~~ and X~D, but do not affect X». Let us recast
the last two terms of Eq. (4.11), which we now &le-

note by X„„,and write them as follows:

(4.16)

x, = —Q 2 J kdk 7' Z2H ~(&~, k)9 (k,

(4.17)

(4.18)

In Eqs. (4.15), (4.16), and (4.17), taking the trace
over spin indices is implied. X~p is a generalized
Landau- Peierls formula for the orbital diamagnet-
ism of free and Block electrons. It is for the case
of an interacting free-electron gas that this term
was derived by Fukuyama and McClure. ' In the
limit of vanishing self-energy parts, Eq. (4.14)
exactly reproduces the expression for y of Bloch
electrons, both with or without spin-orbit coupling,
as given by Both, and by Wannier and Upadhyaya, "
respectively. Moreover, when the self-energy
part is assumed to be independent of („which
holds true in Hartree-Fock approximation, the
form of Eq, (4.14), after summation over f„ is
exactly the same as that of the noninteracting case.
y~~, which includes the effect of free-electron
spin, wiQ be referred to as the crystalline para-
magnetism, and g, , the induced diamagnetism,
although its sign cannot be determined a Priori

Recall that in the coordinate representation, the
Peierls phase factors occurring in Z&",

' and 9&,
cancel. However, it is convenient to retain these
phase factors in Eq. (4.19}as the trace will now

be taken using the biorthogonal magnetic function
representation discussed in Sec. III. The trace
would then be expressed in terms of the Weyl
transform, where indeed the Acyl transform of
9& is diagonal in band indices, resulting in much
simplification. We have'

&&P[Z&»(k, B,g, }+2HZ&"(k,B,g, )]

x 9„(k,B,g, ), (4.20)

where in the last equation a familiar change of
variable has been made, p —(e/c}A(q) -hk, and
from Eq. (3.9) we have

Q~(k, B, (&)=[t&—Hi(k, B,g&)] '+O(B ). (4.21)

H„(k,B,g, ) is of the form given by Eq. (3.56) with

the replacement z -K, . Since we need Z&», (%,B,f,)
only to zero order in the fieM, the calculation of
the second term in Eq. (4.20) is trivial. Denoting
this contribution as y,", , we have

(4.22)

y,'„', is indeed a correction to X» as can be seen
from Eqs. (4.17) and (3.43). Further clarification
of the above result can be obtained from the cal-
culation Z" &(k,B,g,). To find Z&'&(k, B,g, ), we
utilize the results of Appendix 8 [in particula, r
(814)] and write down the effect of operating Z~" &

on the magnetic Bloch function (same relation
holds for Z&&2&)

The Weyl transform of Z&" &, as defined by (A4},g g

is

+u, X, f&,B Z&
~ p —u, X', g&,g,

Z&&', &lp, & t&»=Ze*""[Z,",&(q»}]u
qp }t'

&&
l p+ (e/c)A(q), ~', g„B). (4.23) and by virtue of Eq. (4.23) we obtain

(4.24)
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e «»&P'P[E &»(v B)]
~

~

~

( e/ c)A (v) /2 XX'

=pe p —(p- —'A(q) v [B,",'(v, p)] .,
V

which in turn yields

(4.25)

(4.26}
]

EA'A'(p, q, &&, B}I; (.g. &-.(,-, .-. = e'"'[L,",'(v B)],;

We are therefore interested in the right-hand side
of Eq. (4.26), to obtain this we may proceed in a
manner quite similar to that used in Sec. III, i.e.,
Eqs. (3.30)-(3.43). However, at this stage, Eq.
(4.23) provides a very good starting point. The
relation between

l p, ][,g „B)and the modified
Bloch function f&k(r, k, B, f&), used in the perturba-
tion theory of Sec. IG, can be easily deduced from
Eqs. (3.29) and (3.35)

l p, & ) 5 „B)=b,[r, k- (e/Ac)A(r), B, K&]. (4.27)

Let us make the substitution p -p'+ (e/c)A(r) in
Eq. (4.23) and obta. in the relation

=Re p —p'+-A( )) q [B["(&,B)l., k, (,p'" —A(q), B,( ).
q ~ )t'

(4.28)

The equation in terms of the modified periodic function u„(r, k, f„B)is therefore given by

Je'"'"'-"Z,"'(, '), ', k+ —A( '), („B d'r'=pe'"'[Z], '(q, B)]. .. , k+ —Aiq), !;„B).fg Nt

qq X'

(4.29}

Equation (4.29) corresponds to Eq. (3.36) of Sec. III. Perturbative treatment can then be carried out, using
Eqs. (3.38) and (3.39), and solutionisobtained up to first order inB for Z,&&„&(k, B,g,). Writing

Z"'(k B g ) =Z""(k g )+Br"'"'(k, g )+ ~ ~ ~, (4.30)

we get, by equating the zero- and first-order coefficients of B, the following relations:

(4.31)

Je'"''" "2"'(r r')u"'(r' k g )d'r'+ e'"''" "Z"'(r r') A(r —r') qp'fu'(r' k g )d'r
r Bkc

=Re'"'([Bl', "(q)] B,A(q) Vtel (,k, k, ) ~ [B,","(q)],; l"(r, k, k, ) ~ [Bl,""'(q)]„ l (,k, (,)).
q, X'

(4.32)
These relations yield for ZI&&0(k, g, ) and ZA"„&&»(k, g, ) the following expressions:

(4.33)

B ""(k k)=('(" k () ] d' ' '"' ' ''Be"t" "')""'( ' k P ))

(4.34)
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The first and last terms of Eq. (4.34) can be combined through the use of Eqs. (3.44), (3.45), and (4.31)
to yield

~&(r, k, K, ) ~
&'~'e' ' 'Zp, '(r, r') s',"(r', k, &, ) -g&',",'(k, g, )(u', (r, k, g, )( u,"(r, , k, g, ))E

V

2 IIy~ —Hy up K,r, u), ~ u)ti ICE u)

—g (H). -H~) ' ((uq [XP uq)(uq~X~' uqi) +(u)(X~ u);) (u')(X ~u')~),
V&X

(4.35)

where the operators XI,' and Xz' are defined such that (M J XI) u), ) is given by the first two terms, and
(uo~(X'„"u), ) by the last term, of Eq. (3.42) (z f,-and 1', occur as subscripts in Z"'). With the aid of Eq.
(4.31) and noting that the vector potential function used is in symmetric gauge, the second term of Eq.
(4.34) can be shown to be equal to the third term. Putting all these results together, Eqs. (4.22), (4.30),
and (4.33)-(4.35) in Eq. (4.20), we obtain the total susceptibility correction 1„„as

P

l d'kA T 2 uz r, k, (, d'r'e' ' ' Z&' r, r' A r —r' '&qu), r', k, f, 9), k, g

d I k, T Hk, H, v X~( uk ux X(h gv
V~X.

+(uilXg'u~)() ilX~" s~&) 9~(k &(). (4.36)

The second term gives a correction to pep and the rest are corrections to g,o. %e shall see that these
eorreetions to yzp and gz, lead, among other things, to the cancellation of the appearance of quadratic
terms in Z&', as well as the total cancellation of the appearance of Z&", . This important cancellation is
expected and is in agreement with the work of Phiiippas and McClure. Using Eqs. (3.42) and (3.43) to
write down pep and g,D explicitly and denoting the corrected &cp and pm by gcpandg, , respectively, wemay
write the total magnetic susceptibility of interacting free and Bloch electrons as

E Z
X =Xgp +Xcp+XID.

1„p is given by Eq. (4.15), perp and y,n are given by the following relations:

3

pep
——— — d &AT &),' k, g) ~ +Hg k, f, gag' (k, g, )g 9), k, g), (4.38)

&('n =-Z — ' d'&4~+2+'~"(k &))9~(k, &(), (4.39)

where

H,")(k, g, ),=(u', ~X(')+(et&@c)[A(~-„)&;(k,g()J &, u',)-
+ u& r, k, P, ) d'r'O' ' '

Z& r, r' A (r —r' &&u& x', k, P,),



MAGNETIC SUSCEPTIBILITY OF INTERACTING FREE AND BLOCH. . . 3323

)»F'(), (,)=(",)»e!*'I",&»(",I»»,"i.("&-(", F.""'»(l(i, ()—„(~~,~(i) ~»)»')

+ +k. A ~k HX ks ~1 +k~kBhc

+ sk g [~( (() x (k»fi)] ' ~ ((uk -+k (k» 4))»)- g
- uk ~ - sxo (~» ~ o "(j» o o o o

Bkc ' ' 4 Sc Bk~, ek, 8k„&k~
+ uq r, k, g, ,

ps~i ~ jk
2''" 'z'» (, »') — A( -»')»»»»»'(r', )», K, ))

+ uo», r, k, f, d3Y'e' ~' '»Zo& r, r'
@

A r-r' '&kuq~'» r', k, f,

—p Hy~ —EPy 'R)~ Xg Q) Qy Xg Qyi —Qy Xg My~ Ry~ Xg Q), (4.42)

Indeed, X is a linear function of the opera, tox
&&('» and is independent of Z~&2».' For reasons which
maybe clax ified in some well-known cases, we
will refer to the Z&~', » term in Xcp as the "enhance-
ment term. " Consequently, we will also refer
to the Z&~~» terms in X,~ as the "second-order
effect of the enhancement. "

V. APPLKATION OF GENERAL FORMULA TQ SOME
KNOWN CASES

It mould be enl. ightening to apply the general
expression, Eq. (4.37), for y to some very well. -
known cases. We will, continue in this section
by applying the genera. l formula to (a) a Fermi
liquid and to (b) a system of strongly correlated
electrons in a narrow ba, nd represented by the
Hubbard model. . We will. treat this last case only
in Hartree-Pock approximation for simplicity.
In what follows, electric charge e ——e.

A. Fermi hquid

Since the periodic wave function uoz(r, k, g, )
occurring in Eqs. (4.40) and (4.42) is a constant
quantity for Fermi liquids, ' we can immediately
write down the magnetic susceptibility of the
quaslpartlcl. es as

Fex'mi-liquid pax"ameters. We immediately iden-
tify, upon examination of Eqs. (3.56), (4.40), and

(4.41), the following relations:

H', (k, g, ) =e'(k)
0 1

0
Hk (k» Ct)(l"»8»0 (5.4)

~'e' -1 0

m*0~

Substituting these quantities in )(', cp» Eq. (4.38),
we get

X;p = [(1+3&,)/(1+ fan. )]Xp, (5.6)

where X is the Pauli spin susceptibility for a
nonlntel acting electx'on gas. The cal.culation of
X„p is very elementary and the total X is thus
given by

X= (1+3&,) 'XL&+[(1+k&,)/(1+fan. )]X',. (5.7)

This is a very wel. l.-known result for the orbital
and spin susceptibility of Fex'ml liquids. Note
that a small effective mass enhances Xop.

Z
X =XLp+Xcp. (5.1) 8. Hubbard model in Hartree-Pock approximation

We obtain using Eqs. (4.62), (4.6V), and (4.69)
of Ref. 18, the total quasiparticl. e energy [more
appropriately the Acyl transform with
p+(e/c)A(q)-gk] in a magnetic field as

»), ()», )), (,&=»'()») (', )»»»», (',)

m*4~ o 9

where m*=(1+ ~A. ,)m; A, and J30 are well-known

The model under consideration assumes that
there is only one band of interest energetical. ly
fa,r removed fx'om the other bands. For a vex'y

narrow band we may write
K Z

X —Xcp + Xgo ~

Upon transforming Eqs. (4.75) and (4.76) of Ref.
18 to A space, we have for the expression of the
total. Hubbard Hamiltonian in a, magnetic field in
the Hartree-Fock approximation as'9
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B= ek nkcr + l nko nk, —0
k, a k, a

+~@ p, eBQ[n(k, 0) —n(k, 0)].

Therefore, H~(k, B, P, ) is given by

Hq(k, B, g, ) =e(k) +I
0 1 0 (n(k &))

+g gpaB (5.10)

In view of the fact that ( n(k, k)) is greater than
(n(k, t)), we may write

( n (k, i) ) = n + 6n,

( n(k, i)) =n —6n,

(2 N6n/V) ,' g pe = X-cp B,

and readily obtain

(5.11)

(5.12)

(5.13)

H;(k, g, ) = [e(k)+In]
0

-(~} ( I 0
H~ (k, &i)~ =.gu s

0 —l

t(V/ )x A(1 0

)gp, g

(5.14)

(5.16)

Upon substitution of these quantities in Eq. (4.38),
we obtain

2f(V/N)X,
Xcp =Xo I

( ~ )a
(5.17)

leading to the Stoner criterion for the appearance
of ferromagnetism. " To obtain y», we note
that

W&,"(k g )=(u', (r, k)(X,"'[;(r,k)), (5.18)

where Pq(r) is the atomic orbital of the band. For
most purposes g,~ is neglected and g —pep.

the second term, representing a Van Vleck para-
magnetism, and last term of Eq. (4.42) are ne-
glected since the band of interest is energetically
far removed from other bands. The third up to
sixth term, inclusive, are neglected by the as-
sumption of a very narrow band and the rest of
Eq. (4.42) is neglected due to the 6-function local-
ity" of Zz, (r, r'). Expressing e' ' ' uq(r, k, &, )
as a linear combination of atomic orbitals we
obtain, upon substitution in Eq. (4.39), a familiar
"atomic diamagnetism" multiplied by the total.
number of el.ectrons N in the band

Xf, =-(Ne'/4~c')(4 ~(r)l x'+y'I @~(r)&, (5 18)

VI. DISCUSSION

The results presented in this paper provide a
powerful. and rounded theory of the dynamics of
a Fermi system possessing translational sym-
metry. Moreover, the derivation of g sheds more
light and understanding on the role of symmetry
arguments in unifying the calculation of y for
Fermi systems, interacting or noninteracting,
possessing translational symmetry in a uniform
magnetic fieM. We have obtained a most general
expression for y which includes both the spin and

orbital susceptibility and have at the same time
given a more general proof of the validity of the
Samp$on-Seitz prescription, ' applied to XLp for
cases where the self-energy part is independent
of frequency.

To avoid confusion, the discussions of Seos.
I-V did not explicitly take into account the pres-
ence of spin indices; this has been only briefly
alluded to in Ref. 7. As mentioned in that ref-
erence, the method discussed in this paper re-
quires that in the absence of the magnetic field
the eigenvalues of W~~, (v, B, f, ) [Eqs. (2.8)-
(2.10)] [IVqq (rr, B, f, ) =Hqq (p, f, ) in the absence
of B] are nondegenerate and for each band index
& these eigenvalues which we represent by Hz,
Eq. (2.16), are proportional to 6„8 in spin indices,
thus commuting with other 2 ~ 2 matrices. This
appropriately limits our discussion to nonferro-
magnetie substances. In the presence of a mag-
netic field the self-energy operator in Eq. (2.1)
becomes spin dependent, therefore, Hl~'~(p
—(e/c)A(q), &,) and HP'(p —(e/c)A(q), &, ) ob-
tained from Eqs. (3.42) and (3.43), respectively,
are 2x2 matrices. In other words, each band
index ~ is a two-dimensional space. Intraband
as well as interband matrix elements, in the
perturbation theory of Sec. III, are to be under-
stood as 2x2 matrices, and hence, taking the
trace over spin indices is implicit in all expres-
sions for Tr.

We now wish to make some general comments
regarding spin indices. Spin degeneracy occurs,
both for noninteracting or interacting Fermi sys-
tems, with or without spin-orbit coupling, in non-
ferromagnetic crystals with inversion symmetry
in the absence of the magnetic field. When spin-
orbit coupling is taken into account in the Ham-
iltonian of Eq. (2.1), we add to R, of Eq. (2.2) a
term

5 k e, , V, V(r) x —V, ——A(r) ~ g4m'e' C

and Z& describes, as before, the residual elec-
tron-electron interactions. " Usual space and
time-reversal symmetry arguments" then lead
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to spin degeneracy both for noninteracting and
interacting Fermi systems in nonferromagnetic
crystals with inversion symmetry in the absence
of B. The general treatment regarding spin goes
as follows. Each band index ~ is treated as con-
sisting of two degenerate states" (with spin-orbit
coupling these states cannot be pure spin states)
and in the (p —q) dynamical representation, f ~(p)
and f ~(q) in Eqs. (2.8) and (2.9) will be two-com-
ponent functions for each band index ~ and each
element W),„.(7r, B, f ))will be a 2X 2 matrix. In
the absence of magnetic field the eigenvectors
of H~~, (p, f, ) determine the transformation from
the Z& =0 degenerate states to the Z&, 4 0 de-
generate states, labeled by a band index ~.
HS,"(p —(e/c)A(q), g, ) and H& '(p —(e/c)A(q), g))
as well as matrix elements in the perturbation
theory are, themselves, 2X2 matrices. In this
way discussion of problems with or without spin-
orbit coupling are formally identical.
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A», (p, q) = Q e"'")~'&p+u, x A., lp -u, x'&,

(A4)

n» (p, q)= pe ' 'lq+v, »&q —v, x' . (A5)
V

We now introduce a lattice-position operator Q
and a crystal-momentum operator P, defined with
the aid of w„(r, q) and b, (r, p), a.s

Plp, »=p p, »,
Qlq, »=qlq, ».

The significance of P and Q can be appreciated by
showing that they provide the appropriate canoni-
cally conjugate dynamical variables very useful
in discussing band dynamics. ' The Weyl trans-
form of the commutator of P and Q is'

lP„Q,]„(p,q) = (h/i)5, ,5„., (A 8)

and hence [P„Q,.] = (h/i)5, , Moreover, using Eqs.
(5) and (6) of Ref. 6, we can write

Qlp, »=(h/i)V;lp, »,
P

l
q, » = -(8/i) v& l q, »,

(A.9)

(A 10)

and for any function P(r), expanded in terms of the
complete set

l q, » or lp, », we have

APPENDIX A: DERIVATION OF THE EFFECTIVE
HAM ILTONIAN

&..= («) 'Q A» (p q)~» (p q) (A 1)

where A», (p, q) and h», (p, q) are given by (q and
v are restricted to lattice vectors)

g„.(p, q) =Q e"""""&q-v, ale. , lq+v, I).'),

(A.2)

The transformation of the one-particle effective
Hamiltonian expressed in "bare" dynamical vari-
ables into an effective Hamiltonian in terms of
crystal-momentum and lattice -position operators'
can be carried out in rigorous fashion using the
Weyl-Wigner formalism" of the quantum theory
of solids. Let zv~(r, q) be any complete set of lo-
calized states labeled by a band index X and a lat-
tice point q and let b, (r, p) be its lattice Fourier
transform. We use ket and bra notations. ' The
following identity holds for an arbitrary operator
A, :

PC(r) = P [pf, (p)] lp».
p, X.

&6) )=E —.ee;f.)6)) 6, »,
q, X

Qc(r)=Q [qf.(q)]lq, »,
q, )t.

6)6)')=F ——. eeef (6)) 6, ».
2

p, X

(A 11)

(A 12)

(A 13)

(A 14)

q+v, »=exp[ —(2i/h)P v] q —v, »,
q —v, »&q —v, x'l

(A15)

where

= (N16) ' E eep —(6 —e - 6)l )))„., (6 16)

These results enable us to express the quantum
dynamics of band electrons entirely in p-q space.
The above results depend, of course, on the exis-
tence of continuous functions of q, having infinite
radius of convergence, which give the right values
at the lattice points. ' "

The following identities can easily be verified:

n» (p q)=pe""""'"lp-u»&p+u ~'l (A3)

or by the equivalent expressions

Q». = Q l
q)»& q, x' l,

0», = Q p, »& p, I).' l,

(A 17)

(A 18)
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2gx exp —(q-v —Q) ~ u II», ,

and find

A„g(r)

(A 19)

2'- I=(Nh') '~ A», (p, q)exp —p ——. Vz, v
i

4;d, p

2
&& exp —(q-v —q') u

' f (q')lq' » (A.20)

Equating the right-hand side of Eq. (A 36) to Eg(r)
to obtain an eigenvalue equation, we have in p-q
space,

(Nh') 'P A». (p, q) exp —p ——. V;, v
y, g, X'

x eep —(q —v —q') }f(q')= Ef,(q. '). ,

(A 21)

and by virtue of the above identities we may there-
fore write

(p, q)=(»)'Z eep —„(p -p) )V
Vp ll

of p' and v does not simply result in the replace-
ment of p' by% in H». (p',B,z).' The replacement
rule is only valid if H». (p',B,z} is a polynomial
of order 2 in p'. Thus in general we must write
the effective Hamiltonian in q space as, Eqs.
(2.8),

Z &» (z B z)f~ (q) = &f~(q}. (A 24)

The corresponding equation in p space can easily
be deduced from Eqs. (All)-Eq. (A14). This is
given by Eqs. (2.9) and (2.12). Indeed in the ab-
sence of the magnetic field and for Z(z) = 0 in Eq.
(2.1), we have W», (p) =E,(p)6», , where E, (p) is
the energy-band function, with trivial solutions

f(p)=const and f(q)=(NS') ' 'e" "'I'~.

Because of the complicated many-body character
of Z(z) due to its dependence in the energy varia-
ble, the effective Hamiltonian in Eq. (A24) is in

general non-Hermitian; the eigenfunctions, though
complete, ' are not orthogonal. Thus one needs to
solve the adjoint problem and this has been dis-
cussed in Sec. II. Except for the extra dependence
on the energy variable z, magnetic field, etc. , re-
lations (5)-(15) of Ref. 6 hold for the biorthogonal
Wannier functions and biorthogonal Bloch functions
and using these as basis states the effective Ham-
iltonian assumes a "diagonal" form. Thus in the
absence of the field we have

Now let us take the operator A„ to be the effective
one-particle Hamiltonian K defined in Eq. (2.1).
It is shown in Appendix B that the lattice Weyl
transform X is of the form where p and q occur
only in the combination p —(e/c)A(q). Using this
result in (A21) we have

(Nh )
' Q H», $';B, z)

R',« = (NI') ' g H,'(p, z) exp —(p —P) ~ v
5 1~&

x eep —(q —v —()) )()„,

where

0»= p, X, z p, A. , z
5

(A 25)

(A 26)

2g,
x exp —p'+ —A (q) ——V, vc i

x exp —(q- -q') }f.. (q')=pf(q').
h

(A 22)

Performing a summation over q and u, we obtain,
after some simplification the following

(»)' g -(p', , )e"'""'"'f (q)= f.(q},

(A 23)

where )) = (n/i}V& —(e/c)A(q). Because of the non-
commutivity of the components of m, the summation

Ij„=Q q, x, z)(q, z, zl . (A 27)

H~(p, z) is given by Eq. (2.21) or (2.22) and lp, a, z),
(p, X, zl, q, X, z), and (q, X, z are defined by
Eqs. (2.17)-(2.20). In the presence of the magnetic
field, we have shown in the first part of Sec. III
that the lattice Weyl transform of 3Co+ Z(z) and the
effective Hamiltonian in p-q space can be reduced
to an even (diagonal) form. This important re-
sult suggests the existence of biorthogonal rnag-
netic Wannier functions and biorthogonal magnetic
Bloch functions satisfying the relations (5)—(15)
of Ref. 6 and this idea leads to another method,
discussed in the second part of Sec. III, for ob-
taining the lattice Weyl transform, free of inter-
band terms.
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APPENDIX 8: LATTICE WEYL TRANSFORM OF
ONE-PARTKLE EFFECTIVE HAMILTONIAN

The lattice %'eyl transform of the one-particle
effectic-Hamiltonian operator is defined by (A2) or
(A4) with the arbitrary operator A„replaced by
Xc+ Z(z), Eq. (2.1). It is convenient to introduce
the magnetic translation operator" defined by

In other words, T(q) generates all the magnetic
Wannier functions belonging to a band index X

from a given magnetic %annier function centered at
at the origin. Using notation in Appendix A we
have

«)(r, q) = T( q) ((),(-r, 0)
e

=exp ———Ar 'q ao r —q. 83)t

T(q) = exp ——. (/r+ —A(r)c (81)
T(q) commutes with X, and moreover

lq, )&& = T(q) IO, )(&. (82)

where A(r) is the vector potential, A(r) = z 8 x r,
and q is the crystal lattice vector. In terms of
this operator the following relation holds for the mag-
netic %annier functions:

T(Q)T(P} eec —=X(il) P} T(Q+P).Sc (84)

By virtue of the last equation we can write the ma-
trix element of X,+ Z(z) between two magnetic
%annier functions as

«+ p ) IX.+ Z(z) lq+ p' ) '&="""""'"'""'&&p ) IX I
p' ~'&+&p ) IT'{q&Z('&T{q&

I
p' ) '&}.

The second term within the curly brackets can be written

(p r(T (Q)r(e)T(Q)(p', e') J e're'r'e '" "*'*'e' rre, (r+p)e "' "*' ' ' rr(r —Q, ', *)

x e(ie/hc)XfP') fe(iel hc)~(i" +g) ~ P'~ (r& + +

Changing the variable of integration r'- r' —q, with Jacobian unity, we obtain

& p )
I
Ttgq)Z(z) Tgq)

I p ) &
't dhiedh&ee ( e/ (c)hA r) &c ~P {re'+ p) e-((e/hc)A(r) QZ(r 'q rl q z)e(ie/hc)A(r') ~ ()

X e(ie/hc)A(re) Pe~ Pe +~pe)

We now make use of the form' of Z()', i",z) given
by Eq. (3.33). Substituting in {87), we obtain the
result

& p, ~IT'{q)Z(z&T{q) I p, ~ &=&p, 1IZ(z&l p, '&,

%annier function is therefore given by

c&ie/hc)A(r() ~ (('F (q q ) Iql ) l&

(813)

and thus we can write (85) as

&q+ p, XIX,+ Z(z) Iq+ p', X'&

e(ie/ c)X(r)) (Z P)
& p )& IX + Z(Z-)

I
pr ) e&

Taking the lattice Fourier transform of (813), we
obtain the effect of operating Xc+ Z(z) on the mag-
netic Bloch function

xlp& = Q e((/h'"QF„. ,(q) Ip+ (e/c)A(q), x

F».(p' —p) =(p —p', )(IXc+ Z(z) I0, )&'&,

F„,(p' p) =&0, )(IX,+Z-(z)
I

p'- p, )('&.

(811)

(812)

The Hamiltonian Xc+ Z(z) operating on magnetic

The last equation implies

pe& lx+z(z) I
pl gl&e((e/hc)A(P)PF(pl p)

(810)

where F».(p'-p) is a function which depends on
Wp
P —P» ) ~

H,„,{p,q) = Q exp —p ——A{q) ~ 2V F„„,(2v).
~0 c

%'riting

(815)

It is now a trivial task to take the lattice Acyl
transform of Xc+Z(z), defined by (A2) and (A4).
Using (813) and the identity (q+v) x (q —v) = —2q
xv, we obtain
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{817)

Egllation (817) will of collrse be diagonal in band
index if biorthogonal magnetic %annier functions
or biorthogonal magnetic Bloch functions, dis-

cussed in Sec. III, are used. This will result in
an effective Schrodinger equation in p —q space
for each band index X, following Eq. (A23). A
%KB solution of this equation has indeed been
recently employed by the author" in discussing
the influence of scattering or magnetic break-
down in zine alloys, assuming for simplicity that
the imaginary part of W„P)5». is a constant.
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