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We use a transfer-Hamiltonian formalism to develop a theory for the intensity of vibrational modes in
inelastic electron tunneling spectroscopy (IETS) of organic molecules in metal-insulator-metal junctions. The
initial and final electron states are localized on opposite sides of the insulating barrier and are described by
Wentzel-Kramers-Brillouin (WKB) wave functions. The interaction potential between the tunneling electron
and the vibrating molecule is a sum of Coulomb potentials; each element in the sum corresponding to a
partial charge localized on an atom in the molecule. The theory predicts properly the magnitudes of the
integrated intensities in IETS as well as the ratio of intensities for opposite bias voltages. It also predicts that
Raman-active modes should be comparable in intensity to infrared modes, even neglecting bond
polarizabilities, and that modes forbidden to optical spectroscopies may be observable in IETS. We further
describe how the orientation of the doped molecules on the surface can be inferred from IETS intensities.

I. INTRODUCTION

Inelastic electron tunneling spectroscopy (IETS)
is a sensitive technique for measuring the vibra-
tional spectra of organic molecules in monolayer
and submonolayer coverages on solid surfaces.!+?
Measurements are done on metal-oxide-doped
impurity-metal tunneling junctions. The spectra
obtained are the second derivatives of the current-
voltage characteristics of these junctions: spe-
cifically, d?V/dI? as a function of voltage V.
These second-derivative curves show sharp peaks
at voltages corresponding to the vibrational mode
energies of the doped impurities. The peaks occur
because of the opening up of inelastic tunneling
channels in which the electrons start from a filled
state in one metal electrode, lose energy in ex-
citing a vibrational mode of the doped impurity,
and finish with sufficient energy to find an unoc-
cupied final state in the other metal electrode.

The vibrational-mode energies as measured by
IETS can be used in the same way as in infrared
and Raman spectroscopy: for identifying unknown
compounds and for obtaining information on molec-
ular structure. The energies measured by IETS
can be directly compared to those measured by
infrared and Raman spectroscopy because energy
shifts due to the top metal electrode are generally
small, especially for modes below ~200 meV
(1600 cm™).3

The vibrational-mode intensities as measured
by IETS have not yet received much attention. In
this paper we show that these intensities can be
calculated and that they contain useful information
on the orientation of the molecular adsorbate.

Soon after the initial work on IETS by Jaklevic
and Lambe, Scalapino and Marcus® formulated a
theory for the peak intensities by including the di-
pole potential of the molecule and its image in the
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barrier potential and calculating the excess tun-
neling current within the WKB approximation for
infrared-active modes. Jaklevic and Lambe® ex-
tended this analysis to Raman-active modes by
including molecular polarizabilities. Duke® de-
scribed a transfer-Hamiltonian technique based
on first-order perturbation theory to model the
effect of inelastic impurity excitations in tun-
neling junctions. Gadzuk® applied this treatment
to vibrational-mode-assisted tunneling using a
one-dimensional interaction potential. Klein ef al.”
used the same general formalism to describe MgO
phonon-assisted tunneling. A number of authors®
have succeeded in formulating theories of tunneling
that do not depend on the transfer-Hamiltonian
technique and its associated approximations.
These theories are complex, however, and no one
has yet succeeded in including a tunneling electron-
molecule interaction of sufficient generality to de-
scribe measured tunneling spectra of molecular
vibrations. We believe that the transfer-Hamil-
tonian provides an adequate description of the
physical situation of interest, and its relatively
simpler mathematical form allows us to focus on
the structure of the electron-molecule interac-
tion. Specifically, we write the interaction poten-
tial as a sum of Coulomb potentials between the
tunneling electron and the partial charges on each
atom of the molecule. We then calculate the in-
elastic tunneling matrix element using WKB wave
functions for the incoming and outgoing states.
The scattering process is treated in three dimen-
sions, and we show that the inclusion of off-axis
scattering results in conclusions that are different
not only quantitatively but also qualitatively from
purely one-dimensional calculations. Since we
are using the electron-molecule interaction as a
first-order perturbation on WKB-approximation
wave functions, we cannot take into account the
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elastic distortion of the incoming and outgoing
wave functions due to the molecular impurity. The
relatively-long-range structure of the interaction
decreases the importance of this distortion for the
vibrational-mode couplings. For electronic ex-
citations this would not be the case.

We use the theory to predict absolute intensities
and the ratios of intensities for opposite bias volt-
ages. We extend the theory to calculate intensities
for complex molecules and explore the selection
rules in this new spectroscopy. Finally, we com-
pare the theoretical predictions to experiment and
find good agreement.

II. THEORY

Consider the sample geometry indicated in Fig.
1. The two metal electrodes fill the half-spaces
z<0, z>]. The insulating barrier is semi-infinite,
occupying the space 0<z<]. The doped organic
molecule is located inside the insulating barrier
a short distance from the lower metal film at
position T=a2 + b% +¢y. The initial and final elec-
tron states are eigenfunctions of the zeroth-order
Hamiltonian

3= - (52/2m) V2 + U(Y) (1)
and are localized in the half-spaces z>1, 2<0,
respectively. Outside the barrier the wave func-
tions are standing plane waves. Inside the barrier
they decay exponentially in the Z direction while
oscillating in the £ and y directions. We assume
for simplicity that the insulating barrier potential

|

FIG. 1. Sample geometry and axes used in the theory
presented in this paper. An oxide layer of width I is
sandwiched in between two semi-infinite metal films in
the half-planes z2<0, z>!. A partial charge Ze lies
within the barrier region at position R (®,c,a) close to
the lower metal film and interacts with a tunneling
electron at T (x,y,2).

has the form
U, 0<z<1,
= (2)

? 0, otherwise.

In this case the initial and final states have stan-
dard WKB wave forms within the tunneling region
given by®

1 k2

=1Kz1(1=2) ,i(kyx+kyy)
e z2 e X 'y
Zl) \/——L3/2 K |l/§ ’

1 kll/Z (3)

Yp= B IKlll/Ze

1Ky 120 (Rxekyy)

In this expression k,, k,, and k, are the wave
vectors in the ¥, J, and 2 directions; the electron
wave functions have been normalized within a cube
of side L, and the rate of exponential decay of the
wave forms inside the barrier is given by

K, | = (@m/B) U — 1%k 2m)M2

Rather than taking a dipole approximation for the
tunneling electron-molecular interaction, we as-
sume that the charge distribution within the mole-
cule can be broken up into partial charges, with
each partial charge localized on a particular atom.
The partial charges arise from an uneven sharing
of the electrons involved in bonding and can be ob-
tained from the dipole derivatives of infrared the-
ory. The partial charge analysis allows us to de-
scribe the interaction at distances comparable to
interatomic lengths, distances within which the
dipole approximation breaks down.

The total tunneling electron-molecular inter-
action is given by

V(E) = Z R,, 4

where Z,e and R; are the partial charge and posi-
tion, respectively, of the jth atom. In order to
connect initial and final electronic states of dif-
ferent energies, we separate out the component

of the total interaction potential which oscillates

at the frequency of the vibrational mode of interest.
Expandmg the R s m the first harmonic approxi-
mation R Rj(O) + GR we find

1
V(T) = Zj: —-e ZjGR v <m) (5)

If we take the images of the partial charges in the
two metal films into account, the interaction be-
comes

( 1

xﬁ_—‘—A—

IT-R, -2ni2|
1

TIT-R,-(2nl -2a,)2! > (8
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In this expression the screening response of the
insulating region has been approximated by a di-
electric constant €. Since the dielectric screening
fields oscillate at the vibrational frequency, the
proper € to take is that for infrared frequencies.
We assume that the metals are perfect conductors,
since for the metals of interest at low tempera-
tures and infrared frequencies ¢, ~ - 400.

There is some question as to where the image
charges should be placed. Newns!® calculates that
the effective imaging plane is behind the atomic
surface of the metal by A™!, where A™! is the
Fermi-Thomas screening length. Lang and Kohn!!
in a somewhat more sophisticated model put the
imaging plane in front of the atomic surface by
roughly the same factor. A recent paper on the
vibrational mode shifts in IETS due to the top
metal electrode® attributed small but systematic
downward shifts in the vibrational mode energies
as compared with optical measurements to the
interaction of the oscillating charges in the im-
purity molecules with their images in the metal
surface. These shifts were fit to a simple image
model using an adjustable charge to image plane
distance on the order of 1 A. The values for the
atom to image plane distance obtained in this man-
ner were used in the present work for calculating

)

numerical results. Our results do not depend
critically on this distance.

Fermi’s golden rule for the transition rate from
one electrode to the other is

Wyege = 21/ 1) | Mo | 26(€ g — € - Fiw) . (7

The matrix element M,. is defined as

1
Mg = [ dx 05 ViE, 0y, ®)
(1]

with ¥, and ¢, given by Eq. (3) and V, given by
Eq. (6).

The interaction potential falls rapidly to zero
outside the tunneling region because of electronic
screening at the metal surfaces. Therefore we
need only integrate Eq. (8) over the oxide layer
and can neglect the small component of the elec-
tronic wave function in the metal film opposite the
film in which it is localized.

Consider a single atom of the molecule with par-
tial char_g.e Z; oscillating around an equilibrium
position R,(0) =aZ + bX + ¢} with vector amplitude
6R,=5,e'“*;. The sum over atoms is done later.
By Fourier transforming the interaction potential
and summing a series of integrals in the complex
q. plane (where ¢, is the Fourier conjugate to z),
we find the following matrix element:

Mo me’Z 6, e\ Kallglasboiaswy fooia :te'“l"(e(“t""l” -1 eleza _ 1>
KK eL’q e*ler 1 a,-a, | a+a
1 1 z 1+ a,
1 (o ~a))l( ,a a0 -a,a oa - 1 -
" le e )l(gara g pmeya) _ (p@z0 40 “la)]+ (e*2® — e 19) || (9)
a -a, a +a,

where
Y A A AR AL
a,=k,—k,,
a,=k, -k, (10)
o= K| - K,
a,=(a2+a?)t/2,

The upper signs are taken and o, =a, if j=2
(vibrations perpendicular to the metal surfaces).
The lower signs are taken and a;=0a,. @, if f =%
or y (motion parallel to the metal surfaces).

To find the inelastic tunneling current we multi-
ply the transition rate by 2e (2 for the spin sum)
and sum over all initial and final wave vector
states:

4re

=2 5% M [F(eRLL - o]

X €y —€pr —HW). (11)

Here €, and €,, are the total energies of the

r
initial and final electronic states, V is the voltage
bias of the junction, and #w is the energy spacing
of the vibrational mode of interest. The Fermi
distribution functions appear since electrons must
tunnel from filled states to empty states.

In this formulation we assume implicitly that the
vibrational mode has a 6-function response in fre-
quency to the tunneling electron excitation. Real
molecules have spectral weight distribution func-
tions with nonzero bandwidths. However, the quan-
tity to be compared with experiment is the change
in conductance due to the onset of a given vibra-
tional mode tunneling channel. This change in con-
ductance is due to an integrated spectral weight
over the band, and the shape of the distribution
function is unimportant. If the shape of the lines
were of interest, one would multiply Eq. (11) by
the phonon spectral distribution function and inte-
grate over energies. Experimentally observed
lines are narrow, indicating weak coupling of the
molecular modes to their surroundings.

The matrix element, Eq. (9), is in general a
function of the incoming and outgoing energies and
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Further, since IETS spectra are normally taken at
or below 4.2°K, we take the low-temperature
2 , , , limit 7~ 0°K for the Fermi distribution functions.
=G(e,¢’,0,0%,¢,¢"). Changing the wave vector sum to an integral, we
(12) find

J

. 87Te L 6 3 2T 2ar 1 1 © &
]=_h‘_<7> <ﬁ—wé> f dcpf d(p'f d(cose)f d(cose’)f 61/2d€f €2 de’ G(e,€’,0,0', 9, 9")
0 () 0 0 0 0

x[1-6(c —€,)]0(e’ —cp+eV)d(c —€’ —Fw),

directions. Using a standard spherical coordinate
system we write

2 M,
J

2_

IMKK'

where (13)

o(x)=1, x=0; O(x)=0, x<0.

Evaluating Eq. (13) would be a formidable task, considering the complexity of the matrix elements. For-
tunately, the quantity of experimental interest is the second derivative of Eq. (13) with respect to voltage.
The step functions become 6 functions upon differentiation, and the effect of the 6 functions is to put the
initial and final electron energies on the Fermi surface. This is just as one would expect; the onset of an
inelastic tunneling channel occurs when the most energetic electrons find the first available open states as

the voltage is increased. We obtain finally

dzj 8776 L 6 m 3 2T 2T 1 1
W=T<—> (F) (ex)"*(€p— eV)“zf d(pf d(p’f d(cose)f d(cosO’)Gem €x— eV, 00", ¢, ¢’ )o(w —eV).
0 0 0 0

m

In many cases the first azimuthal angular inte-
gration can be done analytically. The remaining
integrations over incoming and outgoing angles are
done numerically.

III. RESULTS AND DISCUSSION

A. Absolute intensities in IETS

We first compare the prediction for the absolute
intensities in IETS with experiment. To find the
change in conductance due to the opening of a vi-
brational-mode conduction path |dj,/d(eV)] we
integrate Eq. (14) over energy across the vibra-
tional band and multiply by »n, the number of doping
molecules per cm? on the oxide surface. (We as-
sume that the surface of the oxide is uniformly
covered with a given density » of noninteracting
molecules per cm?®. If each molecule is vibrating
independently of its neighbors, the individual con-
tributions to the inelastic tunneling intensity merely
add. If the molecules interact weakly with each
other, then exact placement in the plane of the
oxide surface is unimportant.) For a monolayer
of hydroxyl ions (assumed oriented with their ma-
jor axes in the 2 direction) we take Z=0.3,' 6,
=0.07 A, n=10"/cm?,'® €=3,* fiw=0.45 eV,
1=154, a=1A, U-¢,=2eV. The choices of Z,
b, n, and € are supported by infrared measure-
ments, the value for Zw is read directly from the
tunneling spectrum, the choices of [ and U are

(14)

-
consistent with measurements of the I-V charac-
teristics of the junctions, and the choice of a is
consistent with measurements of frequency shifts
in IETS due to the top metal electrode.®'®* Using
the above values, we find a predicted change in
conductance:

dj;
d(eV)

A standard calculation for the elastic conductance
using the same model and parameters for the bar-
rier potential as above gives

A

=3.9%X102° A/Jm?2. (15)

dfg;) =7.0x10% A/J m?. (16)
Combining Egs. (15) and (16) we find that the
predicted change in the conductance due to the in-
elastic tunneling channel produced by a monolayer
of O-H ions is ~#3%. A typical experimental value
is 0.4%.

B. Opposite voltage bias asymmetries of IETS intensities

A second test of the theory comes from mea-
surements of the asymmetry of IETS intensities
when junctions are biased in the two opposite
polarities of voltage. Figure 2 shows plots of the
second-harmonic voltage signal as a function of
bias voltage for an Al-oxide-benzoic-acid-Pb
sample. The upper curve is for Al negative with
respect to the Pb, and the lower curve is for Al
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FIG. 2. Plots of the first and second derivatives
@V /dl and d®V/dI?% of an Al-Al,0;—benzoic-acid—Pb
tunneling junction for Al biased negative (upper curves)
and positive (lower curves). The IETS intensities are
larger for Al biased negative. Note also the asymmetry
in the dynamic resistance (dV/dI) curves.

positive with respect to the Pb. Also included are
the first-harmonic voltage signals (proportional to
the dynamic resistance of the junction) which show
that the -V characteristics of these junctions are
asymmetric. (For example, the dynamic resis-
tance dV/dI of the sample in Fig. 2 is 22% higher
for aluminum biased negative than for aluminum
biased positive at 300 meV.) All the curves were
taken with a set current modulation resulting in a
modulation voltage of ~¥2 mV at 4.2°K. The in-
elastic electron tunneling response is larger when
the electrons tunnel from the Al into the Pb than
vice versa. We use the relation d?] /dV?
= —g*d®V/dI %, where g is the dynamic conduc-
tance dI/dV, to plot the ratio of the integrated
IETS intensities aA[dj/d(eV),]/a[dj/d(eV).] versus
bias voltage in Fig. 3.

The physical reason for the asymmetry in in-
elastic tunneling intensities is that the doped mol-
ecules for the Al-oxide-benzoic-acid-Pb samples

10
dj

Ad(eV)|+
dj
AcT(é\7>|_

0.5

0] 1 1
(6} 200

1
400

eV (meV)

FIG. 3. Plot of the ratio of the IETS integrated inten-

sities for Al positive divided by Al negative A[dj/d(eV)+]/
Aldj/d(eV).] vs applied energy across the junction (in
electron volts). The lower solid curve is based on a
model proposed by Yanson et al. (Ref. 16). The upper
solid curve is based upon the present theory for I =15 A,
U—-€gp=2eV,a=1 A. The dashed curve contains a small
correction to the present theory for the elastic asymme-
try of the junctions as described in the text.

are closest to the Pb-metal surface. When elec-
trons tunnel from the Al to the Pb they cross more
of the barrier before losing energy to a vibra-
tional mode of the impurity than when they tunnel
in the other direction. Thus, since electrons with
higher energy are more likely to cross the bar-
rier, we should expect greater inelastic tunneling
intensities for Al negative with respect to Pb than
vice versa.

This explanation for the bias asymmetries in
IETS was offered first by Yanson et al.'® They
obtained the right sign for the effect, but (implic-
itly) assumed a very-short-range interaction and
obtained predicted ratios for aldj/d(eV),]/
A(dj/d(eV).] much smaller than observed experi-
mentally. The lower curve in Fig. 3 is based on
their model with [=15 A, U-€,=2 eV.

The present theory has a long-range dipole po-
tential, and we would therefore expect it to pre-
dict less asymmetry than that of Yanson et al. The
numerically computed curve for a=1 A, =15 10&,
and U=2 eV for our theory is the upper solid curve
in Fig. 3. This curve, since it is a ratio of in-
tensities, is independent of the values chosen for
Z, 6, and €. It is somewhat below the experi-
mental points, as might be expected, since our
square barrier potential does not allow for the
asymmetry of the barrier-penetration probability,
as demonstrated by the asymmetry of the elastic
conductance vs voltage curves. Presumably a
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more sophisticated model for the barrier poten-
tial, which included the interaction of the elec-
trons with its own images and the unequal poten-
tial barrier heights for Pb and Al, could be con-
structed to fit the elastic current-voltage curve
asymmetry. Any such model would push the the-
oretical curve up since the asymmetry of the elas-
tic current-voltage curve opposes that of the in-
elastic intensities. Such a sophisticated model
would be difficult to incorporate into our theory.
An easy, though only approximate, correction is
to multiply the ratio of the inelastic intensities by
the ratio of the measured elastic conductances at
each voltage. This correction results in the dashed
curve of Fig. 3, which fits the experimental points
well. Note that this barrier asymmetry correction
is too small to help the theory of Yanson et al. ap-
preciably.

C. Orientation selection rules

The theory of Scalapino and Marcus predicted
that there should be no IETS intensity for a vibra-
tional mode which resulted in an oscillating dipole
moment parallel to the metal surface. This orien-
tation rule is weakened slightly by off-axis scat-
tering. Although the barrier penetration probabil-
ity falls off rapidly for electrons scattered off the
Z axis, the initial and final volumes of phase space
they can scatter into becomes larger for larger
scattering angles. To estimate the relative im-
portance of off-axis scattering, we calculated the
integrand G(e €, -€V,0,0’, ¢, ¢’) of Eq. (14) for
a charge oscillating in the 2 direction, with a=1 f\,
1=15 A, eV=200 meV, and setting ©=y=y’=0.
The quantity 27sin6’G(6’), which is a measure of
the relative contribution to the total IETS intensity
due to scattering into one off-axis angle, when
plotted against scattering angle ©’, peaks at ~4°
and has a weighted average

f'd(cose’)e’G(e’//dd(cose’)G(e')

of ~7°. It is therefore important to consider scat-
tering in three dimensions.

A numerical calculation based upon Eq. (14) for
U-€p=2¢€V, [=15 A, and a=1 A for the hydroxyl
ion predicts that the IETS intensity for the O-H
stretch mode should be 8.8 times stronger when
the molecule is oriented perpendicular to the metal
surface than when it is oriented parallel to the
metal surface. A similar calculation for the infra-
red mode of CO, predicts that the ratio of the in-
tensities for the two orientations should be 16.4.
Therefore, while our theory predicts a weakening
of the selection rule, it is still quite strong.

Experimental support for the presence of this

selection rule exists in the tunneling spectrum of
benzoic acid on alumina. Benzoic acid, which
has a COOH acid group attached to a benzene ring,
has had its tunneling spectrum carefully ana-
lyzed.®'” The agreement in vibrational-mode ener-
gies, between tunneling and optical studies, after
proper correction of the tunneling data for the
effects of superconductivity is made, is good to
within a few tenths of a percent for most vibra-
tional modes. The small discrepancies between
tunneling and optical measurements can be at-
tributed to the effect of the top metal electrode.?

However, as can be seen in the comparison be-
tween infrared and tunneling spectra shown in Fig.
4, there is one band at 1560 cm™ in the infrared,
which is markedly smaller in the tunneling spec-
trum. This mode is attributed to the antisym-
metric stretch mode of the carboxylate group.
Careful studies of the vibrational-mode fre-
quencies of this group'® show that it loses its
hydrogen in chemisorbing, and that the two oxygens
in the group are in equivalent sites: that they are
equidistant from the oxide surface.

The resultant COO™ group has a symmetric and

IETS

INFRARED

1435 cm"J 1560 cm '
A

0 + 0
&
«c c
O ~N 0 N
SYMMETRIC ~ ASYMMETRIC

FIG. 4. Comparison of the tunneling vs infrared spec-
tra of benzoic acid on alumina. Note the missing peak
in the tunneling spectra at 1560 cm™'. We believe that
this peak is greatly reduced in intensity because of the
orientation of the molecule on the surface, as predicted
by our theory.
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antisymmetric vibrational mode. These modes
have their oscillating dipole moments at right
angles to each other. Based on the above assign-
ment of orientation, the symmetric mode has its
oscillating dipole moment perpendicular to the
oxide surface while the asymmetric mode has its
oscillating dipole moment parallel to the oxide
surface. Thus we would expect that the asym-
metric mode would be much lower in intensity
than the symmetric mode. Figure 4 shows that
this is found experimentally.

D. Other selection rules

Observable vibrational modes in infrared spec-
troscopy involve an oscillation of the net dipole
moment of the molecule. Observable modes in
Raman spectroscopy involve an oscillation of the
polarizability of the molecule. Tunneling spectra
of anthracene indicate that both infrared and Raman
modes are observed with comparable intensities.'”
However, calculations of Jaklevic and Lambe'
indicate that the Raman modes should have roughly
an order of magnitude smaller intensities than the
infrared modes. The theory presented in this
paper, in contrast, predicts that even with no
polarizability accounted for, the Raman mode
intensities should be nearly the same size as the
infrared mode intensities. Further, it predicts
that modes forbidden to both Raman and infrared
spectroscopies should be observable with tun-
neling.

The reason for the breaking of the selection rules
is as follows. In the matrix elements Myy,, Eq.
(9), terms like ei®x® g%y g% occur, where a,
b, c are the displacement from the origin of the
atom in the z, x, and y directions, and a,, o,,

«, are the momentum transfers parallel to the
metal surface of a given scattering event. The
matrix elements are spatially inhomogeneous be-
cause of these terms. The spatial inhomogeniety
of the matrix elements causes the breaking of the
selection rules.

This point can be made clear by an example.
Consider the Raman vs ir stretching modes of
CO,, assumed to lie with its major axis in the ¥
direction. In the ir mode the two oxygen atoms
move in phase, the Z’s and §’s for the oxygens
have the same sign (the carbon atom has Z=0),
and the matrix element is proportional to ei®z®
+e iex®=2cosa,b, where b is the C-O bond length.
For the Raman mode the oxygens move out of phase
so the 8’s have opposite signs. The matrix ele-
ment in this case is proportional to e?*x® — g7i%x?
=2 sina,b. Even though the Raman mode has no
net dipole moment, it has a finite matrix element
for a,#0. Numerical calculations, taking into ac-

count the different frequencies of the two modes,
predict that the ir mode intensity of CO, should
only be 20% larger than the Raman mode intensity
if the molecule is oriented parallel to the metal
surface. If the molecule is oriented perpendicular
to the metal surface, the ir mode should be 4.2
times as intense as the Raman mode.

Two general comments should be made at this
point. The first is that the breaking of the selec-
tion rules arises from the spatial inhomogeneity
of the matrix elements, which in turn arises from
off-axis scattering which some previous theories
did not include. The second is that we expect se-
lection rules to be less important for larger mole-
cules, since the relevant parameter is the perpen-
dicular momentum transfer times the spatial ex-
tent of the molecule. Thus we would expect that
the infrared vs Raman selection rules would be
even weaker for a larger molecule, like anthra-
cene, as is observed experimentally.'’

We conclude this section by discussing the ob-
servability of modes that are forbidden to both
infrared and Raman spectroscopy. Molecules that
have such modes tend to be complex, with the con-
sequent difficulties of calculation and ambiguities
in assigning Z’s and 8’s to a given normal mode.
We choose, therefore, a simple, hypothetical
linear four-atom chain molecule with an inter-
atomic spacing of 1.54 A (typical of C-C single
bonds). A normal mode vibration of this molecule
which is forbidden to infrared and Raman spec-
troscopies has displacements perpendicular to the
axis of the molecule with atoms 1 and 3 in phase
with each other and out of phase with atoms 2 and
4. If we take Z=0.1, 6=0.07 A, =15 A, a=1 A,
U=2¢eV, €=3, n=6x10"/cm?,'® and assume that
the molecule is oriented with its major axis paral-
lel to the metal surface, we predict a change in
conductance due to this mode of 0.16%, which would
be readily observable. To our knowledge, no such
forbidden mode has yet been identified experimen-
tally.

IV. CONCLUSION

We have incorporated a new tunneling electron-
vibrating molecule interaction potential into a
transfer-Hamiltonian formalism for inelastic tun-
neling in metal-oxide-metal junctions. We have
used the theory to calculate (i) absolute intensities,
(ii) ratios of intensities for opposite bias polari-
ties, (iii) ratios of intensities for different orienta-
tions, and (iv) ratios of intensities for Raman
versus ir modes. The predictions agree qualita-
tively with experiment. Further, we predicted
that vibrational modes forbidden to optical spec-
troscopies may be observable using electron tun-
neling.
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Since the number of terms that must be con-
sidered increases only linearly with the number
of atoms in a molecule, the theory can be used for
complex molecules.

Although the results obtained above used values
for Z, 6, and a that were taken from independent
experimental measurements, there is the pos-
sibility of using a multiparameter fit to the in-
tensities in inelastic electron tunneling to obtain
values for effective Z’s and 6’s (as is now done
in analyzing infrared spectra).?

We should finally remark that the interaction
used above | Eq. (5)] does not take into account
the polarizability of the molecule. The extra inter-
action due to the polarizability may be large enough
to be important and should be calculated. The
coupling to Raman-active modes described in this
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work is due to the local nature of the (Coulomb)
interaction only.
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