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An exact site-model calculation of the zero-field magnetic susceptibility in both annealed and quenched limits

of an impure one-dimensional classical Heisenberg chain, published recently by Tonegawa, Shiba, and Pincus,

is extended to the general case where g factors of different kinds of constituent magnetic ions difFer from one

another.

I. INTRODUCTION

In a recent paper by Tonegawa, Shiba, and
Pincus' (to be hereafter referred to as TSP) the
thermodynamic properties of an impure one-di-
mensional classical Heisenberg chain with near-
est-neighbor exchange were treated exactly in the
thermodynamic limit. They considered both bond
and site impurities and considered the annealed
and quenched limits for each of these models.
Calculating the zero-field magnetic susceptibility
for the site model in which two kinds of magnetic
ions, I and H, are distributed on the N+ 1 cation
sites of the open chain, they assumed that the g
factors, '

g~ and g~, of the I and H ions are equal.
The purpose of the present paper is to extend their
calculation of the susceptibility in the site model
to the general case where gr and 4;0 take indepen-
dently arbitrary values. It is shown particularly
in the cases of diluted magnets where Zzz (the II-
pair exchange constant) =gas (the I Hpair ex--
change constant) = 0 Rnd Jss (the H Hpalr ex--
change constant) = sJ (J&0) (Ref. 2) that for both
the annealed and quenched limits, the difference
between the zero-field susceptibility for gI=g„
=g and that for g1=0 and g~ =g is equal to 2pKxo
in the thermodynamic limit (N»1). Here p is

the concentration of I ions, K=8/2ksT, and lt,
=Hq p2s/128, where ks is the Boltzmann constant,
T is the absolute temperature, and p.~ is the Bohr
magneton.

II. ANNEALED LIMIT

First we discuss the annealed limit. Standard
linear response theory gives for the zero-field
susceptibility g" in this limit of the site model

y" ' = (1/ks T)(M'M')~,

with

(2)

In these equations, ~~ and g~ are the g factors' of
the I and H constituent ions, respectively; all
other notations are the same as those used in
TSP. Note, for example, that ( ~ ~ ) denotes the
grand canonical ensemble average associated
with the Hamtltonian given by Eq. (3.1) in TSP,
while p, is the occupation variable which is 1 if
an I ion occupies the ith site and 0 if an H ion oc-
cupies that site.

Employing the method discussed in Sec. III A of
TSP, we obtain'

14



MAGNETIC SUSCEPTIBILITY OF THE IMPURE CLASSICAL. . 3167

(1/:-)Tr(AQ' 'A'B™l -1B-'A" -) for l«f«»
(1/=) Tr(AQ' 'A'A" ')

—= (P P S 'S ) =3(P P SP'& =
& (1/=) Tr(A'B 'B'A" )

(1/:-) Tr(AQ")

for 1~i=m ~N,

for 0= l &m ~N,

for 0=l=&z,

for 0~ n&& l —E;

(1/:-)Tr(A, A' 'A~~ ' 'Bi&A" ) for l~ l«m«N,

(I/ )T (Agt5l 1BPIAN-sl)

e,'."-=&P,(1-P.)S, 4&, =3&P,(1-P.)S;S:&,=(,
for O=l &m ~N,

for l =m,

for O~m&l~¹

(I/=-)»(A A'-'A "B -'-'BA"- ) for 1 I «m X,

(1/ „)T (A trB m-1By AN ~)
0",.' =- &(1 —P,)P.S, .Sg, =3&(1-P,)P.S,'SJ, =

&

for 0 =l &w ~N,

for l =m,

for O~w &l —S;

~ (1/:")Tr(A,A' 'A "B ' 'B"A" ) for 1~ I«m~N,
(1/=)Tr(A A'-'A "A"-')

e",."=-&(1—P,)(1—P.)S, S.&, =3&(1-P,)(1-P.)SS:&,=((1/=-)T (A B"B"AN-™)

(1/:)Tr(A","A")

for 1~/=m~N,

for O=l&n&~N,

for O=l =m,

for 0 —nv &l~¹

Here ., the grand partition function of the system, is given by Eq. (3.4) in TSP, and

WXz,„) (0 WXz,„) ( z„„o)
Xz„) (0 Xz„) (v ~z,„o)

B=l I, B= BPP

(v xy~„Xy ~ ) (0 Xy,i (Why» 0)
In the elements of these matrices, X, the absolute activity for the I ion, is given by Eq. (3.10) in TSP, and

z,z, z», z„„and y», y», y„„are given, respectively, by Eqs. (3.3) and (3.12) in TSP.
It is easy to show that, in the limit 1« I » m «N, the quantities pf r (X, I'=I or H) become

~ lgtq q lgt~ +

(P 'A'P)„/a, = p

m l l-
e"~'a) W-'s'~)

(
—' for 1« l &w «N,

for 1« l Bl«N
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where p is the concentration of I ions, a, is one of the eigenvalues of the matrix A (a, is greater than the
absolute value of the other eigenvalue a of A), 5, are the eigenvalues of the matrix B, P and Q are the
matrices which diagonalize the matrices A. and 8, respectively, with inverses P ' and Q ', and, fox ex-
ample, (P 'A'Q)» is the {1-1)element of the matrix product P 'A'q. The explicit expressions for a„b„
P, P ', Q, and Q

' are given in TSP; see Eq. (3.7) for a„Eqs. (3.1V) and (3.18) for b„Eq. (3.23) for P
and P ', and Eqs. (3.24) and (3.25) for Q and Q '.

From Eqs. {1), (2), and (10)-(13)we obtain in the thermodynamic limit (N» 1) the following result for
~l(~f ) .

+ ((P'4'()) .(9 'P"P)., + (P'4 9)„(()'P P"!„] ')

+ g ~-j~rr@ q-&I3rr~ + ~-j4»q q-jg»p
Q~ —5+ "a,-b

(14)

X'" =2(1 —p)Ky, (n.+ b.)/(a. b.), — (15)

(16)

ft can be easily shown that, when gz =ga(~g}, Eq,
(14) agrees exactly with Eq. (3.26) in TSP.

In the remainder of this section we discuss
briefly y'" for the special cases of a diluted fer-
romagnet where Jll (the I-I pair exchange con-
stant) =J~„(the I-H pair exchange constant) =0.
Js„(the H Hpair exchange-constant) =J()0'), gz-0,
and g~=g and of a diluted antiferromagnet where
J~~=J~„=O, J„„=—J(J&0), IP~=O, and g„=g. The
zero-field susceptibility X"' fox these special
cRses cRn be expx'essed Rs

is obtained by subtracting 2pXXO from the right-
hand side of Eq. (3.26) in TSP for J'„=Jr„=Oand

J~~ = + O'. The low-temperature expansions of
X"' in the cases of the diluted ferromagnet and
antiferromagnet are given, respectively, by'

X "'/Xo = (1 —p)(4K' —2K+ ~ ~ )

X")/X =(1—p)(1+1/2K+ ~ ) (20)

In Figs. I and 2 the numerical results for X~'~ in
both of these cases are plotted as functions of the
reduced temperature ksT/J at representative
vRlues of the concentx'Rtlon p of I lons.

III. QUENCHED LIMIT

a.=z —
1

P + 1
— [4p(1 —p)x+(1 —2p)']'I',

&+=kg» (18)

where s = (slllllK)/K alld $ = (K cosllK- s111hK)/K
ln Eq. (18) we take the + sign for the diluted fer-
romagnet and the —sign for the diluted antifer-
romagnet. It should be noted here that the right-
hand side of Eq. (15) is equal to the quantity which

We now consider the quenched limit. I.et X be
the zero-field susceptibility for a given configura-
tion of the I and II lons. AgRln, Recording to llneRx'

x'esponse theox'y, X is given by

g = (1/ksT}Qf'M')„

where as in TSP { .) stands for the canonical
ensemble RverRge Rssoclated with the HRDliltonlRn

(3.1) in TSP, and M* is defined by Eq. (2). The
zero-field susceptibility X'" in the quenched limit
is calculated from the equation
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N N

x'"=&x) ~= 12~'T Q Q {a'g(pgp &g4 ~+zzrgg[(pg( P-)gdgg +(( -Pg)P gcgJ ~]
l=O m=O

+g's&(i -P )g(&-P )gdgd ~}. (22)

Here ( ~ ~) ~ denotes the arithmetic average over
all the configurations of the I and H ions for a
given concentration p of I ions, and 9, is the
spin-spin correlation function for a given config-
uration, i.e.,

gog =gg 0 ),=3&SgSJ,. (23)

The quantities &PgP gdgg ~, etc. , can be rewritten

&(& Pg)P —&gD ~=&,

P(i - P)&

for E om,
(26)

for l =m;

P) &agog)conf g sag, Hecg

p &egg ) g; rsg ~ rs for lg'm,

(24)
for l =m;

&(&-Pg)(&-p.)~g.) ~= (

t 1 —p

for lcm,
(2'I)

for l =m.

(pg(l —p )gag„) „,= (
for l+m,

(26)

0 for l =m;

r
P( P)&agog)conf' leg, ggenl In these equations ( ) f «eg ~ re (X, Y=I or H)

represents the arithmetic average over all the
configurations of the I and H ions subject to the
condition that the lth and mth sites are occupied
by the X and 1 ions, respectively. For simplicity,
we denote &gogg ~. «, „e by go«gr. By the use of
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FIG. 1. Zero-Geld susc. ptibility g
' /g, where Xo

=Ng Psg/12', as a function of the reduced temperature
A~T/J for the case of the diluted ferromagnet lJrr = JrH

HH J( 0~ gr =0, and gH=gl in the ~~~ealed limit.
Labels on the individual curves denote the values of the
concentration p of I ions.
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FIG. 2. Same as Fig. 1 but for the case of the diluted
antiferromagnet tJlr = JrH=D JHH=- J~~ 0~. gr=o, and

gH =gl. Note that the region surrounded by the dashed
line is enlarged in the inset.
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the method discussed in Sec. HIS of TSP, ~~~
can be calculated easily. ' The results for /4m,
are'

—R„(R„+R, „„)d,

+R,2(R2~urrr+R2~~u„s)d" ' ' for / em, (32)

( Ig gg for /tm,
film QPim JQIg Qgg

(28)
~sm =Ru(RiÃrrr+Ruurrrr)d

+R32(R,,'ur„+Raus~}d"" ' ' for /Wm, (33)

D= !
Purr (l —P}urrr &

Purrr (l —P}urrrr)
(29)

urr urrr, and urrrr being given by Eg. (3.44) 111 TSPI
equivalently, they are

~
& m =R u(Rirurr +Riaurrr)d+

+R„(R,,'urr+R, ',ur„)d" ' ' for l em, (30)

~',s =R„(R,',urr+R, ,'ur„}rf,"- '-'

+R„(R,,'urr+R, ,'urs)d" ' '"fo"r l em, (3l.)

where d~ are the eigenvalues of the matrix D, 8
i,s the matrix vrhich diagonalizes D, and R» and

R,,' are, for example, the (l-l) elements of R and
its inverse matrix 8 ', respectively. The explicit
expressions for d, are given by Egs. (3.56) and
(3.5V) in TSP, and those for R and R ' by Eqs.
(3.58) and (3.59) in TSP.

Using Eqs. (22), (24)-(2V), and (30)-(33) and the
explicit expressions for d„R, and R ', we can
calculate the zero-field susceptibility X' ' in the
thermodynamic limit (N» l), obtaining the result'

X
' = hg rP[&+Purr (~- P-)urrrr —P(& —P}(urrurrrr —urg)]

12k~T
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FIG. 3. Zero-fieM susceptibility g&e&/@, ~here g
=Ng~p&~/12J, as a function of the reduced temperature
k&T/4 fox the case of the diluted ferromagnet [JII =JIg
=0, Jgg =J( &0), gr -—0, and gg =g] in the quenched limit.
Labels on the individual curves denote the values of the
concentration p of I ions.
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FIG. 4. Saxne as Fig. 3 but fox' the case of the diluted
antiferromagnet [JII=Jrg=0, Jgg=-J(J&0), go=0, and
gg=g]. Note that the xegion surrounded by the dashed
line is enlarged in the inset.
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Here the denominator ~ is

+ =1 —pull (1-—p)"Ks+ p(1 —p)("ltuss —uIH).

(35)

When gt-g„(=g), Eq. (34) agrees with Eq. (3.61)
in TSP.

ln the cases of a diluted ferromagnet [&tl=&t„=0,
J „=J()0), gt = 0, and gs =g] and of a diluted a.nti-
ferromagnet [Ztl= Jt„=0, &„„=-&(&&0),go=0,
and g„=g], the susceptibility X'" becomes

X'"=2(1- p)KX.
1~(1— &u' lv(1 —p)u ' (36)

where u=cothK-K ', and the upper and lower
signs apply for the diluted ferromagnet and anti-
ferromagnet, respectively. The quantities, X,
and K, are defined by Eq. (16). The difference
between the right-hand side of Eq. (36) and that
of Eq. (3.61) in TSP for Jzt ——Jt„=0 and J„„=sJ
is again -2pKxp. The low-temperature expansion
of X"' for the diluted ferromagnet is given by

x'"
Xp 4K —2K+e'' for p=0,

(1-p) K-, + ~ ~ for 0&pal,2(2 —p) 4 1 —p
p p (37)

and that of X'" for the diluted antiferromagnet is

X. 2- p (2- p)' (36)

ACKNOWLEDGMENTS

Much of the present work was done while the
author was visiting the Department of Physics,

In Figs. 3 and 4 we summarize the numerical
results of X"' for the two cases discussed above.

the University of California at Santa Barbara. He
would like to express his sincere thanks to Pro-
fessor D. W. Hone for valuable discussions and
kind hospitality during his visit. Thanks are also
due to Professor V. Jaccarino, Professor D. J.
Scalapino, and other members of the Department
for many kindnesses. The author finally thanks
Professor J. N. Huffaker of Qklahoma University
for editing the manuscript.

*Perm~~ent address.
~T. Tonegawa, H. Shiba, and P. Pincus, Phys. Rev.

8 11, 4683 (1975).
Note that, as in TSP (Ref. 1), we have used Fisher's
definitions of the g factor and the exchange constant
[see M. E. Fisher, Am. J. Phys. 32, 343 (1964)j.

Since we are concerned with a one-dimensional system
with open ends at the 0th and Nth sites, Q&~, etc. ,
depend independently on I, and m.

The expressions for the low-temperature expansions of

)(&'/g for ~a =0 Ia=o @a= ~ and f» ~11=0 ~ra
=0, &zz=-J in Table I of TSP (Ref. 1) are misleading
and should be changed to (1-p) (4K2 —2K+ ~ ~ ~ ) +2pK
and 2pK+(1- p)(1+ 1/2K+ ), respectively.

5See also the Appendix by D. Hone, P. A. Montano,
T. Tonegawa, and Y. Imry [Phys. Rev. B 12, 5141
(1975)].

We note that cu, " depends only on ~l —m~.
This result has also been obtained independently by
S. Katsura [Can. J. Phys. 53, 854 (1975)).


