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An exact site-model calculation of the zero-field magnetic susceptibility in both annealed and quenched limits
of an impure one-dimensional classical Heisenberg chain, published recently by Tonegawa, Shiba, and Pincus,
is extended to the general case where g factors of different kinds of constituent magnetic ions differ from one

another.

I. INTRODUCTION

In a recent paper by Tonegawa, Shiba, and
Pincus’ (to be hereafter referred to as TSP) the
thermodynamic properties of an impure one-di-
mensional classical Heisenberg chain with near-
est-neighbor exchange were treated exactly in the
thermodynamic limit. They considered both bond
and site impurities and considered the annealed
and quenched limits for each of these models.
Calculating the zero-field magnetic susceptibility
for the site model in which two kinds of magnetic
ions, I and H, are distributed on the N+1 cation
sites of the open chain, they assumed that the g
factors,? g; and gy, of the I and H ions are equal.
The purpose of the present paper is to extend their
calculation of the susceptibility in the site model
to the general case where g; and g, take indepen-
dently arbitrary values. It is shown particularly
in the cases of diluted magnets where J,; (the I-J
pair exchange constant) =J,, (the I-H pair ex-
change constant) =0 and J,, (the H-H pair ex-
change constant) = +J (J>0) (Ref. 2) that for both
the annealed and quenched limits, the difference
between the zero-field susceptibility for g,=g,
=g and that for g, =0 and g, =g is equal to 2pKYy,
in the thermodynamic limit (N> 1). Here p is

the concentration of I ions, K=J/2k,T, and x,
=Ng?u%/12J, where ky is the Boltzmann constant,
T is the absolute temperature, and pp is the Bohr
magneton.

II. ANNEALED LIMIT

First we discuss the annealed limit. Standard
linear response theory gives for the zero-field
susceptibility x‘*’ in this limit of the site model

X' = (1/ kT MM?),, A
with
M= Y- (o S 0-p)s: @)
B — 2 i 2 i i

In these equations, g; and g, are the g factors® of
the I and H constituent ions, respectively; all
other notations are the same as those used in
TSP. Note, for example, that {:-+), denotes the
grand canonical ensemble average associated
with the Hamiltonian given by Eq. (3.1) in TSP,
while p; is the occupation variable which is 1 if
an I ion occupies the ¢th site and 0 if an H ion oc-
cupies that site.

Employing the method discussed in Sec. III A of
TSP, we obtain®
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/(1/'5) Tr(A,A"A’B™1"1B’AN"™) for 1=[<m =N,
(1/2) Tr(A,A'AT AN for 1<I=m =N,
T =(p10nS; 8,0, =3P1 pnS3SEN,=  (1/) Tr(ALB™'B’AY™) for 0=1<m =N, 3)
(1/5) Tr(AAY) for 0=1=m,
K(‘brInIl for 0= m<I=N;

(1/2)Tr(A, AT AB™ "B A¥™) for 1=I<m=N,

. (1/2)Tr(AB™ B AY™) for 0=1<m =N,
1A= (Pi(1- )8 1+ 8,0, =3(pi(1 - pISTSE), = for 1om @)
Al for 0=m<I=N;

(1/E)Tr(A,A*A"B™ I B'AY-" for 1=I<m=N,

L (1/E)Tr(AYB™'B’AY™™) for 0=I<m =N,
In =1 =)D S S =3((1- PP, SIST)e = 0

for I=m,
oI for 0=m<I=N;

(1/Z)YTr(A,A™A "B 1B A% for 1=1<m =N,
(1/2)Tr(A,AA AN for 1=sl=m=N,
O = (1= p)1 =P8, 8,0, =3(1 - p,)(1 - p,)S35%), =( (1/Z)Tr(ALB™ B AN-m) for 0=I<m=N,

(1/E)Tr(AL’AY) for 0=1=m,
i for 0=m <I=N.
(6)

Here =, the grand partition function of the system, is given by Eq. (3.4) in TSP, and

(1 «‘X) (o ﬁ) (1 o>
Ay = Al= Al = , (7
Yx A/’ 0 r/’ VA 0

Zuyw VAzgy 0 Vxzpy Zygw O
= r= "=
A Xz, Az )’ A™=\o Xzg ) A Xz, 0O) ()
Yur Vi (0 VY 1y Yyy O
B= , B'= , B"= : 9
Xw Mp 0 My Ay O ®)

In the elements of these matrices, A, the absolute activity for the I ion, is given by Eq. (3.10) in TSP, and
Zrrs 21y 2y a0nd Y, Yu, Yuu are given, respectively, by Egs. (3.3) and (3.12) in TSP.
It is easy to show that, in the limit 1<</=m < N, the quantities ¢¥Y (X,Y =1 or H) become

1\2 Me]=1 Malal
ol = (;—) [(P"A'Q)U(Q"‘B’P)u<%> +(P1A’Q),,(Q™'B 'P)21<%> J for 1<<I<m<N, o)
,"l —, + + +
((@A’P),,/a,=p for 1<<l=m<N;
1 2 . a b me=l=1 i, - b_ m=l=1
o1 = <;—> [(P‘A'Q)U(Q B"P)u<a—*> +(PTA'Q),,(Q B"P)21<a—> } for 1<<I<m<«<N, )
im - + + +.

0 for 1<Kl=m<N;
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2
- - b, \m=i-1 melal
(p;”: <ZZ—:> [(P 1A"Q)11(Q IB'P)u(-i) +(P'lAtlQ)lz(Q-lB'P)m(%) } for 1<l<m< N,
"o ' (12)
for 1<l=m<«N;

1

2 «l A 22 -1t b+ Melwl b Ml el
i . [(P A""Q),,(@'B P)u<;'> + (P'IA"Q)lz(Q-lB”P)n(;f) :' for 1<<I<m<«<N,
m = *

+

(13)

(P7A"'P), /a,=1-p for 1<<l=m<< N;
where p is the concentration of I ions, a, is one of the eigenvalues of the matrix A (@, is greater than the
absolute value of the other eigenvalue a, of A), b, are the eigenvalues of the matrix B, P and @ are the
matrices which diagonalize the matrices A and B, respectively, with inverses P~ and Q™, and, for ex-
ample, (P™A’Q),, is the (1-1) element of the matrix product P'A’Q. The explicit expressions for a,, b,,
P, P, @, and Q™ are given in TSP; see Eq. (3.7) for a,, Egs. (3.17) and (3.18) for b,, Eq. (3.23) for P
and P?, and Eqgs. (3.24) and (3.25) for @ and Q™.

X

Ny 2 . - 1 . . 1
K= i e (- e [63 (P 0@ B P s s Q@ P )

+g1gH<[(P-IA’Q)u(Q-lB”P)u+(P-1A"Q)11(Q-IB'P)

(F)‘rom Egs. (1), (2), and (10)-(13) we obtain in the thermodynamic limit (N >> 1) the following result for
a),

a,-b

nl a,~-b

+

+ [(PPA47Q),(@7 B P)yy + (PPA7'Q),, (7B P), | — - )

+8% ((P‘lA"Q)u(Q“B”P)u _ale.. ¢ (P477Q),,@B"'P), - }b )} } .

It can be easily shown that, when g; =g,(=g), Eq.
(14) agrees exactly with Eq. (3.26) in TSP.

In the remainder of this section we discuss
briefly y‘ for the special cases of a diluted fer-
romagnet where J; (the I-I pair exchange con-
stant) =J,, (the I-H pair exchange constant) =0.
Jyy (the H-H pair exchange constant) =J(>0), g,=0,
and g, =g and of a diluted antiferromagnet where
Jp=dy=0, Jyp==J(J>0), g,=0, and g, =g. The
zero-field susceptibility x‘*’ for these special
cases can be expressed as

x@=2(1 - p)Kxo(a,+b,)/(a,- b)), (15)
with
Xo=Ng2u3/12J, K=J/2k,T (16)
and
a,=z- 21({_22) + 2(11_ p)[4p(1—p)Z+(1 - 2p)]1 /2,
(%)
b,=%v, (18)

where z =(sinhK)/K and y = (K coshK — sinhK)/K?2.
In Eq. (18) we take the + sign for the diluted fer-
romagnet and the - sign for the diluted antifer-
romagnet. It should be noted here that the right-
hand side of Eq. (15) is equal to the quantity which

(14)

r

is obtained by subtracting 2pKy, from the right-
hand side of Eq. (3.26) in TSP for J;;=J,,=0 and
Jyy=%J. The low-temperature expansions of
x‘® in the cases of the diluted ferromagnet and
antiferromagnet are given, respectively, by*

X@/xo=(1=p)AK2 2K ++++) (19)
and
X/ xe=1=p)1+1/2K+++). 20)

In Figs. 1 and 2 the numecrical results for x‘® in
both of these cases are plotted as functions of the
reduced temperature k5T /J at representative
values of the concentration p of I ions.

III. QUENCHED LIMIT

We now consider the quenched limit. Let ¥ be
the zero-field susceptibility for a given configura-
tion of the 7 and H ions. Again, according to linear
response theory, x is given by

X =(1/kyT)MM?),, (1)

where, as in TSP, (--*), stands for the canonical
ensemble average associated with the Hamiltonian
(3.1) in TSP, and M? is defined by Eq. (2). The
zero-field susceptibility y (@ in the quenched limit
is calculated from the equation
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b3

N N
X“):()-Oconf: ].ZkBT ; Z: {gz;<plpm‘:’1m)eonf +g1gﬁ[<.bz(1—17m)(73m)mnr+<(1—P;)P,,.G’,,.)mnf]

m=0

+gz;1«1 "px)(l —Pm)‘z’x;;;)mnf}- (22)

Here {* **)conr denotes the arithmetic average over
all the configurations of the I and H ions for a
given concentration p of I ions, and &,,, is the
spin-spin correlation function for a given config-
uration, i.e.,

G‘"lm=<§t.§m>c=3<sfs:|>c‘ (23)

The quantities (p ;0@ ;mcons » €LC., can be rewritten

2/~
0@ mdoont; 11, 1em fOT l#m,

(Pl m®imdeons = § (24)

p for l=m;

p(1- p)(“-"lm)eonf; I€l, Hem

for I+ m,
<pl(1 —pm)wlm)mnf= (25)
0 for I =m;
1x102 T T T T T ]
[ ]
6 —
>? Jir =0, Jju=0, Jyu=J 1
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FIG. 1. Zero-field susceptibility x®/x,, where x,
=Ng?u}/12J, as a function of the reduced temperature
kpT/J for the case of the diluted ferromagnet [J;;=J;y
=0,Jyg=J(>0), gr=0, and gy=g] in the annealed limit.
Labels on the individual curves denote the values of the
concentration p of I ions.

p(1- p)(‘z’ln)wnf: Hel, Iem

for l#m,
<(1 - Pz)pma’tm>eonf= (26)

0 for.l =m;

(1‘9)2(‘7’1m>conf; Hel, Hem

for 1+ m,
(1 =) - P ) ymdoont = 27

1-p for I=m.

In these equations (°**)enr; xe1, yemX,Y =1 or H)
represents the arithmetic average over all the
configurations of the 7 and H ions subject to the
condition that the /th and mth sites are occupied
by the X and Y ions, respectively. For simplicity,
we denote {®;meont; xet, yem Y Win. By the use of

|x|02 T —T —T T
[
s Jip 20, J =0, Jyu=-J ]
2 L i (annealed) 1
X 9=0. 9u=9 ]
= L
|‘|0' - .5 T ~
C o = .2 -‘ 1
b ?5 4 ol b
=

6
s

ol 1
00 03 0.6

FIG. 2. Same as Fig. 1 but for the case of the diluted
antiferromagnet [J;=J; =0, Jyy=—J(J >0), g;=0, and
gy=gl. Note that the region surrounded by the dashed
line is enlarged in the inset.
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the method discussed in Sec. IIB of TSP, wiY
can be calculated easily.® The results for I #m
are®

win Wi / Urr Ury
=pli-mi- for I#m,  (28)

wim Wi \u,,, Uyp,
where
puy (1-phury
b= (P“m (1- P)“ml> ’ (29)

Uy, Ury, and uyy, being given by Eq. (3.44) in TSP;
equivalently, they are

Wim =Ry, (Rijugr + Rigupg)dl! "=
+R (R upp+ R3uy)d =™ for I#m, (30)
WA =Ry (Rilupp+ Rigu py)dl -1t

+Ry(Rilupp+ Rtuy,)dl =™ for 1#m, (31)

W =R (Riuyy+Ruy,)dl -1
+Ry,(Rou py + Ry )dl ™™ for 1#m, (32)

Wi =R21(Rﬁum+R;§“nﬂ)d»l,"m'-l
+Ryp(R5Yu 1y + Rttty p)d' =™t for 1#m, (33)

where d, are the eigenvalues of the matrix D, R
is the matrix which diagonalizes D, and R,, and
Ry} are, for example, the (1-1) elements of R and
its inverse matrix R™, respectively. The explicit
expressions for d, are given by Egs. (3.56) and
(3.57) in TSP, and those for R and R™ by Eqs.
(3.58) and (3.59) in TSP.

Using Eqgs. (22), (24)-(27), and (30)-(33) and the
explicit expressions for d,, R, and R™, we can
calculate the zero-field susceptibility x‘® in the
thermodynamic limit (N >>1), obtaining the result’

+4g:8yp(1 = plury +8%(1 = p)[1 - pusr+ (1 - pluyy —p(1 - p) gty - wi) I (34)

N2 1
K@= 12:31“ < {&3p[L +purr - (1 - puyy = p(1 = p)atysty - M)
B
Imlo2 T T T T T
6 -
=0, Jiju =0, Jyu=J

G:\? 3 jn o gng H (quenched)
g =0, -

=

1x10'E
6
T (o I Y T TR R N
00 0.3 06 0.9 1.2 15 1.8
ko T/J

FIG. 3. Zero-field susceptibility x’/x,, where Xo
=Ng®u}/12J, as a function of the reduced temperature
kpT/d for the case of the diluted ferromagnet [J;; =J;
=0, Jyg=J(>0), g =0, and gy =g] in the quenched limit.
Labels on the individual curves denote the values of the
concentration p of I ions.

2
1x10%- + 77T
L Jip= 0, Ju=0, Juu=-J
6 n (quenched) 7
91=0., 9gu=9
< '
s 3 310! p——T——— — e
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FIG. 4. Same as Fig. 3 but for the case of the diluted
antiferromagnet [J;; =J;4=0, Jyy=-J(J >0), g;=0, and
gy=gl. Note that the region surrounded by the dashed
line is enlarged in the inset.
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Here the denominator A is

A=1-pup— (1 - plugy+p(l - p)(urptyy - uty).
(35)

When g;=g4(=2), Eq. (34) agrees with Eq. (3.61)
in TSP.

In the cases of a diluted ferromagnet [J;,;=J,, =0,
Jyn=J(>0), g,=0, and g, =g] and of a diluted anti-
ferromagnet [J;;=Jp4 =0, Jy,=-J(J >0), £,=0,
and g, =g], the susceptibility x‘© becomes

J

X(a) _
Xo

4K2 2K 4°°*

and that of x(? for the diluted antiferromagnet is

q)
X =(1_p)<22+’px+4—(1_'—;’3+--->. (38)

In Figs. 3 and 4 we summarize the numerical
results of x‘? for the two cases discussed above.
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