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The method of Gutzwiller is extended to include antiferromagnetism in a s-band Hubbard model. A first-
order paramagnetic (PM) to antiferromagnetic (AFM) transition is obtained with increasing U/ W ratio. The
AFM ground state in the phase diagram is restricted between the electron density n; < 1 and n, = 2 — n,. It is
also bounded from below by a critical value of U/ W. The complete AFM ordering appears only for n = 1. As
n approaches n, or n, along the phase boundary, the AFM ordering gradually disappears. The AFM ordering
is essentially due to virtual electron hopping, and the values of n,, n,, and critical U/ W depend on the bare
density of states and the coordination number. The probability of having antiparallel-spin nearest-neighbor
pair is computed. The result is consistent with the phase diagram. We also found a region in the phase
diagram where the PM and the AFM states coexist. The AFM ground state at n = 1 is insulating. Depending
on the value of U/W, the present theory predicts either an AFM insulating—PM metallic or an AFM
insulating—PM insulating—PM metallic transition as the temperature is raised. Therefore, the V,0;-type

phase diagram follows from the present theory.

I. INTRODUCTION

The s-band Hubbard model,' as one of the sim-
plest and most tractable models of a many-fer-
mion system, is of intrinsic theoretical interest
regarding the metal-insulator (M-I) transition?
and the appearance of magnetic ordering® in
strongly correlated electron systems. In their
pioneering works Hubbard, Gutzwiller, and Kana-
mori have used different approaches to solve this
model Hamiltonian.! The Green’s-function de-
coupling scheme due to Hubbard and the Gutz-
willer variational method have been improved and
generalized by many authors.*® For sufficiently
strong correlation, criteria for the M-I transi-
tion and for ferromagnetism were obtained in
terms of the density of electrons and the electron-
ic density of states.

At the atomic limit, where the interatomic sep-
aration is very large, the ground state of the
Hubbard Hamiltonian should be antiferromagnetic
(AFM) insulating in accordance with experiment.
However, as Mott? and Herring® have pointed out,
the M-I transition and the AFM ordering are due
to different mechanisms. Consider an insulator
with one electron per atom and near the M-I tran-
sition. In this case the hopping terms ¢,,. for
£#g" in the Hubbard Hamiltonian

H= Z; Lo Qgotgra+ U anfngl 1
g8°0 I'4

can be treated as a perturbation. The ground state

of the unperturbed Hamiltonian is just a collection

of noninteracting atoms. Owing to the random dis-

tribution of electronic spins, this ground state is

highly degenerate. The second-order perturba-

tion will lift the degeneracy, and is interpreted
as due to virtual electron hoppings. If we include
only the nearest-neighbor hopping ¢, the energy
correction per electron is simply AE, = -Zt3/U,
where Z is the mean number of antiparallel-spin
nearest neighbors. Since the nearest-neighbor
exchange energy is much smaller and does not
show up in H, the virtual hopping invariably pro-
vides and AFM coupling in the Hubbard model.

On the other hand, the metallic conductivity re-
quires the formation of polar states. It needs an
activation energy AE,~U. For strong correla-
tion, AE,> - AE,. Consequently, in this model
the M-I transition temperature should be higher
than the Néel temperature. This conclusion agrees
with the experimental evidence that lower Néel
temperatures are more usual for materials ex-
hibiting M-I transitions.® Although the s-band
Hubbard model does not include the orbital de-
generacy which is crucial for the magnetic order-
ing, the more general model will not change this
conclusion qualitatively.

The AFM state of the s-band Hubbard model has
been investigated by Penn,” Caron and Pratt,?
Johansson and Berggen,® Brinkman and Rice,!°
Arai,!! and Bernasconi.!? The importance of elec-
tron virtual hopping near the M-I transition was
emphasized by Caron and Pratt. Recently Ogawa,
Kanda, and Matsubara!® have tried to extend the
Gutzwiller variational method to include the AFM
state. Nevertheless, owing to their approximating
algebraic manipulation, they obtain some unphys-
ical results, which will be discussed in Sec. IV.

In Gutzwiller’s variational approach!s® the basis
for the many-electron wave functions is a set of
Slater determinants {<I>} from Wannier states. For
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a given value of correlation energy U, one finds
that it is sufficient to consider only a subset
{®(v)} where all the ®(v)’s have the same optimum
number v of doubly occupied atoms. Approaching
the M-I transition from the metallic side, v de-
creases monotonically to zero if the band is half-
filled. Therefore, Gutzwiller’s trial function is
ideal for incorporating the AFM virtual hopping
coupling to the M-I transition.

The purpose of this paper is to extend the Gutz-
willer method along this line in order to investi-
gate the AFM ordering in the s-band Hubbard
model. In view of previous work® our method can
be easily generalized to cope with the orbital de-
generacy. In Sec. II, we will construct the proper
trial function, which will be used to calculate the
energy in Sec, III. We then perform a model cal-
culation using a parabolic density of states. The
results are discussed in Sec. IV. A concluding
remark will follow in Sec. V.

II. TRIAL FUNCTION

In order to cope with the AFM ordering, our
trial function will contain a parameter in terms of
which we can determine the probability of having
antiparallel-spin nearest neighbors. To avoid
ambiguity in the following presentation, we sep-
arate the lattice of L sites into two interpenetra-
ting sublattices L(4) and L(¥). However, our
method is general enough to deal with the lattices
which do not have interpenetrating sublattices.

We will consider in this section only the special
case of a half-filled band with equal numbers of
up- and down-spin electrons, N(})=N(¥)=3L. The
general case of less or more than one electron
per atom will be left to the appendix.

Consider the single-particle creation operator

dhy=cosb,a}y+sinb,al,qy, (2)

where 6, is a parameter. a;', 4 is the creation op-
erator for the 2 Bloch state with up spin. @ is so
chosen that

o {1 for site g L(4)

-1 for site ge L(¥). (3
Using the transformation
al=L7 Y eal, 0

4

we have

(cos 8, +sinb,)d}y = L1/2 Z et®ql,
geL(t)

-1/2 ikg t
+§kL Z e ”aef’
gEL(Y)

where &,=(cosé, —siné,)/(cos6,+ sinb,).

Let k=(k,,k,, ...,k ;) be the set of vectors in
the inner half of the first Brillouin zone. This
set of vectors define a many-electron wave func-
tion

Uy = Hdzf |0, (6)
REK

where ]0) is the vacuum. The many-electron wave
functions in the localized picture can be similarly
constructed by first defining G=(g,,8,,...,8L ),
a set of lattice sites to be occupied by up-spin
electrons. Then the localized many-electron wave
function can be expressed as

8,(G)= IIG aly|0). )

When Eq. (5) is substituted into Eq. (6), it be-
comes

¥y= ;‘;GA’(G"I"(G) (8)

except for a normalization constant. The coeffi-
cient A4(G) can be conveniently expressed as a
determinant:

8182+ -8L /2

§¢k(g)L'1/2e"k" . (9)

kL /2

The elements of the determinant are £4,(g)L™ 2tk
and the rows (or columns)are labeled by &; (or g;).
£4,(8) is defined as

1 for ge L(})
Sr(8)= (10)
¢, for ge L(¥).

For down-spin electrons we can similarly de-
fine

d},=cos8,a}, —sinb,al,q, (11)
and
v,= [T, 0. (12)
REK

LetF=(f,,f 3 -.,f1/) be a set of lattice sites to
be occupied by down-spin electrons, and define

&,(F)= [] a4l 0). (13)
fEF

¥, can then be rewritten as



Y= ) A(F)®,(F), (14)
all F
where
f)fz tee fL /2

kl

k2
AyF)= (G (NL e (15)

kL /2

and
1 for f € L(¥)
SlN= (16)
¢, for fe L(1).
We now define
A(GF)=A,(G)A,(F),
®(GF)=,(G)®,(F),

and the uncorrelated many-electron wave function

Y=¥,¥,= Y. A(GF)®(GF). (17)

all G,F

The Gutzwiller projection operator! is defined as

P= T [1--mn,,), (18)
all ¢
where £ is a variational parameter. Applying to
¥ we obtain the trial function for the ground state
of a correlated system

v,=P Y. A(GF)B(GF)®(GF). (19)
all G,F

The factor B(GF) is introduced to count for the
less-important interatomic correlation. In Gutz-
willer’s variational scheme he has proposed a
quasichemical approximation (QCA)'*° to deter-
mine B(GF). Note that the parameter ¢ in Eq.
(18) is different from the parameter n which Gutz-
willer used in his original formulation. The rela-
tion between £ and n will be given later.
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For given G and F, let v(o) be the number of
doubly occupied atoms in sublattice L(o), and
(o) be the number of o-spin electrons in L(- o)
sublattice. Also define v=v(4)+v(¥) and u=pu(4)
+ p(¥). Then

(Wol¥y= D& D0 3 |AGFIBGP)|?, (20)
oy w(H,v(t) G, F
where the primed sum runs over only those G and
F which have the same number of p(4), u(¥), v(4),
and v(¥). This primed sum can be calculated with
QCA. However, in doing so one should be aware
of the possibility that the function &, in Egs. (9)
and (15) may affect the validity of QCA if the
fluctuation of ¢,, is large.

Ogawa et gl.!® have obtained the Slater split-band
model from the Hubbard Hamiltonian with Hartree-
Fock approximation. They find from there an ex-
pression for ¢, and use it in the trial function.

So &, are no longer variational parameters. How-
ever, their ¢, varies rapidly near the Slater

split gap® and, therefore, most likely make the
QCA a very bad approximation in their calcula-
tion. This is the reason why they have obtained
some unphysical results, which we will discuss
later.

In this paper we assume that ¢, depends on the
electron hopping probability and the correlation
energy U, but not on k. Hence, we have reduced
a large number of variational parameters into a
single one to measure the AFM ordering. This
is also necessary in order to be mathematically
manageable. This approximation does not affect
the nonmagnetic state where all the ¢, are equal.
to one. On the other hand, the restriction on the
variational parameters ¢, increases the energy
of the AFM state. Consequently the criterion for
AFM ordering should be less stringent than what
will be predicted from the present theory.

We then have a second variational parameter
£x=¢ for all k and 0. For paramagnetic state
¢=1 while {=0 specifies a complete AFM state.
With the notation

{a|d}=al/bl(a-0)!,
the QCA result is readily obtained:

(v |w)®er= 3" g 3 LBN|p- p(OPEN - p+ (@) v}

Vs b vy ()

X = wM e — v Hu = 6 [y =v(WHEN = p+ n([EN = p()+v(+) - v}

The right-hand side of the above equation has the
form of a hypergeometric function. It is highly

(21)

peaked and the sum can be well approximated by
the peak term. For given £ and ¢, the peak term
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is easily determined by the optimum value v, and
Wo which satisfy the conditions

p()= p(¥)=3p,,

v(M)=v(¥)=3v,,

(ko = V(L = 1y —v,)= &2,
and

VE/(L = ko= Vo) (Ko = Vo) = E2.

These conditions agree with the symmetry re-
quirement.

The product n=£¢ with 0=n=1 is just the vari-
ational parameter originally defined in Gutzwil-
ler’s projection operator.® Let us relabel v, and
Ly, respectively, as v and u for the peak term
in Eq. (21). The ground-state trial function be-
comes

v ww)=1"e** Y BGRAGF)®GE),  (22)
Gy F

where

v=nL/(1+2n+&2), u=(n+2)L/(1+2n+&2).

(23)

The primed sum in Eq. (22) is restricted to the
G and F which have the same values v and L.
Note that for {=1, Egs. (22) and (23) reduce to
the correct nonmagnetic results.

III. ENERGY CRITERION FOR ANTIFERROMAGNETISM

The trial function Eq. (22) is characterized by
two parameters v and u. Their values for the
ground states are obtained from the minimiza-
tion conditions 8E (vp)/dv=0 and 0E,(vi1)/0 =0,
where

Ey(vp) = (¥ (vp) [H | ¥ (v ) 8 (v12) |9, (v 1)

However, this approach originally proposed by
Gutzwiller™® has neglected the contribution of the
electron virtual hopping to the total energy. Since
the virtual hopping provides an AFM coupling in
the itinerant theory of antiferromagnetism, we
will extend the Gutzwiller method to include this
effect.

The conventional approach is second-order per-
turbation theory. In our case, the zeroth-order
wave functions are specified by a pair of param-
eters (v, u) as indicated by Eq. (22). In the strong
correlation limit where the electron hopping is a
perturbation, the expectation value of the Hamilto-
nian Eq. (1) to the second-order correction is

E(vp)=E,(vp)

+E | ()] s’xotggo oo Y (VR)) |2
£t (AEXY (v u) 1% (v (¥ (wy) 1¥ (wy))
(24)
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Here the first-order correction, i.e., the real
hopping energy is included in E (vu). The primed
sum excludes the term (w,y)= (v, u).

Substituting Eq. (22) into Eq. (24), the hopping
matrix elements are reduced to the form
(®(WR) |am a,,|®(GF)). Since the configurations
(GF) and (WR) are characterized by two different
pairs of parameters (v, u) and (w,y), respectively,
these matrix elements are nontrivial only if w
=v+1 and y differs from p by no more than 1.

For large U the only important electron hoppings
are between nearest neighbors. Let { be the near-
est-neighbor hopping integral. Then the energy
factor in the second term of Eq. (24) has the sim-
ple form #2/U, which is valid for large U. For
numerical computation in the next section, we have
to treat U as a variable between the atomic limit
and the band limit. Therefore, for convenience we
will express this energy factor as V(U). At the
limit of strong correlation, V(U) approaches as-
ymptotically to £*/U. The exact form of V(U) will
be discussed in Sec. IV.

The total energy Eq. (24) can now be readily
computed in the quasichemical approximation. The
reader is referred to the original work™® for the
details of QCA. Let us normalize E, v, and p as
E/L, v/L, and p/L, and then relabel them by the
same symbols E, v, and u respectively. The QCA
result for the average energy per electron can be
expressed as

4n(1+¢)*
(1+2n+¢7)°

E= €+vU-(1-2p=2v+2u3)ZV(U),

(25)

where Z is the number of nearest neighbors. € is
the average band energy per electron in an uncor-
related system. If we normalize the band energy
to make the energy of a full band zero, then €=<0.
We should point out that the v and the u in Eq. (25)
are the optimum numbers which characterize the
zeroth-order wave function under the influence of
the electron virtual hopping. This is unambiguous-
ly shown in Eq. (24). The number of doubly oc-
cupied atoms in the total wave function which in-
cludes the higher-order corrections fluctuates
around this optimum number v. This concept is
quite essential to the M-I transition to be dis-
cussed below.

It is convenient to work with the dimensionless
quantities & = E/4|e [ a:U/4'€[ , and B=ZV(U)/
4[(] Substituting Eq. (23) into Eq. (25), we have

E==[n1+8)?-n(1+2n+8%a+(1 - 202+ >8]

X (1+2n+&3)2. (26)

The next step is to minimize § with respect to the
variational parameters n and ¢{. The resulting
formula is so complicated that the minimum of §
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can be obtained only numerically. Before present-
ing the results, we will first investigate a sim-
pler case in order to get an analytical solution.
This will enable us to demonstrate the essential
features of our model.

For large U, the major contribution to the vir-
tual hopping energy is from the singly occupied
antiparallel-spin nearest neighbors. If we only
consider the contributions from such processes to
the virtual hopping energy in Eq. (24), then Eq.
(26) can be approximated as

go__ i+l ~ nma-pB

—(1+211+§2)2+1+2n+§2' @7

The optimum number 7, for the condition 88 /an=0
is

1+ A\ 1+ -al+23)-28
Tlo—< 2 )(1+§)2+a(1+§2)+26’ (28)
Substituting this in Eqs. (23) and (27), we get
v=[(1+2)*- a(1+£?) - 28]/4(1+2)%, (29)
E==[21+0)22+B8]/(1+&?. (30)

For given value ¢, v decreases monotonically
with increasing U. When U reaches the critical
value

Uy () =[4(1+ £)?|€| - 2ZV(U,)]/(1 + 23, (31)

v vanishes. [This conclusion also holds if the ex-
act energy Eq. (26) is used.] Note that v is only
the number of doubly occupied atoms in the zeroth-
order wave function. The total wave function

still contains a finite number of doubly occupied
sites owing to the electron virtual hopping. It has
been proved® that in the Gutzwiller variational
scheme, a vanishing v is equivalent to the non-
existence of a Fermi surface. Therefore, the con-
dition v =0 indicates a M-I transition. Under this
condition the energy contains only the virtual hop-

ping energy
E§=-8/(1+23. (32)

It is clearly seen that the minimum value of § cor-
responds to {=0. Hence the ground state for large
U is AFM insulating.

At the other limit, U small, V(U) can be neglect-
ed. We can then set 3=0 and Egs. (26) and (27)
are identical. For B8=0 and for fixed value of U,
the v of Eq. (29) increases monotonically with in-
creasing ¢. It is easy to see from Eq. (30) that the
energy is less for larger value of . Consequently
in this region the ground state is paramagnetic
metallic.

The details of the transition from the paramag-
netic metallic to the AFM insulating state depend
on the form of V(U). The form V(U)=¢%/U derived

from the second-order perturbation is valid only
for large U. Since for small U the wave functions
are sufficiently delocalized, V(U) must approach
zero very rapidly. In this region the exact form
of V(U) is no longer important as long as it is
small enough to guarantee a paramagnetic ground
state. Hence we can join #*/U smoothly to a
smooth function which vanishes at U=0 (in fact we
have tried different functions and obtained similar
qualitative results). Without further information
except V(U) -0 as U—~0, we assume the following
form for numerical calculation

W2/4Z2U for U= U,(¢=1)=8|¢|
WeU(12|€|-U)/10242%|€ | ® for U= 8|e|,
(33)

V(U)={

where W=2Zt is the bare bandwidth. Note that
around the region of interest, namely, around U
=8 IE‘ , V(U) is continuous with continuous first
derivative.

IV. RESULTS AND DISCUSSIONS
The minimization of § given by Eq. (26) with re-
spect to 1 yields the relation

_ (1+83)1+8)° = (@ +2B)(1+2%)% - 28(1 - £3)*
K 2(1+8)%+2(a+28)(1+ &%) :

(34)

Substituting this relation into Eq. (26) the energy

& becomes a function of U, Z, W, and ¢{. For the
electron density n#1 the & has been derived in the
Appendix. Hence, in general, the energy is a func-
tion of U, Z, W, ¢, and n. The condition 38/8¢=0
will determine the optimum value of ¢ for the
ground state as a function of U, Z, W, and n. How-
ever, the equation 38/8¢ =0 is too complicated to
be solved analytically. Therefore we will use a
parabolic density of states of width W to determine
the optimum value §(U,Z,W,n).

The general scheme is the following: For given
values of Z, n, and the ratio U/W, we find the
optimum value of ¢, which gives the minimum of
8. Since U/W is proportional to the o =U/4|&]|,
we can then plot this optimum value of ¢ for the
ground state against «. For Z =6 the results are
shown in Fig. 1. The numbers inserted in the dot-
ted lines are the electron density n. For fixed
electron density there is a first-order transition
from the paramagnetic (£ =1) to the AFM state
(£<1) as « increases. Only for one electron per
atom, n=1, there is complete AFM ordering £=0
for @ >1.425. As n gets smaller the degree of
AFM spin polarization decreases continuously un-
til at a critical electron density »n,=0.9548 it dis-
appears entirely.

Ogawa et al.'® and Takano and Uchinami!* have
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FIG. 1. Optimum number of ¢ for the ground state ver-
sus the normalized intra-atomic correlation energy «.
The inserted numbers are the electron density. The co-
ordination number is 6.

extended the Gutzwiller variational method with
different approximation to study the criterion of
antiferromagnetism. These authors also found a
critical electron density n, such that for n=>#n,
AFM ordering can occur for sufficiently large U.
However, their AFM ground state has complete
spin polarization { =0 for all values of n=>n,. This
is certainly incorrect for » #1 because of the exis-
tence of spin diffusion among the holes. Further-
more, our minimum value of o for the occurrence
of AFM ordering is o =1.425 (for #»=1) in contrary

| P(#)

05

0 . N X "
1 098 096

FIG. 2. Probability of having singly occupied anti-
parallel-spin nearest-neighbor pair. AFM and PM cor-
respond, respectively, to the states specified by the
bottom and the top points of the dotted lines in Fig. 1.

to Matsubara and Takano’s minimum values around
a=0.7-0.9. Judging from the critical value =2
for the M-I transition,' and from the fact that the
AFM state for n=1 is insulating, Matsubara and
Takano’s values of o =0.7-0.9 are too low.

To demonstrate the degree of AFM spin polari-
zation under various conditions, it is clearer to
compute the probability of having singly occupied
antiparallel-spin nearest-neighbor pair:

P(’*):<\Ilc|ngf(1 - nz&)ng‘&(l - ng'f)I\I/c>/<\1lc|q’c>°

For a given value of # and at the critical value of
a where the first-order paramagnetic to antiferro-
magnetic transition occurs, we compute the P(4¥)
for both the paramagnetic and the AFM states.

The result for Z =6 is shown in Fig. 2. The P(4¥)
for the AFM state is greater than the P(4¥) for

the paramagnetic state as it should be as long as
n=>0.9548. Note that the P(4¥) for the paramag-
netic state does not equal to the Hartree- Fock
value because here we have U #0.

The magnetic phase diagram in terms of o and n
is given in Fig. 3. For the s-band Hubbard model,
ferromagnetic ordering is possible only at U -
and therefore does not appear in Fig. 3. Our model
contains the assumption of the existence of inter-
penetrating sublattices. Z =12 corresponds to a
face-center-cubic structure, which does not have
such sublattices. Since our method can be easily
generalized to all kinds of lattices, we include the

PM
n

L 1 1 1 1 o
FIG. 3. Magnetic phase diagrams for different coor-
dination numbers.
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PM

i "

n

-

—_—

FIG 4. AFM and PM states coexist in the shaded re-
gion. The coordination number is 6.

Z =12 case here to illustrate the influence of co-
ordination number on the phase diagram. We see
that it requires stronger correlation to stabilize
the AFM state in lattices with larger coordination
number Z. The reason is as follows: The direct
hoppings favor the nonmagnetic state while the
AFM state is caused by the virtual hoppings. The
direct hopping is a first-order effect as compared
to the second-order virtual hopping. Hence, a in-
crease of the coordination number will stabilize the
paramagnetic state. Nevertheless, in a more
general degenerate-band Hubbard model our con-
clusion may not hold.

In a system exhibiting a first-order paramag-
netic- AFM transition it is possible that the system
is in an inhomogeneous state in which the two
phases coexist.'® The coexistence region is deter-
mined by the common tangent of the two & vs 1/n
curves, one for the paramagnetic state and the oth-
er for the AFM state. Figure 4 shows the coexis-
tence region for Z =6 by a shaded area. At fixed
value of n, the coexistence region has both a lower
and an upper bounds. Ogawa et al.'® do not find the
upper bound; their coexistence region extends to
infinite . Since the AFM state becomes more
stable for larger o, such upper bound must exist.
As n approaches the limit 0.9548 or 1.0452 along
the phase boundary (the solid curve), the coexis-

tence region gradually disappears. This is in ac-
cordance with the diminishing of the AFM ordering
at this limit, as indicated by Figs. 1 and 2.

Another striking difference between our phase
diagram and those of Ogawa ef al. and of Penn’ is
illustrated in Fig. 5. In order to be consistent with
their works we have recomputed our phase bound-
ary using a rectangular density of states. Penn’s
phase boundary, curve C, obtained from the Har-
tree- Fock approximation does not show critical
values of both @ and » for the occurrence of AFM
state. Curve A is from the present theory while
curve B is Matsubara’s phase boundary. Between
n=1,045 (or 0.9555) and »=1.065 (or 0.935) the be-
havior of curve B is unphysical. If we increase a
along a line of fixed » in these ranges, the sys-
tem goes through a para-antiferro-paramagnetic
transition. The second AFM-paramagnetic transi-
tion with increasing correlation is definitely wrong.
The reason for their unphysical result is obvious:
They have compared the energy of the paramag-
netic state in the Gutzwiller scheme with that of
the AFM state in the Hartree- Fock approximation.
We will have further discussion on this later. The
similar incorrect result also shows up in the phase
diagram of Takano and Uchinami.'

The V,0,-type phase diagram® follows naturally
from the present theory. In Fig. 6 we plot the en-
ergies of the AFM state and the paramagnetic state
against o for n=1 and Z=6. The paramagnetic-
AFM transition occurs at a =ap,. From Eq. (23)

C
n

1 I I PR 1 n i

095 1 705

FIG. 5. Comparison of the magnetic phase diagrams:
curve A is the present theory, curve B is from Ogawa,
Kanda, and Matsubara (Ref. 13), and curve C is from
Penn (Ref. 7).

I i1
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AFM
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PM

APa ami
5F ] _ l . L a
05 1 1.5 2
FIG. 6. The normalized energy per electron versus

the normalized intra-atomic correlation energy. The
electron density » =1 and the coordination number is 6.

we found v=0 for the AFM ground state. Hence
the AFM ground state is insulating. Within the
paramagnetic state v=0 when @ > ;. Since the
paramagnetic state has more entropy than the AFM
state, a AFM insulating to paramagnetic metallic
transition occurs at the Néel temperature if a < a,,.
On the other hand, if o >«a,,; the transition should
be from the AFM insulating to the paramagnetic
insulating, and then to the paramagnetic metallic
as the temperature is raised. In the region a>1.6
the energy difference between the two curves is
almost constant. This indicates a constant Néel
temperature in this range of @. Such behavior has
been observed in V,0,.

V. CONCLUSION

Owing to its emphasis on the localized prop-
erties of electrons, the Gutzwiller variational
scheme is particularly useful in investigating the
AFM ordering under strong correlation. However,
an AFM trial function is rather difficult to con-
struct. Ogawa et al. used the Slater’s split-band
model to incorporate the AFM ordering to the
Gutzwiller method. Hence, they did not introduce
a new variational parameter. Let e* (%) be the
split-band energy and n}, be the corresponding
number operator. Furthermore, let the associated
number operator in the Wannier representation be
n},. Then the result of Ogawa et al.'® can be ob-
tained by applying the Gutzwiller scheme to the
Hamiltonian

H*=) e*x(kR)n¥,+U ) n* n*
; R Z‘: £47Ey, (35)

However, e€*(k) already contains a large portion
of the intra-atomic correlation energy in the Har-
tree-Fock approximation. This is the reason why

they failed to obtain the AFM state with the energy
lower than the paramagnetic state in extending the
method of Gutzwiller.

The AFM state of Ogawa et al. for n=1 is not
necessarily insulating. Whether it is insulating
depends on the existence of a band gap in Slater
split-band model. Takano and Uchinami'* obtained
an AFM ground state by another extension of the
Gutzwiller method. Their AFM state is always
metallic. Besides, it is not clear if the transition
obrained by Takano and Uchinami is of first or of
second order. All of these ambiguities are clari-
fied in the present work.

The crucial assumption in the present theory
is the use of a single variational parameter ¢ to
measure the AFM ordering. Herring!® pointed
out that in this case it may be better to use the
probability of having antiparallel-spin nearest-
neighbor pair P(t) as the variational parameter.
Comparing Figs. 1 and 2, we see that the role of
£ and the role of P(4) are actually equivalent. The
present theory will be much improved if we can
treat each ¢, as an individual variational param-
eter. However, how to handle these 10** vari-
ational parameters mathematically is a real chal-
lenge.

ACKNOWLEDGMENTS

The authors would like to thank Professor N.
Majlis for helpful discussions. One of the authors
(K. A. C.) would also like to thank Professor N. F.
Mott, Dr. C. Herring, and Dr. M. C. Gutzwiller
for very stimulating suggestions and very useful
comments.

APPENDIX

We will derive the energy expression to be used
in Sec. IV for the numerical computation. Con-
sider the general case that the electronn <1. Forn =1
the same results apply owing to the electron-hole
symmetry. The description and the definitions
in Sec. II are valid except that the number of elec-
trons for each spin is now 3 N instead of $ L. The
sets K, G, and F should be redefined as
K=(ky,ky,... ’kN/z): G=(81,82--- :gN/z)’ and
F=(f1,f2++-,fxs). Furthermore, instead of Eq.
(23) we found it more convenient to use the re-
lations

p=[(1+£2)v +Ng2/2] /(1 +¢2), (A1)
n=1+2)[v(L -N/2+)]*?/(N -2v) . (A2)

With these modifications, the energy per elec-
tron in Eq. (25) becomes

E=(1+8)2m=2v)[v2+(1 =n+v)*2 2 (1 +£2) € (n)
+VU/N =[(1+£*) (n = 20)% (1 +£2)"2
=201 =n+v)]ZV(U)/n, (A3)
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where € (1) =2 7 ., €(k)/N is the average band
energy per electron. If we define the dimension-
less quantities § =E/4|€m=1)|, a=U/4|€m=1)],
and B=ZV(U)/4| € n=1)|, then the normalized
energy per electron § corresponding to Eq. (26)

is given by

n8 == (1+5)% @ - 20) [V/2 + (1 —n +v)*2]2/4(1 +£?)
+av-B[(1+¢*) n-2v)2 (1 +£3)"2

-2v(1 =n+v)]. (A4)
To obtain the above equation, we have used the
approximation € (n) =€ (n =1), which is correct
to the order (1 —#)? for symmetric density of
states.

The minimization of § with respect to v, 38 /ov

3129

=0 yields the condition
(A%2-64n2)v*+(A2D -2AB-967,2+12853) 13
X[B2+2(8n°-—AB) (1 -n) - 4n3(3 ~ 4n)? |2
+(1=n) (B®+121n° - 16n*)y ~ (1 —=n)?n*=0,
(A5)
where
A=8n-1622p(1~¢)%/(1+£3),
B=2n[2n-1-4nB(1-¢)*(1+£%)7"] (A8)
- 4(an +2n?) (1+£2) (1 +£)72.

Giving the values of o, B, and n, Egs. (A4) and
(A5) are then solved simultaneously for &§ as a
function of ¢.
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