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The long-distance properties of classical Heisenberg ferromagnets below the transition point are related to a
continuous-field theory, the nonlinear oo model. The renormalizability of this model in two dimensions and its
ultraviolet asymptotic freedom are used to derive renormalization-group equations valid above d = 2. It is
argued that this model is renormalizable up to four dimensions. The scaling properties which incorporate
critical and Goldstone singularities follow. Explicit calculations of exponents and of correlation functions in
powers of d —2 are given. A technique is proposed to make calculations in the symmetric phase applicable

even in two dimensions.

I. INTRODUCTION

The classical Heisenberg model, with an O(n)-
symmetric interaction, is described by the Ham-
iltonian

- VS-S, 1)
i7

in which the §,. are unit »-component vectors as-
sociated with the sites i of a periodic d-dimension-
al lattice; V;; is a short-ranged positive transla-
tionally invariant interaction. The partition func-

tion is given as
Z= f 1T [6(s2 - 1)ars;Je= /7. (2)

This model has a phase transition above two
dimensions and its long-distance behavior may be
studied through an expansion around mean-field
theory. The result is that the critical properties
are given, as first shown by Wilson and Kogut,'
by a continuous-field theory, namely the linear o
model, whose interaction is

= [ as (‘V"’ i —~Q<¢)> 3)

This theory has an infrared stable fixed point®
below four dimensions, with g, of order 4-d; this
leads to the famous Wilson-Fisher?® 4 — d expan-
sion. This model, in which a continuous symmetry
is broken, has infrared singularities both in the
critical domain and in the ordered phase for any
temperature below T, due to the n — 1 massless
Goldstone modes. These singularities are not na-
turally taken into account by this formalism* and
the aim of this work is to show that another ex-
pansion is well suited for the understanding of both
the Goldstone and the critical singularities.® The
first step will be the construction of a low-tem-
perature expansion of the partition function (2).
Then it will be shown that, in the long-distance

limit, a continuous-field theory,® whichis the non-
linear ¢ model,’ is equivalent to the Heisenberg
model. It will be established that this nonlinear o
model has a phase transition above two dimen-
sions,” and that apart from the special n=2 Abeli-
an case, the critical temperature is proportional
to d -2. This model is asymptotically free in two
dimensions and renormalizable above two dimen-
sions within a double series expansion in d- 2 and
in the temperature. The renormalization-group
equations will then be derived; their integration
will exhibit scaling properties with both critical and
Goldstone singularities.

The set-up of the article is the following: In Sec.
II it is shown that the Heisenberg problem below
T, coincides in the long-distance limit with a con-
tinuous-field theory. This is done by analyzing the
behavior of the low-temperature expansion.

In Sec. III, it is shown that this field theory is
renormalizable, within a double expansion in pow-
ers of the temperature and of d—2. The corre-
sponding renormalization-group equations are de-
rived.

In Sec. IV, scaling properties are derived from
the renormalization-group equations, containing
the combined structure of critical and Goldstone
singularities.

In Sec. V, the n=2 problem is discussed separa-
tely. The continuous version of this model coin-
cides with the quantum sine-Gordon equation. The
scaling properties in the low-temperature region
follow.

Section VI is devoted to the large-» limit. Gen-
eral arguments support the identification of the
nonlinear ¢ model and of the (¢2)? theory in the
scaling region. The renormalizability of the non-
linear o0 model is thus extended up to four dimen-
sions within the 1/%# expansion.

Section VII contains calculations of various phys-
ical quantities below T, up to two-loop order. In
particular, critical indices are given at order
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(d-2)2.

In Sec. VIII, the problem of the continuation above
T, is discussed. The example of two dimrensions
reveals the difficulties. An explicit numerical
method is proposed, and the amplitude of the low-
temperature divergence of the magnetic suscepti-
bility is approximately calculated.

II. LOW-TEMPERATURE EXPANSION
AND CONTINUOUS LIMIT

In the ordered phase the vectors §, fluctuate
around the direction & of spontaneous symmetry

Z= fna

1 -
1/2 eXp<T Z Vij[(l'nz)l/z(l

iJ

The standard loopwise expansion® of the function-
al integral (5) generates an expansion in powers of
T. This requires the expansion of (1 -11%)!/2 in
powers of I1® to the appropriate order. The inte-
grations over the II field are performed from
minus to plus infinity, neglecting again exponential
corrections in 1/7. The corresponding Feynman
diagrams involve propagators, which are the in-
verse of the quadratic part of the action, namely

T
Guslg) = méas, a,B=1,...,n~1
(6)
in which
Tq)= 3 Vijed Fis, )

This propagator behaves as expected like 1/¢°
for small g. The interaction is thus obtained from
higher-order terms in the expansion of the square
roots, and from the integration measure written
as

H ﬁ? anp(—% Z In(1 —H'f))_ (8)

The problem is now to examine the long-distance
limit of this theory. The discussion is very sim-
ilar here to the one given for the expansion around
mean-field theory,® namely the propagator may be
replaced by its most divergent part,

Guaslq) =(T/q)0 4.

Then, in the same way the interaction terms
which involve only V(0) - f/'(q) may be approximated
again by their dominant ¢* part. The diagrams
simplified in this way are exactly those of the con-
tinuous nonlinear 0 model whose Euclidean action
is
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breaking and at low temperature these fluctuations
are very small. Therefore it is natural to express
S; as

0,=8,.q=1-1)""%, (4a)
i, =S, - &, -aa, (4Db)

and expand the interaction in powers of ﬁ
In terms of the (# - 1) Il modes the partltlon func-
tion becomes

/e, 1)) %)

a= [ @ {{v -/ 2F + (vD, )

with of course the same invariant measure

H [1 Hz

However, this theory suffers of ultraviolet di-
vergences which have to be regularized. Actually
the Heisenberg model provides an O(n)-invariant
regularization of the continuous-field theory.

x) 1/2

III. POWER COUNTING AND RENORMALIZATION

Since we are now interested in the long-distance
properties of the nonlinear ¢ model, we shall es-
tablish the renormalization-group equations for
this theory. As usual, they will follow the discus-
sion of the renormalization of the theory.® In two
dimensions the II field is dimensionless and the
theory is renormalizable by power counting. The
counter terms are thus arbitrary local functions of
the 11 field with at most two derivatives. Further-
more, since the theory can be regularized, as said
above, in an invariant way, the renormalized ac-
tion will also be invariant. The only invariant in-
volving at most two derivatives is proportional to
the action itself up to a rescaling of the fields.
There will thus be two renormalization constants,
namely one field-strength renormalization and a
coupling constant, i.e., a temperature renormali-
zation.®

Above two dimensions the field acquires the di-
mension ;(d - 2) and for d fixed larger than 2 the
theory is not renormalizable. However, it may
formally be defined in a double expansion in pow-
ers of T and d -2, and then it can be renormalized
with the same two renormalization constants.

In two dimensions, in addition to the standard
ultraviolet problem of a renormalizable theory one
has the infrared divergences coming from the 1/p®
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propagators. To disentangle these two sources of
divergences we shall break the O(z) symmetry in
order to give a mass to the II field. From the re-
normalization-group point of view it will appear
that the most convenient way of breaking this sym-
metry is to introduce an external source coupled
linearly to the o field, i.e., a magnetic field H.
Indeed, since by symmetry the o field is like the

I field multiplicatively renormalized by the same
factor the addition of this symmetry-breaking term

does not introduce any new renormalization con-
J

d-2

stant. One could choose instead to add other “soft
terms” in the sense of power counting (i.e., rel-
evant) such as mzﬁz, but these terms would lead to
more complicated renormalization-group equa-
tions.

Renormalization-group equations

They follow from the relation between the re-
normalized and the bare theory. In terms of the
renormalized fields and of the renormalized di-
mensionless temperature ¢ the action reads

a-=k d”x(ZayH"‘ayH"+au(1—Zﬁz)‘/zau(l -z /2= 2[%1(1 -zﬁ2)1/2>, (10)

T2zt

in which p is an arbitrary momentum scale which defines the renormalized theory, and plays a role equiv-
alent to the cutoff in the bare theory. The relation between the bare and renormalized theory for the one-

particle irreducible functions of the II field is

TG, ¢, H, 1) =281 B, T, Hp),

with
T=tZ,u*",
Hy _Hu'™
T NZ

(11)

(12)

(13)

The renormalization-group equations follow from the invariance of the bare theory under a change of .
holding T and Hy, fixed. This leads to the differential equation

w(¢)

(e owor e —ave 0+ (10022~ @-2) 15 |06, 1,0, (19

I ot

in which from (12)

a
Wit)=(d=-2)t-tu—| InZ, (15)
ou | g
and
O=n->]| iz 16
() =u i, nZz. (16)
The connected correlation functions of the o field and of the II field fulfill the equation
N 2.1 Ly VO >i} (N (% _
[z w0 2+ 10+ (32012 — @-2) it 7] 6 @ttt -0, (17
r
The equation for the magnetization M (¢, 4, 1), 7 -1 2) t
i.e., the expectation value of the ¢ field is given by 1= 1+ (n- d-2
Eq. (17) for N=1. The free energy F(¢,H, ) is ob-
tained from (17) by setting N=0. and therefore from (15)
W) =(d-2)t=(n=-2)+ 0. (18)

IV. SCALING BEHAVIOR

The calculation of the renormalization constants
Z and Z,, from which one deduces the coefficients
of the renormalization-group equations (14)-(17),
will be given up to two-loop order in a subsequent
section. Let us simply here use the fact that at
leading order

[We have included in all explicit calculations of
this article a factor 274/2/(27)T(d/2) in our defini-
tion of the temperature ¢.] This shows, as first
established by Polyakov,’ that there is an ultra-
violet stable fixed point ¢, for n>2 of order d - 2:

c=(d=2)/(n-2)+0((d-2)*). (19)
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This is indeed the (renormalized) critical temper-
ature since a critical point corresponds to an in-
frared unstable fixed point in the temperature var-
iable. The situation for » =2 will be examined sep-
arately.

The integration of the partial differential equa-
tions (14)-(17) is simplified by the introduction of
the zero-field correlation length £(f) and of the
spontaneous magnetization o(¢) defined, respect-
ively, by

(u-a% +W(t)£>£(t,u)=0, (20)
9 1 _
<W(t)5;+5§(t)>o(t)—0, (21)
ie.,
2 f o1 1
st -t e [ (71 - o)
(22)
below £, and
fg()
o(t) = exp ( N dt) 23)

This expression of the spontaneous magnetiza-
tion follows from (17) and from the dimensionless
character of o(f). With this definition of the corre-
lation length the integration of (14) in zero-field
yields the scaling behavior®

T (p,t)=E"4t)o~ Y () ¥ (p& (t)) (24)

if one uses together with the differential equation,
the canonical dimension d of T*).

On Eq. (24) one sees that the length £(f) defined
by Eq. (20) characterizes the crossover from the
long-distance Goldstone behavior to the critical
regime which appears at shorter distances for
fixed temperature below £. This definition of &,
first given by Josephson, is consistent with the one
of Halperin and Hohenberg.'® On (22) and (23) one
sees the low-temperature and critical singularities
displayed at the same time. The correlation length
diverges at £, as

E@)~(t, =)V with v==1/W'(¢,); (25)
the spontaneous magnetization vanishes as
o(t)~ (t,—1)° with B=—£(t)/2W (L) (26)

From the behavior of the two-point function at
t. we find

T (p,t)~p* T
with
t(t)=d=-2+n.

When the field is nonzero the integration of (14)

leads to the scaling properties of the one-particle
irreducible functions of the I field

M@, ¢, H) =4~ (2)

<o (520, D). @

For the connected correlation functions of the o
or of the II fields the same analysis leads to the
relations

G(N)® t H) &(N l)d(t) N(t)F(N)<p£ H(Tg >‘

(28)

In particular the free energy is
d
re, =g ppe) (220E0) (29)

and the equation of state follows by differentiation
with respect to H.

These scaling properties do coincide near the
critical point with those which were obtained from
the 4 - d expansion of the linear model."* However,
they contain additional information on Goldstone
modes. The physical interpretation of the corre-
lation length, in this problem in which correlation
fall off like powers, is the distance at which one
sees the crossover between the critical singular-
ities and the Goldstone behavior. These Goldstone
modes yield infrared singularities below ¢,, which
are governed by the trivial infrared fixed point ¢*
=0 of the renormalization-group equations. Under
these conditions, the singularities are given by the
first nontrivial order of perturbation theory. For
instance, this implies that the longitudinal suscep-
tibility diverges as H®-*)/2 for small H, since
the argument given above justifies the one which
was used in Ref. 11.

Asymptotic freedom and renormalizability for fixed d>2

From the point of view of the ultraviolet (uv)
properties of the nonlinear o model, one sees that
there is a nontrivial uv fixed point above two di-
mensions. The existence of an uv fixed point in-
dicates that this theory is renormalizable above
two dimensions, even outside the d — 2 expansion.
(This is similar to the problem of the continuation
of a massless ¢* theory below four dimensions?:!?),
Indeed, the large momentum behavior is not given
by perturbation theory but by the power behavior
at the uv fixed point ¢,:

T 0D, 8 v ANz /2 (30)

which is stable by power counting made on skeleton
diagrams. The only point which has been used in
this analysis is the negative coefficient of ¢* in
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W(t), i.e., the asymptotic freedom of the two-di-
mensional theory. Therefore this argument would
apply to other asymptotically free theories such as
non-Abelian gauge theories in four dimensions.

V. ABELIAN CASE

For n=2 the iow—temperature expansion in the
long-distance limit simplifies considerably. As
for the non-Abelian case, this limit may be repro-
duced by the nonlinear o model, but this model is
now equivalent to free field theory. Indeed with the
change of variable

o(x) =cosO(x), m(x)=sinO(x), (31)
the action becomes simply

J d®x1(ve)? (32)

J

G(x)={ sinh[#?—l_dl"(g)r(g - )]} exp[%l‘(

and the invariant measure (8) is flat.

Therefore we are left with a free field theory for
which we are interested in the correlation functions
of the fields e**®*), The functions W(¢) and £(?),
as well as the correlation functions in zero field,
are thus exactly calculable. The result is

W(t) =(d-2)t, (33)

¢t =t. (34)

One sees that in this low-temperature approxi-
mation the critical point has gone to infinity. The
spontaneous magnetization is

o(t)=e™t/2e=2 (35)

and the II - II correlation function in position space

e -

If one adds a magnetic field H the theory is no longer trivial since it becomes the quantum sine-Gordon
model. However, the behavior of the correlation functions in the phase with broken symmetry may still
be deduced from the renormalization-group equation (17), since it implies

( _ - —2) - - - - - —2) 4= -
G N)(‘I’)y[’H)_t(N 1)d /(d 2)(3 Nt /2(d Z)F(N)(ptl/(d 2),He t/2(d z)t 2/(d 2)). (37)

In two dimensions the critical temperature does
not go to zero; the function W(¢) vanishes iden-
tically and the theory is exactly scale invariant for
all temperatures in the ordered phase.®''* This or-
dered phase is not characterized by a broken sym-
metry because there is no spontaneous magnetiza-
tion'® as seen from Eq. (35) (the IT and the o have
identical propagators), but by the fact that the cor-
relations fall off like powers as exhibited in the
explicit results of Refs. 13 and 16.

For example, the two-point correlation function
is proportional to 1/p>~f and the magnetization in-
duced by a field H is*®

M =H/(4-8) (38)

All these results are in agreement with the corre-
spondence found by Coleman® between the sine-
Gordon theory and the massive Thirring model,
which has also continuous indices like the Baxter
model.

Note that the theory is meaningless for />4,
but we have neglected terms in this approximation
which have at least the effect of modifying the
temperature. Furthermore, we have integrated the
O field without taking into account that its range
was limited to 27. In the non-Abelian case we have
also neglected the compactness of the n-dimension-

T

al sphere but for »>2 the curvature of the sphere
may be detected locally, whereas for n=2 it is im-
possible to locally distinguish between a circle and
a straight line. This is probably the source of the
fact that, in this approximation, we find a scale-
invariant theory for any temperature, '3+

VL. LARGE-n LIMIT

We have seen that it is possible to describe the
long-distance behavior of the Heisenberg ferro-
magnets in two different ways: the ¢* theory which
corresponds to an expansion around mean-field
theory and the nonlinear o model obtained by this
low-temperature expansion. This leads to the
surprising conclusion that these two field theories
have the same long-distance limit. In other words
the correlation functions of the g¢* model evaluated
at the infrared stable fixed point g* are identical
to those of the nonlinear o model, if the mass of
the ¢° theory is replaced by a suitable function of
the temperature. As a consequence the nonlinear
o model should be renormalizable from two to four
dimensions and not simply in the neighborhood of
two dimensions. In particular in four dimensions
it becomes a free field theory since the ir fixed
point of the ¢* theory moves to the origin.

This may be checked explicitly in the large-n
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limit. The ¢® theory has been extensively studied
for n large'®; let us show here that the calcula-

tions may be done easily for the nonlinear ¢ model
in the same limit and lead to the same results. In

J

order to generate systematically the 1/» expansion
it is convenient to add to the action a Lagrange
multiplier for the condition o®+Ii?=1 and to inte-
grate over the II field:

Z= j (do dﬁda> exp (—-;—, j d®x{z[(2,0)°+ (3,m)°] - Ho(x) - 3a(x)[1 - 7*(x) —oz(x)]}> .

The integral over II gives, up to an irrelevant constant factor,

Z= f (doda) exp <-——1T— I d*x{3(8,0)* = Ho(x) + 3 (x)0°(x) = fa(x) + (n - 1) Ttr In[- A+a(x)]}> . (39)

The steepest-descent method applied to the func-
tional integral (39) generates systematically the
1/n expansion.® The saddle point in an homogen-
eous external field is given as

H=ap,, (40a)

n-1)T 1 )_l-oi
5 tr —A+as~ 7 (40b)

At lowest order neglecting the fluctuations
around the saddle point, one recovers the spheric-
al-model limit. Indeed the free energy is the val-
ue of the action in (39) at the saddle point. The
derivative with respect to H gives the equation of
state M=M (H, T)

(n—l)Tfpz,fi—ZW:I—Mz. (41
Introducing the renormalized quantities

M=Z""My,

H=Z,Z"'*H,, (42)

T=tZ,,

the equation (41) has a finite limit, provided one
chooses

z-‘:z;l=1-%2_17))r<§>r<z-‘2—i>t (43)

J

f
and one recovers then the equation of state of the
spherical model*®

e (22 (]
(44)

The coefficients W(¢) and ¢(#) of the renormaliza-
tion-group equations are easily deduced from (43)
by Egs. (15)-(16):

W(t)=(d=-2)t = (n- 1)1 - 3(d - 2))T (1 +3(d - 2)),

(45)

£(#)=(n - (1 - 3(d=2)r (1 +3(d - 2)). (46)
This yields the spherical model exponents

1/v==W'(t)=d-2+0(1/n), (47)

n=¢(t) - (@d=-2)=0+0(1/n), (48)

as expected from (44).

An analysis identical to the one performed in
Ref. 2 on the large-n limit of the ¢* theory shows
that the nonlinear model in the 1/n expression is
meaningful for fixed d up to d=4.

It is instructive to compare the functional (39)
to the analogous functional integral which generates
the 1/n expansion of the linear ¢ model.

The initial linear model is

2= | (dodl) exp [- i d‘x(%[(auo)z + (0,17] - Ho() +53 (0% + 17 + bm3 (0% + rrZ))] (49)

and if one introduces a Gaussian source a(x) conjugate to o® +1I2 one obtains

Z,= j (dodllda) exp [— J d"x(%[(aua)2+ (auﬁ)2+a(x)(ﬁ2+02)] — Ho(x) —-éfr—[a(x) —m§]2>]

or, after integration over g s

0

Z,= J- (dado) exp [— f dx <é[(8,_‘<.7)2 +a(x)o?(x)] - Ho(x) —ri’[a(x) —m§]2+n -1 trin[- A+ a(x)])] . (50)

Up to a normalization of the field variables the
linear problem (50) differs from the nonlinear one
(39) only by the presence of an @® term. In the
low-momentum region the o propagator, obtained

2

by taking the inverse of the quadratic form at the
saddle point, behaves as p*~9.

Therefore this additional o® term, treated as a
perturbation over the nonlinear problem (39), has
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the effect of adding one « propagator on one line
of a given diagram, giving an additional power
%% in the low-p limit. It is thus a perturbation
irrelevant to the leading low-momentum behav-
ior of the theory. This justifies, within the 1/«
expansion, the identification of the long-distance
limits of the two models. Furthermore the non-
linear model is exactly scale invariant, whereas
the linear model has this property only when the
coupling constant is at the infrared stable fixed
point. Let us illustrate these remarks by calcula-
ting the renormalized equation of state of the lin-
ear model at leading order. Keeping for the func-
tional (50) the saddle-point contribution, exactly
as was done for the nonlinear model (39), we find
the equation for the bare quantities

_M2+% (-’1-mg>=(n—1)fp2—+"fl’—/—ﬁ, (51)

which is renormalized through the relations

1 n—ll(( &p

& ) e

1.1
g & 6

2 2
my, m _n-1 | ap.
& & 6 p
The renormalized equation of state is thus

( g)"/ 21 (d/2)T(2 - d/2)
M T d-2

2t (@ee-9)-2).
(52)

This equation differs from (44), the large-» lim-
it of the nonlinear ¢ model, by the presence of a
term linear in H/M which is subleading in the crit-
ical region (in which H/M is small), provided the
dimension is smaller than four; thus, as expected,
(52) and (44) coincide in the critical region pro-
vided one rescales the magnetization and the field
by a factor Vi and that one relates the mass to the
temperature by

1 n-1.(d z) 8,2
t_d—2r<2>r<2_2 I 59

The mass m?” is indeed a linear measure of the
temperature near ¢{.. Furthermore if the coupling
constant g takes its infrared fixed point value

L 22t (f)r (2 -9, (54)

the two equations of state become as expected
identical.

—Mz—%m2=(n—1)

=1

VII. EXPLICIT CALCULATIONS AT TWO-LOOP ORDER

For a given correlation function, at each finite
order in the temperature, only a finite number of
terms generated by the expansion of the action in
powers of the II field are needed. For instance,
in order to calculate the propagators at two-1loop
order (i.e., the orders ¢, %, and ¢°) it is sufficient
to keep terms up to order (11?2 in the action.

In order to calculate the renormalization con-
stants the following procedure will be applied: A
magnetic field is introduced to avoid all infrared
divergences; then dimensional regularization is
used, and the renormalization constants are chosen
in order to remove all divergences in two dimen-
sions.

The two renormalization constants Z and Z, can
be deduced from the calculation of the inverse
transverse propagator in a field.

A. One-loop order

The calculation is very simple and yields, after
the cancellation of the divergent contribution com-
ing from the measure with the quadratic divergence
of the one-loop diagram,

Z ut-? HZ
F(z)(p>t7H,/J'):7#—_<p2+—L>
1

t VZ
2 n=1 o\ (_dq_
+<p 3 H> - (55)
which is made finite with the choice
ap
z=1-n-1t2-4f o),
( ) 23 p2+“2 +0(t%)

Z,=1=(n=-2)tu> f;fi:% +O(t2).

Within the d - 2 expansion at this order it is suf-
ficient to keep the pole terms:

Z=1+(n-1)t/(d-2), (56)
Z,=1+(n-2)t/(d-2), (57)

from which follow the formulas

W(t)=(d=-2)t-(n-2)t2+ 0, (58)
() = (n - 1)t + O(#3). (59)

Thus the renormalized two-point function is

n-1
2

DO G, By =1 =3 (67 ) - 3 (p*+ 252 ) i

+0(t,d-2). (60)
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The equation of state is recovered from
H/Mt=T'® (p =0). (61)

In order to put these relations under the scaling
forms (27) and (29), letus compute the spontaneous
magnetization and the correlation length from Egs.
(22) and (23): at this order one finds

E(@)=p"t(A —t/t)" 1/ @2/t )1/ (@=2) (62)

at)=(1- t/tc)(" =-1)/2(n -2) . (63)

The equation of state in scaling form will be
given below at two-loop order; the correlation
function at this order is

() =p2 L H - Lt[p? + L(n - 1)H]1nH + O(¢%).
(64)

WG (p)=1,(p, H)+
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functions at the same order. For instance the
longitudinal propagator

)= f dx e'™([1/Z - I3(x)]"/?[1/ Z - TI(0)]"/2)

connected

is found to be
2

1 2P, H)
+t[(p*+2H) - (n = 1) (p*+ D)1 ,(p , H)
~1(n-3)tInH - L(n - 3)¢ InH (HS—%)

in which we have defined

L, 8= [ axlp(1 - 2+ H)
o

At the critical point, this may be written in the _ 2 1n 34 +p*) 2 4p
scaling form p(@H+p) 2 N (aH pA T p

tT) (t,p, H) = H/M +p*H™*"/(472=D,

1
L( ,H)=f dx[p®x(1 = x) + H] ' In[p2x(1 - x) + H).
It is not difficult to calculate other correlation 2P o o ] [p% ]

B. Two-loop order

An analogous calculation of the transverse two-point correlation function of the II field gives at two-loop
order, after cancellation of the quadratic divergences,

T ()= 25 (0T + (o2 + 2z “_)fthgl/«z”(snz_s)("z ) [

t 2.1 dg,dgq, [(p+9,+9.)* - (g, +¢,)°F
-_—(n- tn-1 1 2 2
2(" 3)[P +3(n )H]j- (q1+H)2(q2+H) (n- I)quldqz(ql+H)(q§+H)[(p +q1+q2)2+H]
_ p+ql)2 Q]l[ﬁ“‘qz) "qg]
tquldqz (g3 +H)(q2+1'1)(l>+q1+qz) +H' (69)
The renormalization constants which make this express finite are
-1)t t2
Z=l+(nT12—+(n—1)(n—%)(d_—2)2+O(t3), (66)
-2)¢ 2 L
2,180 s -2 -2+ @~ 2)] 0, (67)
from which one deduces by Egs. (15) and (16),
W(t)=(d-2)t - (n=2)t? - (n - 2)t*+ O(t?), (68)
£(t)=(m = 1)t+0(t%). (69)
Thus the (renormalized) critical temperature ¢, defined by W(¢.) =0 is
d- 2 (d=2)*
.= n— (n 2)z v+ O((d - 2)%). (70)

This second-order contribution to ¢, depends on the renormalization conditions and is therefore non-
universal. However the exponents v=-1/W’(t,) and n =¢(¢,) — (d - 2) are indeed universal and are given

from (68) and (69) as*

d2)

==(d-2)+ +0((d - 2)%), (1)
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d=-2 (n-=1)

M= T8 “ao2)r @2+ 0Ud - 2)%).

(72)

With the choice (66) and (67) of Z and Z, the inverse propagator T'(*) becomes cutoff independent and it may

be written
) =1(P2+H)—§[PE+§(11—1)H](lnH+d—2 wen) + 2L @n - Syt en + L (n - 3) <pz+n;1H> InH

t 4 32 8 2
(n—1)¢ [(P+ql+[12)2_(41+‘h)2]3
| @I+ B (g, +a0" H](p v, vq )y s 1] 11 74
—p2H(p?+ n—1 2_2 > - 3
b <(p Py -2 -[(qf-FH)(q;Hf)[(ql+q2)2+HJ Fa.a;
+tfl(p+41)2_(1§][(1)+f12)2—q§][(p+q1+7‘>)2‘<‘h+72)2] +tp2[%(n_1)11121.1_%(”_2)1,111]_ (73)

(pf+H)(q§+H)[(ql+q2)2+H][(p +41+(12)2+H]

This transverse propagator contains the equation of
state, as seen from Eq. (61).

The explicit calculation from Eq. (73), gives this
equation under the form

H £\ —2/(a=2) 1 l‘t//tc 2/(d-2)
== -t =1 -
M’ <t > < vk 1/MB> :

¢

In this equation the only universal features are the
low-temperature singularity ¢72/¢-2) and the critical
behavior for ¢ near ¢_; and neglecting corrections
to scaling it may be replaced by

d t\~2/a-2) L/t —1\?/d-2)
) ()
M° T\t M!

c

(74)

This equation, as such, does not fulfill Griffith’s
analyticity®®: It is only in the sense of an expansion
in powers of d - 2 that it is satisfied since at low-
est order the exponent y is equal to 2/(d - 2).

VIII. BEHAVIOR ABOVE T, LIMIT OF DIMENSION TWO

The theory which has been developed until now is
restricted in zero field to £ < ¢, the phase of spon-
taneous symmetry breaking. In particular in two
dimensions this phase disappears since the trans-
ition takes place at zero temperature. In the pres-
ence of an external field both the Goldstone and the
critical singularities disappear and this allows one
to extend the low-temperature expansion above ¢,.
From the renormalization-group equations also,
whose coefficients are regular at {,, one can ob-
tain information about the high-temperature phase.
At ¢, in zero field, the I and the o propagators
are proportional to the same power of momentum;
the coefficients in front of these powers are iden-
tical as a consequence of the Ward-Takahashi iden-
tities. The symmetry is thus explicit at the crit-

r

ical point. This suggests, and we know it for the
Heisenberg model, that above 7, the symmetry be-
tween the IT and the o is restored, and that they all
become massive with a mass m =£~!, which can be
deduced from the renormalization-group equations
since from (20) we have

to dt’
— ). 5
@) 1)
Application of this formula to the two-dimensional

case gives a mass scale related to the coupling
constant ¢ by

£(¢) =&, exp (—

m(t)=pt=t/(n=2)g=1/tn=2)7(¢) (76)

in which f(¢) is regular around /=0, an expression
that perturbation theory could not give. The ex-
ponential term of Eq. (76) had been obtained by
Polyakov.” This gives the solution to the problem
of infrared slavery in this asymptotically free
model. This calculation, however, cannot give the
normalization of this mass. In order to obtain a
quantitative result about the absolute normalization
of the mass, it is necessary to calculate the corre-
lation function in the symmetric phase. As said
above, it is thus necessary to first add a magnetic
field, use then perturbation theory in the coupling
constant, extrapolate this perturbation series
above /., with the help of the renormalization-
group equations, and then take the zero-field lim-
it. A possible procedure of this nature will be pre-
sented now.

Explicit calculations in the high-temperature
phase rely on the following procedure, which has
been applied here for the equation of state. One
first calculates the low-¢ expansion; then this
polynomial in ¢ is put in a form dictated by the re-
normalization-group equation, which involves the
scaling variable
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z=1-(1-t/t,)/M*/B,

small in the ordered phase. This variable goes to
plus infinity in the disordered phase when the ap-
plied field vanishes. The asymptotic behavior in

z is known from scaling. If one is interested in a
quantity such as the amplitude of the susceptibility
above ¢, the problem consists in finding the coef-
ficient in front of the large-z power law from the
knowledge of the Taylor series near z=0. This
may be done by various numerical techniques such
as Padé approximants. A more precise illustra-
tion of the difficulties and of a possible solution is
provided by the example of the two-dimensional
problem for which there is no ordered phase. The
low-temperature expansion of the magnetization is
found to be

L=)@n-5) ;)

2
32 n“H

1 ¢
3 =1-(=17InH
(n=1)(n-3)
T 16

The renormalization-group equation (29) implies
the scaling property

£%(t)a(?) <M>

2 1InH + O(t%). (77)

H=co

) (178)

in which £ and o are defined by integration of (20)
and (21) up to a multiplicative factor.
The expansion (77) determines f(x) for large x:

x —> o0

f(x) ~ An=7)/(n-1) exp(nsz(xz("'Z)/("“) _ 1)>

(79)

Two facts may be added to the previous calcula-
tions:

(i) From the structure of the low-¢ expansion it
is straightforward to verify that

dlnf(x) .
A\ 2(n=2) /(n=-1) ~2k(n=-2) /(n=-1)
* dx xz ;akx

(80)

for x large.

(ii) Griffiths’s analyticity, i.e., thefact that since
there is no transition, H is analytic and odd in M
for small M, implies

fx) =7 bttt (81)
kR

for x small.
These two constraints can be incorporated
through the following standard parametrization®

0
SRR e R -1<6<1 (82)
xdln__fx 1
dx( )=_—1_92 (“Z 0»9""‘)- (83)
k=1

From the low-temperature expansion we know a
few terms of the expansion near 6=1. It is thus
possible to apply various extrapolation methods,
the most naive being the truncation of the series
>7C,0%*. This is what has been applied here. It
yields

xdlnf(x) 1 <1_n2—5 2 6n—1094)
92 ( )

ax  1- =120t o1

from which we obtain

~ — 1+ -4 _ p2y=(n=1) /2(n=2)
f(G)—eXp<'—“‘(n_ 120 _2‘)> 6(1 - 6%

X ex 1 6%(3n - 5) )

Pl 21— " m-2) (- 12/

This gives for instance an estimate of the mag-
netic susceptibility

(84)

M EE(H)o’() (1+3n—2n2 ) (85)

H .. P - 1Pm-2)

H—>0 ¢
and in the low-temperature region, our renormali-
zations are such that

52 ’
g
l— zr:/er/("-Z)tZS/("-Z)' (86)

It is thus possible to make explicit calculations
in the high-temperature phase by this method.
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