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Effects of biquadratic exchange in ferromagnets
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The effects of the biquadratic-exchange interaction on the temperature dependence of the magnetic specific
heat and the magnetization have been calculated for ferromagnets with the use of spin-wave theory and
compared with those for antiferromagnets. The ferromagnetic spin structure changes abruptly to a canted one
at a certain ratio P, of the biquadratic exchange to the Heisenberg interaction. This change of spin structure is
shown to have significant effects on the magnetic properties. The results of calculations for one-, two-, and
three-dimensional systems are compared with one another. It is also shown that the qualitative changes of the
magnetic properties of ferromagnets due to the biquadratic-exchange interaction are different from those due
to the Dzyaloshinski-Moriya interaction.

I. INTRODUCTION

Recently, the existence of higher-order spin
couplings has been pointed out by many authors. ' '
It has been made clear that these interactions have
significant effects on the magnetic properties of
compounds containing iron-group ions' "or rare-
earth metal ions." The theoretical explanation
for the appearance of the biquadratic-exchange
interaction was given by Anderson"' and Kittel. "

In the previous studies, ""we have discussed
the appearance of higher-order spin couplings
and estimated the order of magnitude of these
terms as one tenth or one hundredth of the Hei-
senberg-type exchange interaction in polynuclear
complex compounds. Afterward, with the use of
spin-wave theory, we have shown the importance
of the biquadratic-exchange interaction to the
magnetic properties of antiferromagnets. " In a
spin system with biquadratic-exchange interac-
tion with positive sign as well as with Heisenberg-
type exchange interaction, the ferromagnetic or
the antiferromagnetic spin structure changes
abruptly and begins to make a cant at a certain
ratio I', of the biquadratic-exchange to the Hei-
senberg-type interaction. It has been shown that"
this abrupt change of spin structure caused by
the biquadratic-exchange term has significant ef-
fects on the temperature dependence of the specif-
ic heat and the magnetization of antiferromagnets.

In view of these facts, it seems necessary and
worthwhile to investigate how the biquadratic-ex-
change interaction affects the magnetic properties
of ferromagnets. In the present paper, the or-
dinary ferromagnetic spin-wave theory is extend-
ed to the ease of the two-sublattice ferromagnet
when the canted spin structure has been caused
by the biquadratic-exchange interaction. The

temperature dependences of the magnetic specif-
ic heat and the magnetization are evaluated by
numerical calculations. These calculations are
carried out not only for the three-dimensional
ferromagnet but also for the one- and two-dimen-
sional ones, and the results obtained are com-
pared with one another.

The effects of the Dzyaloshinski-Moriya inter-
action on the specific heat and the magnetization
of ferromagnets are also examined. It is clarified
that the qualitative changes of the magnetic prop-
erties of ferromagnets due to the biquadratic-ex-
change interaction are different from those due
to the Dzyaloshinski-Moriya interaction.

In Sec. II, the ordinary ferromagnetic spin-wave
theory and the two-sublattice one are developed
and their spin-wave dispersion relations are de-
rived. In Sec. III, the magnetic specific heat and
the magnetization are evaluated for various values
of the biquadratic-exchange interaction and the
results are discussed.

II. FERROMAGNETIC SPIN-WAVE THEORY

We consider the ferromagnetic spin system with
three kinds of exchange interactions of the Hei-
senberg type between pairs of spins which are
coupled by the constants J„J„and J, as shown
in Fig. 1. We also assume the three kinds of bi-
quadratic-exchange interactions denoted by the
coupling constants J,', J,', and J3 between pairs
of spins coupled by J„J„and J„respectively.
In order to maintain the stability of the spin wave, .:
the single ionic-type Bnisotropy terms represented
by the constants D and E are introduced.

The Hamiltonian of the present spin system can
be written as follows:
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a@=(B2-B2)'"

where the B,-'s are given by

B,=-4S[j,+ J2+ J3+D+2S (j,'+ J2+ J3)

1y11 2r21 3 y31)

2s-'(jl r»+ J2y»+ J3&31)j(

B2 = -2SE.

In this expression, the y,.'s are defined as

(4)

y, „=cos(aX„), y2„= cos(bI(.,), y» ——cos(cI(.,). (5)

B. Two-sublattice ferromagnetic spin wave

FIG. 1. Ferromagnetic spin structure and the assumed

pairs of the Heisenberg-type exchange interactions and

the biquadratic-exchange interactions.

H= j,Q S( S~+ J2 Q S; S,, + J3 Q S( 'S,

When the biquadratic-exchange terms in Eq. (1)
are effective, the ferromagnetic spin arrangement
will be turned into a canted one and the spin sys-
tem constitutes two sublattices. Let us take the
preferred spin directions of the two sublattices
as the quantization axes f, and &j, respectively.
The relation between the spin components in co-
ordinate systems (x, y, z) and (g, , 3},, f,) or ($~, ((I„

f&) is given by the following coordinate transfor-
mation:

+ j,g(s,. s,.)'+j,'g (s,. s, .)'
&ij& «j'&

+E,'E (E,. 3, )' ~ D EE'„+EEg)
i j

S,„=S«cos8+ S«sin8, Si, = S,.„,

Si,= -Si, sin8+ S,~ cos8,

Sj„=Sj,cose - Sj,sin8, Sj,= Sj„,

Sj,=Sj, sin8+Sj&cos8,

(6)

+E E (E,.„—E', „)+E (Eq„—Eq)),
i j

where S; and Sj denote the spin operators belong-
ing to the ith and kth sublattices, and the coor-
dinate axes x, y, and z are defined as shown in

Fig. 1.

where 8 is the angle between the z axis and the
preferred spin axis as shown in Fig. 2. The spin

A. Ordinary ferromagnetic spin wave

In the ferromagnetic spin arrangement, the an-
isotropy terms in the spin Hamiltonian (1) can be
reduced to

/
/

/
/

]'

iE Z ( (3 Six) (2)

This Hamiltonian can easily be written in the spin-
wave representation. Omitting the higher-order-
than-quadratic terms of the creation and annihila-
tion operators, we obtain the spin-wave Hamilton-
ian. The Hamiltonian thus obtained is diagonalized
by making use of the Bogoliubov transformation,
and the spin-wave dispersion relation can be ob-
tained as follows:

FIG. 2. Spin arrangement in ferromagnetic state with
canted angle e. The new coordinate axes of quantization
are shown by $ and &.
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operators 8,. and S,. are rewritten with the use of
the following creation and annihilation operators:

S'. = (2S)'~'f. (8)a., 8; = (28)' 'f, (S)A

8; = (28)'"a;f;(8), 8, = (28)'"A,*f&{8)~

where f, (S) and f,(S) ar. e defined as

f,(S) = (1 —a,*a,/2S)' f, (S) = (1. —A,*.A,./28)' i~. (6)

The spin Hamiltonian expressed by the creation
and annihilation operators is further rewritten
with the use of the following Fourier transforma-
tion:

(9)

gQ ~ el Xt~g+ Q)Jc ~ 8 C,XF~QQ
~i ~ ~ X& t ~ ~ )t

Omitting the higher-order-than-quadratic terms
of these operators, we obtain the spin-wave Ham-
iltonian as follows:

H=Q [Ci(aiai+a ia i+A-iAi-+A ~A i)-
+ e.{a.Ai+ a.*Ai+ a-iA-*i+ a-*8-i)

+ es(aiA-i+ a-iAi+ aiA-*i+ a-*iAi)

+ C4(a„a i+ ai*a*„+A„A i+AiA*i)], (10)

where the constant terms are neglected. In the
above expression, the C,.'s are given by

C, = -2E,S(J,+ J2+ J3) —2E~S+ 8(E3+E)
—48'(E', —2E', )(J,'+J,'+ J,'),

C2 =8{Ei—I)(J».x+ J.y2. +Ja'si)

+ 2S'(E', —E, —4E,'){J,'y„+J,'y„+J,'y„),
( )

e, =8(E,+1)(J,y„+J,y„+J,y„)
+ 28'(Ei+ Ei - 4E')(Jiyi. +J2y2i+ Jsy3i)

C, = 8(E, -E) +BE,'S'(J,'+ J,'+ J,'),
where the E,'s are defined as follows:

= cos28 —sin'8, I",= sin8 cos8,

I' =Dsxn 8 —icos 8, E4=Dcos 8 —Es~n 8.

The spin-wave Hamiltonian (10) is easily dia.go-
nalized by making use of the Bogoliubov transfor-
mation. The diagonalized Hamiltonian is given by

H = Q [aQ, {Qi~Qi+ R„*Bi)+ KQ2(Q*iQ. i+ R*„R „)],

where the spin-wave dispersion relations are ob-

tained as

af1, = [(c,+c,)' (c,+e,)']'~',

an, = [(c, —c,)' —(c, —c,)'] ' ". (14)

sin8= 0 (8= 0) for r ~-,',
cso28=1/2r for r &

(16)

Therefore, in the range of small values of the
biquadratic-exchange interaction which satisfy
the relation ~ ——,', the spin arrangement is ferro-
magnetic and the spin-wave dispersion relations,
Eq. (3), obtained in subsection A are effective. On
the other hand, in the range r & —,', there appears
the canted spin structure and the spin system
should be described by the formulas developed in
subsection B, and the spin-wave dispersion rela-
tions, Eq. (14), a.re used.

III. RESULTS AND DISCUSSION

With the use of the spin-wave dispersion rela-
tions derived in Sec. II, we have evaluated the
temperature dependences of the magnetic specific
heat C„and the magnetization (8&}by making use
of equations similar to those given in the previous
paper. ' As the integrals in those equations are
very complicated, C„and (8&} have been calculated
numerically over the magnetic first Brillouin zone
of the three-dimensional wave-vector space.

First, the wave-number dependence of the spin-
wave dispersion relations has been calculated in
order to facilitate conjecture on the qualitative be-
haviors of the temperature dependences of C„and
(St}. The results for several values of the bi-
quadratic-exchange interaction are shown in Fig.
3. The parameter P in Fig. 3 represents a. ratio
of the biquadratic exchange to the Heisenberg in-
teraction, which is defined as

It turns out from Eq. (16) that the spin structure
begins to make a cant at the critical ratio P„
which is estimated as

P, = ~J'/J~ =1/282+(D+E)/48'J=0. 0613, (18)

for the spin system of S=-,' with a set of values of

From the condition that the linear terms of op-
erators in the spin Hamiltonian must vanish under
the equilibrium condition, "we can determine the
value of 8. If we define the parameter x as

S (J,'+ J~+J')
J,+ J2+ J~+ ,'(D+—E)'

the equilibrium spin direction is obtained as fol-
lows:
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FIG. 3. Spin-wave dispersion curves along the x axis
{J& direction). The curves have been calculated for J,
= —15.Oker, Jg-—J3——0.001k~, D =—0.5A,'g, E=O.U, ~, and
8=—5 a

0.0
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T(K)

the interaction parameters J, =J, = J3 = -5.0k~,
D= -0.5k~, and E =0.1k~. As the parameter P
increases and closes to P„ the spin-wave dis-
persion curve becomes flat and almost indepen-
dent of the wave number. As the parameter P
increases over P„ the dispersion curve begins
to have more rapid wave-number dependence
again. This fact suggests to us that the spin
structure must be unstable near or at P,. This
is the same result as was obta. ined in the case of
antiferromagnets of the previous paper.

At the beginning, the temperature dependences
of C and (S ) have been calculated for the three-N

~ ~ 5dimensional ferromagnetic spin system of 8= —,

with the same set of values of the interaction pa-
rameters as in Eq. (18). The results of numerical
calculation of C„and (S&) for various values of the
biquadratic-exchange interaction are shown in
Figs. 4(a) and 4(b) by the solid lines. The specif-
ic-heat curves show an abrupt increase and the
magnetization curves a rapid decrease near or
at P, . These behaviors of C„and (S~) a.re thought
to originate in an instability of the spin system.
As has been shown by Thorpe, 20 the biquadratic-
exchange term (8, ~ 8~)' can be written as C'(8,.)
' C'(8;) —~(8, '8;)+ 3S'(S+ l)' and has a seemingly
antiferromagnetic character. Therefore the in-
stability may be due to an effective cancellation
of the ferromagnetic exchange by the biquadratic-

0.8
0.0 0

0.6

0.4

0 10 20 30 40 50
T(K)

FIG. 4. Temperature dependences of the magnetic
specific heat {a) and the thermal average of 9» {b) for
several values of S {=J,'/J, =J,'/J, =J,'/J, ). The f 11
lines and the broken ones are calculated for the three-
dimensional ferromagnet with J&-—J&=J&=-5.0A& and the
two-dimensional one with J& =J2 ———7.5k& and J3———0.001k&,
respectively. In this case, other parameters are fixed
as D=-0.5k&, E=O.1k~, and S=~.
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exchange interaction. These results may be rea, -
sonably understood from the conjecture made on
the spin-wave dispersion relation. It is noticeable
that the zero-point spin deviation in ferromagnets
is much smaller than that in antiferromagnets in
the range of parameter P below P,. However,
the qualitative behaviors of C„and (S&) curves are
similar to those for antiferromagnets.

The temperature dependence of C„and (S&) for
the ferromagnetic spin system of S =2 ha, s also
been calculated. The qualitative behaviors are
almost similar to those for the spin system of
S= —,

' and abrupt changes of the specific-heat and
the magnetization curves also occur near or at
P, . In this case, the value of P, is estimated
from Eq. (18) as P, =0.1271.

Next, the temperature dependences of C„and
(S&) for a substantially two-dimensional ferromag-
netic spin system has been calculated a,nd com-
pared with those for the three-dimensional one.
The results are shown in Figs. 4(a) and 4(b) by
the broken lines. In this ca,lculation, the exchange
and anisotropy parameters are fixed as J, =J,
=-7.5k~, J, =-0.001k~, D=-0.5k~, and E=0.1k~.
The specific-heat curves rise more rapidly and
the magnetization curves fall faster than those for
the three-dimensional case. These qualitative
behaviors may suggest to us that the two-dimen-
sional spin system is more unstable than the
three-dimensional one.

Furthermore, we have calculated the tempera-
ture dependence of C„and (S&) for a substantially
one-dimensiona. l ferromagnetic spin system. The
results for various values of the biquadratic-ex-
change interaction are shown in Figs. 5(a) and 5(b)
and are compared with those for the two-dimen-
sional spin system. In this calculation, the ex-
change and anisotropy parameters are fixed as
J, = -15.0k~, J, =J, = -0.001k~, D= -0.5k~, and
E= 0.1k~. As seen from the figures, the specific-
heat and the magnetization curves for the one-
dimensional spin system have more rapid tem-
perature dependences than those for the two-di-
mensional one. These behaviors of C„and (S&)

may be explained by taking into consideration
that the one-dimensional spin system is much
more unstable than the two-dimensional one. An
exact calculation by Thorpe and Blume" of a lin-
ear chain of classical spins with nea, r-neighbor
bilinear- and biquadratic-isotropic-excha, nge in-
teractions may be compared with the present re-
sults.

As is well known, the canted spin structure is
also established by the existence of the Dzyalo-
shinski-Moriya (DM) interaction. Although seem-
ingly both the biquadratic and DM interactions are
similarly effective for the canting mechanism,
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FIG. 5. Temperature dependences of the magnetic spe-
ci6c heat (a) and the thermal average of S~ Q) for sever-
al values of P (=J& /J&-—J2 /J2 —-J3/J3). The broken lines
and the dash-dotted ones are calculated for the two-di-
mensional ferromagnet with J,=J2 ———7.5k& and J3
=-0.001k~, and the one-dimensional one with J& ——-15.0k~
and J2 ——J3———0.001k+, respectively. In this case, other
parameters are fixed as D= —0.5k&, E=0.1k~, and $
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it is interesting to investigate the effects of the
DM interaction on the temperature dependence
of C„and (St), and compare the results with those
of the biquadratic-exchange interaction. Instead of
the biquadratic-exchange interaction, we introduce
the following DM interaction term in the spin Ham-
iltonian, Eq. (1):

D~'{S; S&)=D~{S;A,—S;„S,,).

2.5
The spin-wave Hamiltonian related to the DM in-
teraction is obtained as follows:

HnM= 2SD, P Ez[-(a~~a~+AfA„)+y, ~(a~A „+a„*A*„)

(20)
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FIG. 6. Temperature dependences of the magnetic
specific heat (a) and the thermal average of S& (b) for a
couple of values of the DM interaction. The theoretical
curves have been calculated for J& ———15.0k&, J& ——J3

The temperature dependences of C„and (S&) have
been obtained by numerical calculations for a
couple of values of the DM interaction. The re-
sults are shown in Figs. 6(a) and 6(b). In this
calculation, other parameters are fixed as J,
= -15.0k~) J2 = J,= -0.001kB) Jl 2 3
0 = -0.5k~, and E =0.1kB. The DM interaction turns
out to give no drastic change of the temperature de-
pendences of C„and (St). This fact shows that the
biquadratic-exchange interaction and the DM in-
teraction are essentially different in the effects
on the magnetic properties of the ferromagnetic
spin system.

Summarizing the present results, we may con-
clude as follows:

(i) The ma. gnetic properties of ferromagnets
show drastic changes near or at P, due to an in-
stability of the spin system. The qualitative be-
haviors of the temperature dependences of C„and
(S&) for the ferromagnetic spin system are almost
similar to those for the antiferromagnetic one,
although the zero-point spin deviation in ferro-
magnets is much smaller than that in antiferro-
magnets in the range of parameter P below P, .

(ii) The specific-heat and the magnetization
curves for the low-dimensional spin systems
show more rapid temperature dependence than
those for the three-dimensional one. These facts
may be understood by taking into consideration
that the low-dimensional spin system is more
unstable than the three-dimensional one.

(iii) Qualitatively the effects of the biquadratic-
exchange interaction on the magnetic properties
of the ferromagnetic spin system are different
from those of the DM interaction, which also
leads to a canted spin structure.
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