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This paper discusses the possible effects of coupling between different excitation modes in singlet-ground-state

ferromagnets above their Curie points. The picture we use is a Hartree-like one, with every magnetic exciton

dressed (in a mean-square sense) by a cloud of other such excitons. This description Ands a natural expression

in a functional-integral language, where the result can be expressed as a renormalization of the single-ion

susceptibility by averaging over a distribution of external fields. %e find that the resulting excitation spectrum

has a continuum part with a threshold at the crystal-field splitting, in addition to the usual spike at the

exciton frequency. The transition temperature is also significantly depressed from its random-phase-

approximation value. Some numerical results are presented which suggest that these en'ects may be important

in real systems.

I. INTRODUCTION

In this paper we discuss intrinsic fluctuation ef-
fects in the .xcitation spectrum of induced-mo-
ment paramagnets (ferromagnets above T,). It
is well established' ' that such systems display
a dynamic behavior characteristic of the existence
of mell-defined magnetic excitations above the
transition temperature. Here we investigate the
nature and consequences of interactions between
these excitations.

In order to treat these effects, which do not

appear within the mean-fieid-RPA (random-phase
approximation) theories, we examine a highly sim-
plified model, and develop a microscopic formal-
ism which provides us with a. number of possible
approximation procedures. We are able to ex-
press a generalized Landau free-energy function-
al as an expansion in powers of a field related to
the order parameter. We are able to calculate
(at least in principle) the coefficient of each power
of the order parameter in the generalized Landau
functional, that is, all the bare exciton-exciton
coupling vertices.

We work with the Ising model in a transverse
field. It is well known that the two-singlet system
may be reduced to this model, and it is believed
that the dynamic properties of interest in some
rare-earth magnets having low transition tempera-
tures can be derived from it. Mean-field-HPA
calculations of the spin dynamics predict sharp ex-
citation (magnetic excitons) with a dispersion curve
(u(q), with (u(0) going to zero as the transition is
approached.

It had been hoped that these simple calculations
for this simple model could be taken over more
or less intact to explain the data. However, this

hope is not borne out by experimental results. 5'6

The theoretical explanation may be simply that the
two-singlet model is not sufficiently realistic,
and that more crystal-field levels' "and/or cou-
pling to the lattice must be included to give a
qualitative account of the experiments. " Alter-
natively or in addition, the problem may lie not
with the model itself but with the approximate
solutions given hitherto for the model. In this pa-
per we focus exclusively on the latter possibility,
and investigate higher-order fluctuation effects
within the singlet-singlet model.

There is an additional point of some theoretical
interest. The behavior of induced-moment sys-
tems is governed by competition between the crys-
tal field, which tends to force the ionic sites into
a nonmagnetic ground state at low temperatures,
a dthe ag et i te ti, hehte d t hy-
bridize the crystal-field states to produce a mag-
netic ordering of the crystal. There is, in fact,
a critical ratio of magnetic coupling constant to
crystal-field energy, such that the system will
undergo a magnetic transition only if the ratio
exceeds its critical value. Because the systems
of experimental interest have nearly critical mag-
netic coupling constants, one is inevitably in an
intermediate-coupling regime where large cor-
rections to mean-field behavior can be expected,
if the range of the interaction is not too long.

As we have mentioned, our forrr-! approach
involves approximations carried out on the free-
energy functional. %e find that the physics of the
proble, particularly beyond BPA, can be con-
siderably clarified by working in terms of such
a Landau functional. Other work which has been
done on the transverse Ising model has used de-
coupling procedures or expansions for the mag-
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netic Green'8 functions themselves. To make
contact with other theox'ies, it seems useful to
point out that in the present theory, the lowest-
order expansion of the free-energy functional in
the order parameter corresponds to what is usual-
ly called non-self-consistent BPA theory. %6
display this explicitly. %6 reserve for a later pa, -
per a detailed comparison with theories involving
expansion in 1/z (s, the number of nearest neigh-
bors). ' These theories correspond in some
sense to approximations made after truncating
the free-energy functional Rt the next nontxivlal
ordex' after HPA in the order-parameter field.
The present paper will deal with an approximation
which retains fluctuation terms of all orders, and
treats them in the simplest self-consistent way.
The treatment is similar to that developed by the
authors for Hubbard-like pararnagnets, '6 and simi-
lar validity criteria apply: Because we are doing
perturbation theory around HPA theory we do not
expect our expression to be valid in the cx'itical
region. What we can see is the effect of a fluctua-
ting hybridization of the pure crystal field. The
numex'ical calculations presented Rxe intended to
give a semiquantitative estimate of the size of the
effect —the limitations on their reliability are dis-
cussed in the tea.

%6 mention in passing that oux approximation
would be the first-order [O(I)] approximation in
1/N if our order parameter had N components. "
This is not very helpful in the present problem,
which has a scalar order-pax'ameter field, but may
be useful in the singlet-triplet model, where ro-
tRtloDal lnvRrlRQce leRds to an N= 3.

%6 stress that the formal development occurs
in two distinct steps. The fix'st —and for the pre-
sent purposes the more important —is to write
down a formal expression for the free-energy func-
tloDRl and to study its genex'Rl fox'In. The second
is to use a variational procedure to approximate
the true fx'66-enex'gy functional by R quadratic
form. We have emphasized a field-theoretic pic-
tux'6 of the px'oMeIn becRuse of the lnslght into
the exciton-exciton coupling it allows, and because
it enables us to take over almost directly the phys-
ical picture which we made in the Hubba, xd-model
case. {The present calculation may in fact be done
without resorting to these techniques —we have
shown elsewhere how to do so.") Incidentally,
the effect of competition between crystal-field en-
ergies and exchange interaction, which we have
mentioned above, has a foxmal parallel in itiner-
;lnt &magnetism. In bOth CaSeS We haVe a CharaC-

1 ' t;ic energy of the Qoninteracting systeIn which
Inust be overcome if the system is to order mag-
netically. For the Hubbard model, this is the re-
ciprocal of the density of stMes Rt the Fermi en-

ergy; here we have the ionic-crystal-field split-
ting. In the Hubbard-model case, our generalized
Hax'tree approximation leads to an effective smear-
ing out of the electronic density of states over an
energy range =(UksT)'~', where U is the intra-
atomic Coulomb interaction, and T is the tempera-
tux"e. Hence for U»k~T„ this effect may be con-
siderably larger than simple thermal broadening.
In what follows here, we shall find a similar al-
teration of the population of the two crystal-field
levels, which must be taken into account in com-
puting magnetic properties —crudely stated, these
levels develop a width of the order (ZksT)'~',
whexe J is now the effective magnetic exchange
between sites. %6 shall make a. more precise
sta,tement in the text.

In Sec. II we introduce the first part of our form-
al discussion. %6 define our model Hamiltonian
and obtain a formal expxession for the free-enexgy
functloDRl which 18 the bR818 of the cRlculRtion
In Sec. III we study its properties and their phys-
ical IneRnlng, Sec. IV desex'lbes oux' approximation
8chenles, Section V lntx*oduces R static Rppx'oxlmR-
tion into our description of the mode coupling.
This is a separate approximation fx'om the Hartree-
like approximation of Sec. IV; it is introduced in
order to make illustrative calculations simpler.
Section VI discusses these results.

IL MODEL AND FORMALISM

We start from a general Hamiltonian of the fox'm

H=H ——QZ, qjq
~ j, . (1)

2

Here II F is the crystal-field Hamiltonian, and j&

is the total-angular-momentum opex'ator for the
jth atom. J&& is the effective exchange; transla-
tional invariance dictates Z, ,=Z(R, -ft~). We will
assume that the coupling is fex'romagnetic, 8&,- &0.

We will consider a very simple version of (1),
with only two-crystal-field states on each site;
call them ~0,) and ~1,). It is then convenient to
express H in terms of Pauli spin operators defined
on the space spanned by these two states. Taking
the zero of energy at the center of the crystal-
field gRp, we hRve

for splitting &. %6 assume that both levels are
singlets, (0, Cj, ~0,.)=(1,[j,~1,)=0, but that the two
levels are coupled by a matrix element nf j&,

(I,.~j', jo,&=M~0. {3)
%6 assume this is the only nonvanishing matrix
element. In terms of the crystal-field-state spRce
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pseudospin operators,

(4)

o",.(f) is the interaction-picture operator:

~(f)
ttlc r o)(e tflo -pj

and we can write the Hamiltonian as an Ising mod-
el (of the pseudospins, not the real spine) in a
transverse field:

If = —,
' 6g o, ——,M' g Z,.~o*,.o",.

(8)

where the second expression is written in terms
of Fourier -transformed pseudospin operators.

In order to write a free-energy functional in a
form convenient for our purposes, we transform
the partition function derived from the Hamiltonian
of Eq. (5) following the Stratonovich-Hubbard pro-
cedure, writing it as a Gaussian functional aver-
age20, 21.

Z= D& exp — — dt $'; t

The kernel A;j is a matrix defined by the interac-
tion constants

(A'), , = 2M'J(, /P .
The $, (f) play the role of an arbitrary time- and
spin-dependent field in the x direction. They cor-
respond to the order parameter of the system in
the usual way: The various moments of their dis-
tribution correspond to the various thermally
averaged spin correlation functions of the full in-
teracting systems. It will sometimes simplify
notation to express quantities in terms of

(12)

which has the dimension of energy (or field in our
units) and whose Fourier transform

8[&]= tr e+"c&Texp — «Q &;(t)A;,o",.(f)

=Zc~ Texp — dt ~& I;A;ja"
0 fj cF

Here Zcz is the crystal-field partition function,
and the notation (}cr indicates an average in the
presence of the crystal-field Hamiltonian alone:

If we write the functional integral in the form

it is possible to write down directly from (8) a
formal expression for the free-energy functional
+[)] in terms of the fields $, (t) and the dynamic
correlation function of the o, (t) therm. ally averaged
with respect to the crystalline-field Hami. ltonian.
We have

4 4 ~ jS

The extra subscript e on the average denotes the
cumulant. To low order, or in certain limiting
regimes, one can proceed to evaluate the correla-
tion functions; these, in fact, just describe the
response of the crystal-field system to external
perturbations. Note that we can describe the prob-
lem as a scalar field theory for the g& (f) with the
vertices describing their interactions given by
the spin correlation functions of the noninteracting
system.

Given these vertices, one may write down the
free-energy functional to any given order in the
( fields. It is possible to emphasize various phys-
ical aspects of the fluctuations by choosing which
terms of the expression are to be included and
which are to be discarded. We shall in what fol-
lows retain all orders in the expansion, in an
average way. This leads us to our generalized
Hartree approximation, which we derive by a
variatronal procedure. "
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Equation (14) is an exact expression for the free
energy functional. It can be written more com-
pactly if we define

=+A, , ~ A; / (To/ (t, ) ~ ~ o,. (t„))cF,,
{ii

Then, Fourier transforming with respect to spa-
tial coordinates, as well as with respect to the
f, [f,E(0, p)], (14) becomes

)I)[&]:—g l $, l

' —gg 6(q, + q, + q„)
q n {q)

& T„(q„~ ~, q„)$, k, ' ' ' $, ~

(16)

[We use the four-vector notation q =- (q, i~ ); &u

=- 2~m/P. ]

III. PROPERTIES OF THE FREE-ENERGY FUNCTIONAL

Let us first consider the free-energy functional
we would have if we took the true q [$] and kept
only terms of order $'.

X~A(&T, f~.}= X.(q}/[I -~(i)X.(q)]. (23)

This will be recognized as just the result of stan-
dard RPA." We find, in particular, the excitation
spectrum from the poles of the denominator

2)if'( ) Q - )/2
(u(q) = d 1 — tanh P—

2 (24)

giving the well-known soft-mode behavior at the
transition and the RPA critical value of coupling
constant 2M'J(0)/» 1, for which the susceptibility
can diverge at finite temperatures.

Equations (I'7) and (18) relate the RPA propaga-
tor to the second functional derivative of )1)[$]
evaluated when all $, vanish, and express this
quantity in terms of a single-ion susceptibility.
It will be of use in subsequent discussions to
recognize that the second functional derivative of
4, evaluated for an arbitrary field configuration
$,. (t), is related in the corresponding way to a
single-ion susceptibility in the presence of that
field:

Furthermore the susceptibility is given in terms
of the mean-square fluctuations of the field (,

(22)

so that we have

where I', (q, —q) is the Fourier transform of

1
I', (f„i„t, t, ) = — A, , A, , [(To",. (f,)o,. (f,))„

tanh(P 4/2)
&' —(i(u }' (19)

That is, X, is just the single-ion susceptibility
in the absence of exchange.

We can evaluate the partition function explicitly
in this approximation because the functional in-
tegral is Gaussian:

Z= '-exp — 1 —Jq X, q

so that

1nZ = ——g in[1 -Z(q)y, (q)].
1

(20)

(21)

-(o/ (t, ))cF(o/ (t,))cF].

(18)

(The form of H F ensures that the correlation
functions are proportional to 5, , and functions
of t, —t, only). One finds

I', (q, -q}=~(~)x.(f~.)

-2 QA, ,A,.„[(To",(f)o" (f')),
lm

-((P(t)),(opt')), ] .

(25)

The subscript ( on the averages indicates the ex-
pectation value in the presence of $, (t) or, more
precisely, the magnetic fields h/(t) =Z$;(t)A;/ (in
the x direction).

The RPA describes what we can think of as free
magnetic excitons. We now proceed to examine
the higher-order terms in )I)[$] and see what they
tell us about the anharmonic coupling between the
exciton modes. In a field-theoretical language,
we are looking at the bare connected n-point func-
tions, I'„(q„.. . , q„} (for n 4). We can represent
them diagrammatically as circles with n external
exciton lines entering or leaving, as shown in
Fig. 1. In order to get an idea of the effects of
these vertices, we can evaluate them in the limit
where all the q, vanish. It is simple to get an
expression for the I'„ in this limit, and if we sub-
stitute these I'„(0, . . . , 0) in place of I'„(q„.. . , q„)
in (16), we obtain an approximate local field theo-
ry with interactions of all orders in $. In our cal-
culations in this paper we shall actually do some-
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+[»]=Pl.l', (0 o) -I', (q -q)ll», l'
e

+ —p dt c (»,(t)),
0

where the "potential" function C is

C(») = »' Pg r„(0, . . . , 0)»".
fl 2

(26)

FIG. 1. Diagrammatic representation of exciton-
exciton interaction vertices I„.

what better than this approximation and retain
some of the q dependence of the I'„. But as in the
itinerant magnetic case, the local-interaction ap-
proximation does serve to illustrate much of the
essential physics of the fluctuations. The reason
is that since the I „axe correlation functions in
the presence of the cxystal field only, they should
vary with frequency on a, scale of 4, and since
their spatial variation comes in through the A;J's
of (15), they should vary with wave vector on the
scale of yo', the inverse range of the exchange.
So if me will primarily be interested in fluctua, -
tions whose charactexistic frequencies are small
relative to 4 and wavelengths long compared with

ewmay as well replace any I'„(q, . . . , q„) by
I'„(0, . . . , 0). High-q and -ru divergences are avoid-
ed by a cutoff at m=5, and q=r, '. (Actually,
this argument is somewhat weaker in the present
problem than in the Hubbard-model case, since
it turns out that there are anomalous parts of the
I'„proportional to 5 functions of the sums of sev-
eral of the q, These axe exponentially weak at
low temperature, however, and we shall ignore
them in this paper. A discussion of their effects
will be given in a subsequent paper. )

Let us now turn to the problem of evaluating the
1„(0,. . . , 0). One formal way involves using any
of several bilinear fermion representations for the
spin operators and evaluating the corresponding
contracted 2n-point fex mion Green's functions. "'"
Because the fermions, unlike the spin operators,
have canonical commutation relations, this pro-
cedure is straightforward, if tedious. %e used
such a technique in the Hubbard-model problem
(although there the fermions were the real fer-
mions of the metal, not just something introduced
for mathematical convenience). However, within
the approximations we use in this paper, me do
not need to introduce such complications in the
present problem.

if the 1„(n~4) are approximated by their static,
uniform limits, expression (16) for 4' can be writ-
ten as

Knowing this function, of course, is equivalent to
knowing all of the coefficients I'„(0, . . . , 0). The
form (26) separates 4(») into a local piece (the
second term) which tells us the cost in free energy
of a uniform, static fluctuation of magnitude $,
and a nonlocal part {the first term) which express-
es the free-energy cost of varying $ in space and
time. This "kinetic" term is quadratic in the de-
viation of $ from uniformity; a small-q and -v
expansion of (19) produces leading terms of order
q and q,'= ~'. If me were to terminate the expan-
sion at this point, (26) would look formally like
the generalized Landau -Qinzburg functional used
by %ilson, "except that frequency appears on an
equal footing mith wave vector. " Here, however,
we keep terms of all powers of Iql' and ~'.

As in many other problems" ~'" we can learn
a lot about the character of the fluctuations by

examining the shape of the potential C. To find
this function, we ask first about its second deriva-
tive 4 ", which turns out to be very easy to calcu-
late. %e can then unambiguously construct 4,
since we (conventionally) take 4(0) =0 and sym-
metry rules out any term linear in $. 4" is easy
to calculate because of what we noticed above about
the second functional derivative of 4: It was sim-
ply expressed in terms of the susceptibility of the
noninteracting system in the presence of the ex-
ternal field», (t ), Eq. (25). Therefore, since 4 is
the value of the general functional 4 when $ is
static and uniform, C" is simply expressible in
terms of the q =0 susceptibility in the presence of
a uniform, static external field. Unlike the gen-
eral expression (25), this susceptibility is easy to
calculate, and when we have it, we simply have to
integrate twice to get 4(»). It is this fact that
makes the local-interaction approximation so sim-
ple to discuss, in contrast to the intractable fuB
problem, which requires the impossible general
evaluation of expression (14) or (25).

%e therefore digress to make a calculation of
the susceptibility of a single ion in the presence
of a fixed external field h=A(0)». For discussing
the shape of the potential, me mill actually need
to know this susceptibility X,(q, h) only in the limit
q= 0, but me make the calculation for general q for
later reference. The Hamiltonian in the presence
of the external field is
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(28)

and it is X,
"" that we want to calculate. The problem

is solved by rotating the coordinate axis through
an angle 8= tan '(2h/4) around the y axis, diagon-
alizing H:

I 0-

H = —.'n(I )o',
with

P(I ) = ~'+ (2f )'.

(29)

(30)

Now in terms of the susceptibilities y,
"" and X,

"in
the rotated system, the g susceptibility in the un-
rotated system is

Xo = cos 8 Xo + sin 8 y~

and we can evaluate y,
"and X,

""strai. ghtforwardly.
For the x component, we have the same problem
as in (19) except that 4 has been increased to Z:

2~(h)
)(, (s(u~) —~,(I,) (. ), tanh[~ p&(h)]. (32)

For the z component, note that we are applying a
perturbation that commutes with H, so there is
no response except at zero frequency. There we
can use the classical expression

X."(i~ ) =P[((&)}-(o')']& .
= P(1 —tanh'[APE(h)]j5„o .

This is just the Curie law for a finite field.
Combining (31)-(33)we obtain

ta.nt [-,'P~(h}]
g(h) n2(h) —(i(u )'

+ 5, , sech'[-,'P&(h)] .
&'(h

(33)

(S5)

The result of integrating (35) twice is shown in

Fig. 2. &bove the mean-field transition tempera-
ture T",r, where the HPA exciton frequency ~(0),
Eq. (24), , goes to zero, 4 has a single minimum

The second term is related to the sort of anoma-
lous, singularly frequency-dependent term which,
as we mentioned earlier, could occur in the exact
expressions for the I'„. One can see explicitly here
that for T «&, this term is of relative order
e ~~; we will ignore it in this paper. Then we ob-
tain an expression for 4" from the static limit of
(34):

c "(()= 2 —~'(0)){,""(0,I )

2j(0)M'b,
[~'+ ar(0)M'g'/p]" '

M 0 m']'

0.0

FIG. 2. Shape of the potent|a1 4.

which flattens out as one approaches T, and the
quadratic term goes to zero. Below TMF, 4 has
a double-mell structure. This is the usual sort
of behavior for systems undergoing a second-order
phase transition. "

In the sense of' knowing this function, then, we
know all the exeiton-exciton coupling vertices I'„;
they are just proportional to the derivatives of 4
at $ = 0. %e would then think about doing a dia-
grammatic perturbation theory for the free energy
or for the susceptibility. [It can be derived by ex-
panding the integrand of the functional integral
around the RPA (Gaussian) expression from (20}.]
In calculating X, we would then generate a set of
self-energy diagrams, a few of which are shown
in Fig. S. The single-loop diagram of Fig. 3(a) is
the Hartree contribution to the exciton self-energy
from the I', interaction. There are higher-order
diagrams in I'„ the first of which is that of Fig.
3(b). In this problem, we also have higher-order
ba e ver trees I 6 I 8 a d s on Some Hartree
diagrams for these parts of the interaction are
shown in Fig. 3(c). There are, of course, higher-
order diagrams in all these I „as well, and dia-
grams with I'„'s of differing n's in them, some
of which are shown in Fig. 3(a).

In this paper, we will treat all the parts of the
interaction in Hartree approximation. That is,
we will include all diagrams like those of Figs.
3(a) and 3(c), but none of the higher-order (col-
lisional) diagrams of Figs. 3(b) and 3(d). By omit-
ting any collisional diagrams, we preclude any
accurate treatment of the T -~ limit. " However,
this is the simplest approximation one can make
for a nonpolynomial interaction such as we have
in (27), and that is why we devote this paper to
examining its content and consequences.

Stinehcombe" has made a Hartree approxima-
tion in which only I'4 is taken into account, but
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diagrammatic approach is somewhat messy, al-
though the problem can be done this way. How-
ever, there is an easier way to do the ca3.culation
for a Hartree approximation which avoids these
complications, and we shall follow it in Sec. IV.
The preceding description of the diagrammatic
approach is therefore, as far as this paper is con-
cerned, merely an aid to understanding physically
just what processes are included in the approxima-
tion.

FIG. 3. Exciton self-energy diagrams. (a) Hartree
diagram for I'4 interaction. (b) Higher-order diagram
involving I 4. (c) Some Hartree diagrams for I 6 and I'8
couplings. (d) A higher-order diagram involving I'4 and
I 6.

its frequency and wave-vector dependences are
retained. (We simulate this behavior in our cal-
culations below with a large-q cutoff. ) Bak's ap-
proximation for a related model" is analogous to
Stincheombe's.

%e have given this discussion of the local inter-
action theory (26) mainly to illustrate qualitatively
the physical content of the full theory. As we noted
previously we will be able to do this problem in an
approximation slightly better than a completely
local one. %e shall still be working with a Har-
tree theory, however, in the sense of retaining
only the particular class of diagrams described
above. The improvement will be to retain some
of the q dependence of the I"„; in particular, the
dependence of I"„on the exteygal exciton lines in
each self-energy diagram. That is, in the Har-
tree diagram of Fig. 3(a) or 3(c), the shaded circle
stands for I'„(0, . . . , 0, q, 0, . . . , 0, -q, 0, . . . , 0),
where q is the four-momentum of the external line,
rather than I'„(0, . . . , 0), as in the completely local
approximation. This approximation is clearly sen-
sible in that the effects of the dependence I"„on
internal exciton four-momenta are washed out by
the integration over these momenta, while the de-
pendence on the external variables, which are not
integrated over, affects the self-energy directly.

Keeping track of the combinatorics in this direct

where the g's are to be determined variationally,
as follows. "

If we define the average in the approximate dis-
tribution e at~' of a quantity f[g] by

(37)

g D( e-+0[A (38)

we can obtain an inequality relating the true and
approximate free energies:

PE= -Ing~ -lnZ, +(q[$] —q, [g]), .

Minimizing the right-hand side with respect to
a(q) then leads to the condition

(40)

%e are thus faced with the problem of estimating
the averaged second derivative of the tyne free-
energy functional using the probability distribu-
tion defined by the trial functional q,[$].

As we noted earlier, Eq. (25) in the present

IV. HARTREE APPROXIMATION

When one uses the term Hartree (or Hartree-
Fock) approximation in elementary quantum mech-
anics, one refers to a. variationally optimal ap-
proximation of a Hamiltonian which includes in-
terparticle interactions by a self -consistent one-
body Hamiltonian. In the field theory we have here,
the counterpart of the Hamiltonian is the free-en-
ergy functional 4'[g] and the fields g,.(f) play the
role analogous to the single-particle fields. Hence
the quadratic term in 4 is like a "one-body" Ham-
iltonian and the quartic and higher-order terms
are the analogs of interaction terms in II. A Har-
tree (-Fock) approximation for this sort of pro-
blem then involves the following question: %hat
is the best (in the variational sense) quadratic
functional q,[$] with which I can approximate 4'[$] '?

%e therefore make a parametrization
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problem, the second derivative which appears in-
side the average in (40) is simply related to the
susceptibility of a single ion in a field h, which is
proportional to $, and this cannot be calculated in
general . However, as we also noted, this sus-
ceptibility can be easily calculated (for general q)
if $ is uniform and static. We therefore make the
approximation of replacing the y, in the presence
of the arbitrary h by the one in the presence of
the uniform, static h. In terms of the diagram-
matic description of Sec. III, the replacement of
the arbitrary h by the uniform one is equivalent
to the neglect of the dependence of the vertices
on the internal four-momenta.

To see this point pictorially we give a diagram-
matic version of the arguments leading to (40)."
We can represent the functional %[)] by the series
of diagrams of Fig. 4(a). Differentiating a diagram
once with respect to $, then removes a dotted line
(and the factor 1/n, because any of the n lines
could be removed), as in Fig. 4(b). A second dif-
ferentiation then removes any of the remaining
n —1 dotted lines, so the diagrams for the second
derivative s q/8$, 8$, look like Fig. 4(c). They
are the diagrams one would draw for X, in an ex-
ternal field (specified by the unremoved dotted
lines). The averaging over a Gaussian distribu-

a(q) = I -J(q)p(i~ ),
where

1
p(Aa„)=2M 5 (, „., (. ),

(41)

tion of these external fields then leads to terms
which can be represented by tying together in pairs
the remaining dotted lines, as in Fig. 4(d). The
pairs of dotted lines so tied then stand for averages
($„$ „). But these diagrams look just like and are
evaluated in the same way as those of Figs. 3(a)
and 3(c). Therefore when we evaluate the average

y, as if $ were uniform in space and time, we are
doing a calculation of a diagram [ of Fig. 4(c)] in
which all the $, have q, =0; the vertex is evaluated
as if all internal momentum transfers vanished,
although the external ( (with respect to which we

differentiated} is allowed to have a finite q. This
establishes the equivalence of the diagrammatic
prescription of approximating the vertex by its
value when internal momentum transfers vanish
to the analytic prescription of calculating yo in a
uniform field, and averaging over the Gaussian
distribution of fields e

The single-ion susceptibility in a uniform, static
external field was calculated above (34), so the
variational coefficients a(q} can be written as

(0) l,
2

p J.
4 6 + ~ ~ ~

t~-,'l3(LL' ~ 4h')'~'])
(g2+ 4hZ)1/2

(42)

(b) I2 — + + ~ ~ ~

The averaging is now simply over the distribution
of local fields

1
h (f) = e"" '" 'h~l f 2 qfft

(c) ~I'p + ~1'g +

I

I I /

+ r6 +

(d) 12 +

+ + 16 +"
/ / I

/ g /
I

I I63.
+ I + I6 +

FIG. 4. Diagrammatic representation of double dif-
ferentiation and averaging of the functional 4 . (a) 4
itself (omitting the $2 term from the Gaussian integral).
The dotted lines stand for $ fields. (b) Result of one dif-
ferentiation of the diagrams of (a). {c) Result of second
differentiation of +. (d) Averaging of (c), given that $
is normally distributed. The wavy line stands for
($,~(~ ~), where q, ~ is the four-momentum it carries.

whose variance is

H= —Q (/a,./'&
& qm

g~(q)&~h, ~'& (43)

(This distribution is Gaussian because h, (t} is a
sum of fields h, which, by our hypothesis about
the form of q, [t'] [Eq. (36)], are independently (and
normally) distributed. ) In the limit of small flue
tuations (a'-0), y(i&a } just reduces to }f,(ice }
and the RPA, E|I. (20), is recovered. Our result
is also quite analogous to what we found for the
Hubbard model, where the Lindhard function was
averaged over a distribution of magnetic fields.
In that problem, placing a cutoff at some q, on the
sum of q in (43) was crudely equivalent to assign-
ing a finite range of 1/q, to the forces coupling dif-
ferent fluctuation modes. Here, the q dependence
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of J(q} provides such a cutoff explicitly, and we
see that the fluctuation effects are suppressed if
the exchange has long range.

Writing the average in (43) explicitly,

(l((e)l*) =
f

—
fo(

=2[1 —J(q)q(i~. )] ', (47)

dk
0{ 'm} (2&o2)(/2 P 2 o2 (g2 4')(~

X g g {, )2 tanh[2p{d +4h ) ]

We see that the 5 functions in the imaginary part
of X„Eq. (19), are broadened out into continua
with singular thresholds at ~= + 4:

Imp((d+ i5) = 8(l (u
l

—&)(«/2(r')'('

M'4' tanh —'P ~
l(

2 g2)1/2 P 2 4P

(45)

The corresponding correction to the real part of
cp can be written simply as

Req&((d)

=m'(v/2o') '
" dx exp[-~(b2/4c )(x' —1)]tanh(-,'(3hx)

[x' —(~/&)'] (x' —1)'"

Il
II
I'I

II
I

II
I)
I

I
l

I
I

j

Ia

(I
(I

)I
]I

]Imqe(~)l

I
/

tRENgtd

o b,
FIG. 5. Real (dashed line) and imaginary t'solid line)

parts of fj()(co). Quasiparticle excitations occur when peep
crosses the horizontal line at a height J '(q).

The sharpness of the singularity at & in Xo(~) is
reduced, but Re@ still diverges like

l
(d —b

l

near h. Figure 5 shows plots of the imaginary and

real parts of y(&u) for a case where o is compara-
ble to ~.

This cp(((&) is then substituted back into (41), from
which we can calculate the mean-square fluctua-
tions of the g field,

(&q&'((d(q))

l&q(~)/s~l = &„' (50)

(Since Recp is an even function, the spike in ImX
would have infinite strength in the limit &u(q)-0
if it occurred. ) Figure 5 shows that these sharply
defined excitations always exist, and that their
energies decrease as ~ or q is increased. In-
creasing q corresponds, of course, to lowering the
temperature, as is evident from the tanh factor in

(42).
In a previous report of this work, "we obtained

a small elastic (((( =0 only) central peak in q and
This mas because in calculating the average of

Xo in an external field (34), we retained the second
term proportional to 5„,sech'(-,'Pa). Therefore,
me found a static g which exceeded the limit of
the finite-co susceptibility as ~- 0; consequently,
the static X would diverge (as T was lowered) and
the phase transition take place before the q =0 ex-
citon had gone soft. Appealing as this result might
be, we no longer believe that it is sensible, for the
following reason: It makes sense, in evaluating
the average of Xo over the distribution of external
fields, to pretend that the external field is static
only if the exciton-exciton coupling vertices are
slowly varying functions of frequency. But the
form of the second term in (34) indicates that
there are contributions to these vertices mith a
very singular dependence on the external exciton
frequency, for fixed (zero, in this case) internal
frequency. We therefore expect these vertices to
depend singularly on internal frequencies as mell,

and hence from (43)

M2
o' = Qd(q)[1 —d(q)q&{i(d )]P&,m

Self-consistency then demands that this o' be the
same one which went into calculating g7(i(d ) [Eq.
(44)1.

The full dynamical susceptibility is obtained
from (22),

X(q, i(u ) =rp(i(d )/[1 —&(q)q((i(~ )]. (49)

Its imaginary part (which is what is measured in

a neutron scattering experiment) is nonvanishing
in the region above 4 (or below -b ) where Immit(&u),

Eq. (45}, is nonvanishing. It will also have &-func-
tion parts at frequencies (d(q) where the denomina-
tor vanishes, i.e. , Req((u(q)} = I/&(q) and Im(ru(q})
=0. The spectral weight in the spikes is small if
((&(q) is near 6, and increases with decreasing
ru(q). The strength of the spike is given by
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and this dependence invalidates the approximation
of slow frequency dependence we made in each
diagram. In this paper we restrict our attention
to temperatures well below the crystal-field split-
ting, in which limit the singular parts of the ver-
tices are very small. In a subsequent paper we
shall direct our attention to the interesting anoma-
lous damping effects which these terms can pro-
duce ""

V. NUMERKAL CALCULATIONS

I.OO-

0.80-

O.RO

Mean Field

In making some quantitative estimates of how

our calculated excitation spectrum might be ob-
servably different from RPA, we have adopted
the static approximation, as we did in treating
the Hubbard model. This means that all fluctua-
tion modes with nonzero ~ are ignored in calcu-
lating rp(i &u ), so that Eq. (48) becomes

o'=
p~ QZ(q)&1 t(q)l'&

&(q)
pN + 1-z(q)q(0) ' (51)

O.OO
O 2.0

2M J(q=O)
2.S

FIG. 6. Critical temperature T, as a function of
coupling, for static approximation (solid line) and Rph
(dashed line) .

[~(0)(1 —q'/q'. ) (q«.)Zq
) -~(0)[1-(q —q.)'/q'. ) (quilt, ),

(52)

where Ro and R, are spheres of radius qo centered
about q =0 and q =—(v/a, v/a, v/a), respectively.
This agrees to lowest order in q with nearest-
neighbor exchange in a cubic crystal, if q, =&6/a.

Figure 6 shows the critical temperature as a
function of the dimensionless coupling parameter
2M'J(0)/h, calculated by solving the equation
1 =J(0)y(0) for P =T, ', with o' obtained from (51)
using the above approximations:

4mM2T,
(2v)'

f
ao 1 1

1 —~(q)P(0) 1+~(q)P(0)

=0.433M'T, J(0) . (53)

The RPA result

1 = [2M2J(O)/n. ] tanh(~/2T, ) (54)

is also plotted, for comparison. As one might
expect, the effect of fluctuations in the order pa-

This approximation can be expected to be reason-
able whenever T is larger than the exciton ener-
gies a&(q) {provided most of the spectral weight in

g lies in the quasiparticle spike, and not in the
continuum).

Structural effects in &{q) are ignored here; we

take

rameter is to suppress T,. Over the range of T,
most likely to be of experimental interest we see
that our estimate of the coupling constant neces-
sary for a given T, is two to three times what one
would obtain from RPA. The size of this reduc-
tion is, of course, sensitive to our cutoff proce-
dure or, in a more realistic treatment, to the
range of the exchange. Nevertheless, the result
does show that fluctuation effects can be signifi-
cant.

If w'e tried to apply this approximation at lower
temperatures, the fluctuation effects would be-
come smaller, since Eq. (46) gives o'~ T. At
T =0, we would be back to the RPA result, as is
evident in the figure, where T, goes to zero for the
same value of the coupling in both cases. Of
course, the static approximation cannot be trusted
in this limit. A better calculation of T, would be
expected to lead to a higher threshold for magne-
tism, since the me 0 terms in (48) would produce
a nonzero 0' even at T =0.

We turn now to the excitation spectrum, which
we have calculated for a case of moderate coupling:
2M'J(0)/6 =2.1. T, is calculated to be =0.45&
(cf. the RPA T, , which is 0.974). The results are
given in Fig. 7 for a range of temperatures between
about 1.0VT, and 2.0T, . Note that the continuum
part above the temperature-independent threshold
4 retains significant oscillator strength even close
toT.

Such effects may be observable in experimental
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l T =o.4s]
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Z = 0.30
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II
CT
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Z=0.94

0.0 I.O 2.0 3.0

FIG. 7. Magnetic excitation spectrum Imp(0, (d) for
several values of T &T, =0.454, 2M2J(0)/6=2. 10.

VI. CONCLUSIONS

We have presented here an attempt at estimating
the effects of mode coupling in Van Vleck magnets,
and seen that a Hartree-like decoupling scheme
leads in a static approximation to qualitative de-
viations from the usual RPA excitation spectrum.
In particular, we find, in addition to the RPA-like
quasisoft mode, a broad contribution with a thresh-

spectra and may even lead to reinterpretation of
existing data. For example, it had been thought
that observation of satellite peaks in neutron
scattering experiments could be taken as evidence
of interaction with higher-lying crystal-field
levels. "' Here we see that it might be a conse-
quence of the continuum piece of Imp discussed
here. It is also possible that at high temperatures,
the continuum may obscure the spike part of the
spectral weight function, making it difficult to fol-
low as the temperature is lowered.

The somewhat unusual form of Imp can be traced
through Imcp [Eq. (45)], to the broadening of the
spike in the single-ion susceptibility into a con-
tinuum by the distribution of local fields. The
broadening is asymmetric and the threshold is
sharp because the gap in the presence of any given
effective field h is larger than that for 8=0. Any
mechanism broadening the bare-crystal-field ener-
gies will also smear the magnetic excitations out
into the gap, but as long as the intrinsic magnetic
fluctuations of the system are the most important
broadening mechanism, the structure of the exci-
tation spectrum should remain largely as shown.

M2~'™~P ~(q) 2, X"(q, ~)coth(kP~). (5&)

At high temperatures the integral just reduced to
the static susceptibility y(q) times the tempera-
ture, which is essentially the form we used in (51).
When T is low compared to the frequencies where
the spectral weight in g is concentrated, how-
ever, the coth may be approximated by a signum
function instead of 2/P&u. Further approximating
g" by a spike at ~(q), we find

M2+ =
2~ g ~'(q)x(q)~(q).

That is, —,'ru(q) replaced the temperature in (51).

(57)

old fixed at the crystal-field energy. This effect
arises from fluctuating hybridization of the pure-
crystal-field levels. Numerical estimates indicate
that it may be significant experimentally.

We have neglected a number of aspects of the
problem which are important in some regimes.
The fundamental decoupling scheme breaks down
when the magnetic coupling constant approaches
its critical value, and there one would have to re-
sort to a version of Wilson's renormalization-
group theory to describe the fluctuations.

It should also be mentioned that in a realistic
analysis, the role of fluctuation effects i» changing
the relative contributions of higher-lying crystal-
field levels to the instability is very difficult to
estimate. We have neglected these considerations
entirely here.

Another point concerns the role of crystal struc-
ture in determining the character of the transition.
This enters both in the form of the crystal-field
level scheme and in the range and anisotropy of
the exchange coupling. The latter affects the fluc-
tuations [Eq. (43)]. Although such structural ef-
fects have been neglected here, we might expect
them to be of some interest, not only for crystal-
field magnetic systems, but more particularly for
certain classes of ferroelectrics, for which the
same model Hamiltonian is routinely used.

A serious omission in our calculations is the
neglect of finite frequency terms in the sum (48)
determining 0 . We can, however, give a qualita-
tive discussion of what happens to o at low tern-
peratures. We have

&(q)
(l&,. 1-~(q)q (f~.)
M2

~ P~(q)[1 +~(q)X(q, f~.)1, (55)PN,.'
and since Q, J(q) = Z. .. the intra-atomic exchange,
which we take to vanish, we can use the spectral
representation of g to obtain
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Since most of the contribution to the sum in (56)
comes from large q, a typical ~(q)&A. Another
way to estimate a' is to use the fluctuation-dissi-
pation theorem to write (56) in terms of equal-
time correlation functions,

(58)

portance of the fluctuations is c'/n'. We therefore
expect a a' of order unity when ~ is large enough
to produce magnetic order, using the RPA criter-
ion obtained from (23).

Study of all these problems necessitates some
refinement of our rather crude approximations,
and further work in this direction is in progress.

Since )t(q) =M'h/&u'(q) =M'/n, and the correlation
function in (53) is of the order of M', (52) and (53)
are consistent. Either way, we estimate the low-
temperature o' as around M~/'(0). The relevant
dimensionless parameter for measuring the im-
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