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It is shown that a quasi-one-dimensional system with strong attractive or repulsive coupling between electrons
on the same site is equivalent to a Bose gas with hard core and longer-range interactions and to a Heisenberg-
Ising magnet. Interchain and intrachain hopping and coupling are included and the equivalences are derived
by elementary degenerate perturbation theory. Electronic correlation functions are derived from known
pseudomagnetic ones and are used to discuss the circumstances in which superconductivity, charge- or spin-

density wave transitions occur in the coupled chains.

I. INTRODUCTION

Quasi-one-dimensional systems typically consist
of well-spaced chains of molecules for which the
coupling of the electronic motion from one chain to
another is relatively weak, and most of the inter-
esting behavior takes place at temperatures T
which are small compared to the scale temperature
T for motions along the chain. Quantum-mechani-
cal effects are important and, frequently, there
are two types of correlation (e.g., superconductive
and charge-density wave for metallic systems)
which are coupled in an essential way. Any theory
must, therefore, give an accurate account of the
one-dimensional motion and the use of mean-field
theory or classical fluctuations is likely to give
misleading results. It is frequently possible to use
mean-field theory for coupling between the chains
because the long-range correlations which build up
along the chains tend to suppress fluctuations,'but
this still requires a good solution of the one-di-
mensional problem.

Of the methods proposed to deal with these sys-
tems, the renormalization group has been of lim-
ited use because, even when there is a phase
transition and a fixed point of the Gell-Mann-Low
equations, it occurs at an intermediate value of
the coupling constant for which it is difficult to
carry out accurate analytic calculations.? Using a
different method Luther and Emery® have found an
exact solution of a quite general model for a par-
ticular value of one of the coupling constants and,
with some imagination, the renormalization group
may be used as a qualitative way of scaling onto
other values. However, it is not always easy to
calculate correlation functions and the inclusion of
phonons in a dynamical way presents some prob-
lems. Moreover, the mathematical method, though
not difficult, is not in common use, and this has
led to expressions of doubt about some of the re-
sults. In particular, a question*® about the exis-
tence of an energy gap in the spin-density wave

spectrum for attractive interactions does not ap-
pear to be justified.>’® Accordingly it would be
useful to have an approach which uses relatively
elementary methods and is easier to generalize.
The purpose of this paper is to describe such a
method. The ultimate objective is to include dy-
namical coupling to phonons, but for the present,
in order to give a simple description and to make
contact with previous results, a general static
coupling between electrons will be adopted.

The main assumption is that the largest energy
in the problem is the coupling U between electrons
on the same molecule. This may be repulsive if
Coulomb forces dominate or attractive if the mole-
cule is very polarizable or, what amounts to the
same thing, if there is strong coupling to intra-
molecular vibrations. It is quite likely that one or
other of these situations is found in real physical
systems, although this may only be realized a
posteriori, when the results of calculations are
compared to experiment.

The method is described in Sec. II. Elementary
degenerate perturbation theory is used to take ac-
count of intrachain and interchain hopping of elec-
trons and the coupling between electrons on dif-
ferent sites. It is shown that the effective Hamil-
tonian can be represented as either a set of bosons
with hard cores and longer-ranged interactions or,
more usefully, as a Heisenberg pseudospin sys-
tem. For U<O0, the bosons are bound pairs of
electrons and superconductivity occurs when they
condense. In the spin picture, the pseudospin
waves correspond to density waves and antifer-
romagnetic ordering in the z direction gives a
charge-density wave state, whereas ferromagnetic
ordering in the x-y plane is equivalent to a super-
conducting transition. The electron spin waves
decouple from the charge-density waves and there
is a gap in their energy spectrum as a consequence
of pair breaking. This is analogous to the gap
found by Luther and Emery.® The pseudospin
Hamiltonian has an anisotropic coupling stemming
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partly from hopping and partly from direct elec-
tron coupling. It could be ferromagnetic or anti-
ferromagnetic.

When the sign of U is reversed, the roles of
charge- and spin-density waves are interchanged
and there is a gap in the charge-density wave spec-
trum for the special case of a half-filled band. The
pseudospins form an isotropically coupled anti-
ferromagnet and ordering corresponds to a spin-
density wave state of the original electron gas.
These general conclusions agree with the results
of Emery, Luther, and Peschel” for an electron
gas on a lattice, with intermediate repulsive cou-
pling between electrons. In the absence of an
interaction between electrons on different sites,
the Hamiltonian is a generalization of the Hubbard
model and, for U>0, the equivalence to a Heisen-
berg antiferromagnet has been obtained previously
by Anderson.®

In Sec. III, the electronic correlation functions
are derived from those of the Heisenberg-Ising
model and used to discuss long-range order in the
ground state of a single chain and finite-tempera-
ture transitions in coupled chains. It is shown that
hopping between chains can lead to any kind of
transition but a density-density coupling leads only
to a charge-density wave state. Superconductivity
has the highest transition temperature only if the
attractive electron-phonon coupling outweighs the
Coulomb interaction between sites. Finally, the
correlation functions and the method of calculating
them are compared to those of the model of Luther
and Emery.%"

II. LARGE ON-SITE COUPLING

It is assumed that the system consists of a set of
chains of molecules providing a total of M sites
for N electrons. The Hamiltonian is

H=H,+H,+H,, (2.1)
with
Hy= UZ MisMyie s (2.2)
i

H = Z by ii205 Chio O jo s (2.3)
i):’i)‘.a

Hy= 2 Vi i500,5 Prio Pt jor - (2.4)
Lo

Here, A, )\’ identify the chains, i,j the sites along
each chain, and o=+ specifies the spins of the elec-
trons. The c};, create electrons in states which
are localized on the molecules and #,;, are the
corresponding number operators. The hopping
integrals {, ;.. ; and the coupling V, ,.,,; are as-
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sumed to be zero for A=\’ and i =j, otherwise
they are left unspecified. It is desirable to keep
this general form since the geometric arrange-
ment of molecules may allow the hopping and cou-
pling between second and third neighbors along a
chain to be comparable to that between electrons
on molecules of different chains. The coupling in
H, is a competition between Coulomb and electron-
phonon interactions and its sign can vary from
system to system. The largest energy is assumed
to be U. If Coulomb interactions dominate U> 0;
but very polarizable molecules, which also allow
the electrons to be reasonably far apart, can have
a reduced Coulomb interaction and a strong at-
tractive attraction from intramolecular vibrations
which, together, can lead to U<0. Accordingly it
will be sufficient to regard H, and H, as perturba-
tions and to work to the lowest nontrivial order

in H,/U and H,/U. 1t is simpler to separate the
discussion of the two cases:

(a) U<0: Here, the unperturbed ground state has
N/2 of the sites occupied by pairs of opposite-spin
electrons. These are real bound pairs which re-
place Cooper pairs® in the strong coupling limit,
although they are still responsible for supercon-
ductivity. When N/2<M, the ground state is
degenerate because the energy NU/2 is independent
of which sites are occupied. The addition of H,
and H, splits the degeneracy to form a band of
charge-density wave states in which the pairs
move from site to site. On the other hand, a spin-
density excitation turns over a spin to break a
pair at a cost !Ul in energy which (by assumption)
is much larger than the bandwidth of the low-lying
states. This energy gap causes the spin-density
waves to be frozen out at low temperatures.

(b) U>0: In this case the ground state has only
one electron per site and it is degenerate because
the energy does not depend upon which sites are
occupied or upon the spins of the electrons. Once
again, H, and H, split the degeneracy but there is
no energy gap unless N=M (half-filled band), when
the excitation of charge-density waves is inevitably
accompanied by double occupancy of sites at a cost
in energy of at least |U|

A more quantitative expression of this picture
may be obtained from elementary degenerate
perturbation theory. Attractive interactions,

U <0, will be considered first and it will then be
shown how the results may be used for U>0 with-
out further calculation.

A. Attractive on-site interactions

The discussion will be restricted to the lowest
band, in which all electrons remain paired. This
is sufficient for a calculation of the low-tempera-
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ture properties of the system. In first-order de-
generate perturbation theory, H, + H, has to be
diagonalized in the space of paired states and,
within that space, it is an effective Hamiltonian
from which the thermodynamic properties may be
obtained. But H, breaks pairs and so has no first-
order matrix elements. It must therefore be cal-
culated to second order, allowing virtual transi-
tions into the next band of states which have one
pair broken. Suppose H,=0 for the moment, and
let the various degenerate ground states of H, be
denoted by |a) with energy E,=NU/2. The Schrd-
dinger equation is

(E-Hy) | 9)=H, |4 (2.5)
and, dividing both sides by E — H, and rearranging,
gives

|9)= 5_‘,Ia><°‘l”|¢> ST, (26

where P=1 -Z}a I a)(al projects out of the unper-
turbed ground states. By substitution, it can be
seen that Eq. (2.6) is equivalent to

|9)= ; aglg), (2.7)
where

[0o)= @)+ [P/(E - Hy) | H,|0,) (2.8)
and

ag=(a|H,|9)/(E-E,). (2.9)

To first order, Eq. (2.8) is
lv)= @)+ [P/(E - H)H,|a)
= |ay+(1/U)H, | @) . (2.10)

The last line follows because H, breaks exactly
one pair to give an excitation energy — U and P is
irrelevant because H, l a) has no component in the
ground states. Then, substituting Eqgs. (2.7) and
(2.10) into Eq. (2.9) gives

1
(E-Eja,=3 > (alH]aNa, , (2.11)
c

which is a Schrddinger equation in the Ia) sub-
space with effective Hamiltonian H2/U. To ensure
that H, acts between the ground states, it is neces-
sary that if the first application of H, transfers an
electron with spin ¢ from site j to site ¢, then the
second application of H, either returns the elec-
tron to its original site or transfers an electron
with spin —o from j to . Thus, the effective
Hamiltonian is

2
t)«, iAg

’_ t
Hi=- Ul (€Ri6Cr36CrioCrio

e
+€34,-0Cn 5, =aCaicCrse) - (2.12)

Since it is sufficient to work to first order in H,,
(2.13)

is the total effective Hamiltonian which may be
used to obtain the thermodynamic properties at
temperatures T << IU\

There are several equivalent ways of rewriting
H' which relate it to more familiar systems. De-
fine

H'=H{+H,

")«i:%(nxn*’nxi-- 1), (2.14)
byi = CriuCrin s (2.15)
0 =2y, ~7y;) - (2.16)
Then
S (2
H = ; (——l—*—-ﬂ-’i U? (= bLibys; + My itpes + 033005 — 2)
i,7,0
+ Vx,i;x',j"xi"yj)- (2.17)

The operators o,; commute with the b,,; and n,,;
and give zero acting on every doubly occupied site,
so they are dynamically insignificant and will be
ignored. The n; and b; satisfy the commutation re-
lations

[bli’b;'j]=[bhi,b)¢'j]=oy i#j
b3 =0, (2.18)
[”lxi’bw] b3,;0; 0 -

LA ¥

It is then possible to interpret the b,; as boson
operators and the »,; as the corresponding number
operators, provided a hard-core interaction is
added to ensure that at most one boson occupies
each site. For a single chain, such a model has
been considered by Schultz.'® The question of the
existence of superconductivity in the original sys-
tem is now rephrased as the existence of a con-
densation of the bosons. In the BCS theory of
superconductivity,!! the pairs of fermions condense
into a macroscopic occupation of a zero-momentum
state as they form whereas, in the strong-coupling
limit, the formation of pairs and the condensation
of their center-of-mass motion occurs independent-
ly. Indeed, for a single chain with only hard-core
interactions, the ground state is composed entirely
of pairs but there is no superconductivity because
the bosons do not condense. ™

A more useful representation of the system is
obtained by noticing that Eqs (2.18) are the com-
mutation relations of spin-3 operators with the
identification
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— o™ T _ ot — o?
bry=8n, bu=Su, mi=S%, (2.19)

where si; =si; +s};. Comparison of Eqs. (2.14) and
(2.19) shows that s§; is +1 for a site occupied by

a pair and -1 for an unoccupied site. As in the
case of the Bose gas, it is much more convenient
to carry out calculations in the grand canonical
distribution, and since the number operator is
essentially Emsii, the chemical potential is an
effective magnetic field and will be denoted by ~.
Then, in this representation,

2 .
! — ApigMoj (o2 o2 X X y .y
= 2 ( Ul (85683 = STisky — Suisiy)
Py
iyis0
z oz z
+ Vi, i0,55% Sy — B z; S“> (2.20)
pY

and “spin-wave” excitations correspond to charge-
density waves for the original electron system. In
Sec. II B it will be shown that antiferromagnetic
order in the z-components is equivalent to charge-
density wave order in the electron gas and ferro-
magnetic order in the x-y direction represents
condensation of the bosons or superconductivity

of the electrons. The connection between the
boson and the spin pictures is analogous to the
pseudospin model of liquid helium.'?

B. Repulsive on-site interactions

Turning now to the case U>0, it will be as-
sumed that N=M (half-filled band), otherwise the
hopping term H, breaks the degeneracy in first
order by transferring an electron from a singly
occupied site to an unoccupied site. This case is
also of considerable physical interest. The ef-
fective Hamiltonian may be obtained directly from
Egs. (2.14)—(2.17) by making the canonical trans-
formation

[ —é;i-, Cri+=Criss (2.21)
for which
Hy=- UZ: Tpg T+ UZ Tpivs (2.22)
iyx i d
H = s ; b, i;x’,j(E;hEx'j«. —E;i-E)«'j-) . (2.23)
s Ayiy g

In the unperturbed states, sites which were oc-
cupied by an electron with o= -1 are now empty
whereas other sites are doubly occupied. The
“on-site” coupling becomes attractive and the
number of pairs is equal to the original number
of spins with o0=+1. Second-order degenerate
perturbation theory may now be used exactly as
before and, on reversing the transformation
(2.21), the effective Hamiltonian is given by Eq.
(2.17) with the sign of the b,b,.; term changed.
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The variables have a rather different interpreta-
tion, since b,; becomes c,;,c!; and o,; replaces
n,; in the commutation relations (2.18) and in the
relation to the spin operators in Eq. (2.19). Since
every site is singly occupied, all of the n,; give
unity when applied to the ground states and so are
dynamically insignificant. They will therefore be
omitted and the effective spin Hamiltonian takes
the antiferromagnetic, spin-isotropic, Heisenberg
form:

22 ., . -
H"= Y il B3, (2.24)

A!h" iyj

There is no magnetic field because the number of
electrons is fixed. The pseudospin-wave excita-
tions are now true spin waves and changing the
sign of U has interchanged the roles of charge-
and spin-density excitations. This feature was
found for a single chain by Emery, Luther, and
Peschel” when they obtained an exact solution for
intermediate coupling. Because the original Ham-
iltonian had no direct spin-spin interaction, the
exchange constants in Eq. (2.24) come entirely
from the hopping term. For the repulsive Hub-
bard model, U>0 and H,=0, Eq. (2.24) has pre-
viously been obtained by Harris and Lange® using
a canonical transformation method.

III. CORRELATION FUNCTIONS

To discuss the existence of the various kinds of
phase transition mentioned earlier, it is necessary
to evaluate the correlation functions generated by
€1 16Crjor OF C;oCorir- When U<O, the wave func-
tions for the low-lying states are linear combina-
tions of the |¢,) of Eq. (2.10) which, in turn, are
linear combinations of states with all sites oc-
cupied by pairs of electrons of opposite spin or
with pairs broken without spin flip, and only
clis Cyy, OF €1, €], have matrix elements within
this space. The other combinations connect to
states in which there are unpaired electrons with
parallel spins and are separted from the ground
state by an energy gap |Uf which prevents di-
vergences at zero frequency. This agrees with
the conclusion of Lee.%®

To lowest order in [#, ;. ;/U| it is suificient to
take |¢,) ~ |a) and merely use H, and H, to deter-
mine the coefficients a, for Eq. (2.7). Then only
the operators

%(C;ucuf’fcli-cu-) Esii*‘% , (3.1)
ChinCli-=Shi (3.2)

are relevant. In writing Egs. (3.1) and (3.2) use
has been made of Egs. (2.14), (2.15), and (2.19).
Since o,; commutes with the other operators, the
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cl..Cn. and ¢} ¢l correlation functions are equiv-
alent to the sf; and s}; correlation functions of the
spin representation of H’ as asserted earlier. A
charge-density wave then corresponds to antifer-
romagnetic ordering of the s§;, with the wave vec-
tor of the condensation determined by the applied
field which represents the chemical potential.
Similarly, superconductivity corresponds to fer-
romagnetic ordering in the s}, and s}, variables.

A similar argument may be made for U>0.
Starting from a half-filled band, c;,c},;. create
states in which sites are doubly occupied at a cost
of energy 2 | U| relative to the ground state. The
ordering variables are

8§35 CrisClis (3.3)
and
— 1
s5i=0y=3(cli. 0 = €iCric)s (3.4)

which correspond to transverse and longitudinal
spin-density waves, consistent with the spin iso-
tropy of the Hamiltonian.

Given these representations, it is possible to
make use of what is known about the Heisenberg-
Ising model to calculate the properties of the elec-
tron system. The discussion will be restricted to
the physically interesting case of near-neighbor
coupling. First consider a single chain and choose
units so that 22, ;,./|U|=1. Dropping the sub-
script A, the contribution to the Hamiltonian from
a single chain is, for 2=0,

Hy=~ ) (sist,y+sist, +d,88s%,) . (3.5)
1

Here, for U>0, J,= -1 gives the contribution to
H” in Eq. (2.24) after rotation of axes on alternate
sites about the z direction and, for U<O0, the con-
tribution to H’ in Eq. (2.20) is obtained if

~d,=Vyinin+ 1. (3.6)

The case of greatest interest is 0=J,= -1, for
which the asymptotic forms of the correlation func-
tions have been obtained by Luther and Peschel.!?
It will be seen that this range is important for the
discussion of the circumstances favorable to super-
conductivity. It is physically less realistic to have
J,>0 because it requires a large attractive

Vaisn, is1 @nd the pairs would form clusters in which
adjacent sites were occupied. The properties for
J,< -1 may be obtained from the numerical cal-
culations of Bonner and Fisher.'

The route followed by Luther and Peschel®® is to
use a Jordan-Wigner transformation'® to rewrite
H, as a fermion Hamiltonian and then to replace
the kinetic energy by a linear spectrum to obtain
a Luttinger model, for which it is relatively easy
to obtain the correlation functions.' If the site

label i is replaced by the distance » along the
chain, then the asymptotic forms of the s? and s*
correlation functions are given by*?

o? 1/26
(s*(r, H)s?) = (2n2a2)™! cosZkF';'(m) (3.7)

and

o? 8/2
(s*(r, )7+ (s7(r, t)s") = (Zﬂzaz)"<;z_—crtg>

(3.8)

for T=0. Here, c is the Fermi velocity, ¢ the
time, o a cutoff, and

6=3 —7'arcsind,. (3.9)

For large 7, the correlation functions in Egs. (3.7)
and (3.8) fall off as " and »¢, respectively, and
since, according to Eq. (3.9), 3 =6=1 when
0=J,= -1, there is no long-range order in the
ground state. This conclusion has been reached
previously by Schultz' for the special case'’
J,=0, 0 =%, which corresponds to the Bose gas
with hard-core interactions.

On the other hand, in a three-dimensional sys-
tem, interchain coupling may produce long-range
order at a finite temperature T,. If T, is small
(in units of the exchange integral), it is possible to
use mean-field theory for the interchain coupling
provided the motion along the chains is treated
accurately. Using Eqgs. (3.7) and (3.8) together
with the results of Ref. 1, Eq. (9),

T.~ Iztii;hl,i/]Ul + Vi, i ll/(z-ed) (3.10)

for a charge-density wave transition (U<0), and
T~ (2850, [UNY 2 (3.11)

for superconductivity (U<0) or a spin-density wave
state (U>0, 6=1). Note that the arguments in Eqgs.
(3.10) and (3.11) are small because they are inter-
chain couplings in units of the intrachain exchange
integral. It is clear that hopping between chains
can drive any of the transitions but the density-
density coupling V,;.,,, ; can give rise to a charge-
density wave instability only.'® Equations (3.6)

and (3.9)-(3.11) also show that if superconductivity
is to occur at a higher temperature than the
charge-density wave instability, the electron-
phonon interaction must outweigh the Coulomb
force to make V,; ,.; attractive. This would either
decrease the argument of Eq. (3.10) or, more ef-
fectively, decrease 6.

It is interesting to compare these conclusions
with previous calculations.®” The Fourier trans-
forms of the correlation functions in Egs. (3.7)
and (3.8) are proportional to w", with p equal to
67 -2 and 6 -2, respectively. When V,,., ;,,=0
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as in Refs. 3 and 7, it follows from Egs. (3.6) and
(3.9) that u=—1 in both cases. This is in agree-
ment with the results of Luther and Emery?® and
Emery, Luther, and Peschel’ for a lattice model
provided there is a half-filled band. In that case,
in the low-temperature limit, when U<0 backward
scattering produces a gap in the spin-density wave
spectrum and umklapp scattering renormalizes to
zero the charge-density wave coupling »’ which
appears in Table I of Ref. 3. For U>0, the roles
of backward scattering and umklapp scattering and
of charge-density and spin-density waves are inter-
changed. This does not mean that the special val-
ues of the coupling constants considered in Refs.

3 and 7 are effectively in the 1arge-|U | limit but,
rather, for a half-filled band, the exponents are
independent of U. It is necessary to keep this in
mind in making comparisons with the phase dia-
grams for coupled chains obtained by Klemm and
Gutfreund,'® which are rather different from those
obtained here.

It is clear that the evaluation of the correlation
functions is considerably simpler in the strong-
coupling limit than in the case considered by
Luther and Emery® and Emery, Luther, and
Peschel.” It is also possible to work with more
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general Hamiltonians. The reason for this is
that H, in Eq. (3.5) is equivalent to a set of spinless
fermions for which umklapp scattering and back-
ward scattering do not play a particularly crucial
role. In the model of Luther and Emery®” it is
necessary to use a renormalization-group argu-
ment to deal with one or the other of these pro-
cesses in calculating the exponents for an electron
gas on a lattice, when there is a half-filled band.
Also, numerical factors in the correlation func-
tions involve boson representations of powers of
fermion field operators, which are difficult to
evaluate. Finally, Eqgs. (3.7) and (3.8) give the cor-
relation functions for the more general Hamiltonian
(3.5), which includes the effects of direct near-
neighbor coupling V,;.,.; as well as hopping.

It is hoped that the general approach described
in this paper is simple enough that it can give a
description of the ordered states and be extended
to include the dynamical effects of phonons. These
topics are under investigation.
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