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We report here anomalies observed at high magnetic fields in the magnetoref1ection line shape of bismuth (H
parallel to binary, bisectrix axes) and bismuth-antimony alloys (H parallel to binary axis) and associated with

Landau-level transitions originating from the lowest-quantum-number (j = 0) levels of the valence and

conduction bands. Also reported are the corresponding Shubnikov —de Haas measurements made in steady

magnetic fields up to 220 kG. To interpret these anomalous magnetoreflection line shapes an accurate model

for the dispersion relations of the two coupled j = 0 magnetic energy levels is developed, including the

dependence of the magnetic energy levels on the magnetic field and on the wave-vector component parallel to
H. This model is applied to the interpretation of the Shubnikov —de Haas data and to a magnetoreflection line-

shape calculation for the experimental conditions under which these anomalies are observed. The calculated
line shapes successfully reproduce the large variety of observed hne-shape anomalies as well as their relative

intensities, thereby providing strong support for this description of the dispersion relations for the j = 0
magnetic energy levels.

I. INTRODUCTION

The present work was motivated by the previous
observation of anomalies in the magnetoref lection
spectrum of bismuth. ' These anomalies were
identified with Landau-level transitions originating
from the lowest-quantum-number j=0 magnetic
energy levels fox the valence and conduction bands
at the L point in the Brillouin zone, where the
electron pockets for bismuth are located. The
quantum number j classifies the electron Landau
levels and is related to the harmonic oscillator and

spin quantum numbers e and s, respectively, by

where n =0, 1,2, . . . and s =+-,'. The anomalies ob-
served in the magnetoref lection spectrum were at-
tributed to a coupling between these j=0 levels,
and this coupling could not be explained on the ba-
sis of the two-band model commonly used to de-
scribe the L-point conduction and valence bands. ' '
This coupling between the two j=O levels is ob-
served to become important when the magnetic en-
ergy-level spacing is large compared with the en-
ergy gap E~ separating the J.-point valence and
conduction bands.

The previous magnetoref lection results were
significant in providing the first experimental evi-
dence in support of a magnetic field-dependent cou-
pling effect between the two j=0 levels in bismuth. '
Such an effect had already been predicted by
Baraff. ' The strong H dependence of this coupling
provided motivation for extending the previous
measurements to higher magnetic fields. These
earlier measurements were made for H ~ 70 kG,

which will be defined in this paper as the low-field
regime. Our objective was to make measurements
up to higher magnetic fields in order to study quan-
titatively the details of this coupling effect and to
investigate possible new phenomena which were
expected to occur in the high-magnetic-field re-
gime.

We report here such magnetoref lection measure-
ments carried out in the magnetic field range H
~ 150 kG. These magnetoref lection spectra show
a variety of anomalous features and provide very
detailed information about the coupling process be-
tween the two j=0 levels. To explain these anoma-
lous features in detai. l, we have developed a quan-
titative model for the k, and H dependences of tne
j=0 levels (k, being the crystal wave vector along
the magnetic field direction). Furthermore, the
form of this model has promise for application to
bismuth-antimony alloys of low antimony concen-
tration. The possibility of a magnetic-field-in-
duced semimetal-semiconductor transition in bis-
muth and bismuth-antimony alloys' ' has also
stimulated interest in the magnetic field depen-
dence of the two I.-point j=0 levels, which should
play an important role in such a transition.

The present magnetoref lection experiments" '"
were carried out using a tunable optical system in
the Faraday geometry. A globar light source was
used in conjunction with a grating monochromator
to provide a continuously tunable output between
4 and 20 p.m." A Bitter solenoid provided mag-
netic fields up to 150 kG. The sample was mounted
with Be-Cu springs inside a liquid-helium cryostat
using a cold-finger geometry and the sample tem-
perature was measured by mounting a suitable
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thermocouple on the optical face of the sample.
The bismuth samples used in this work were pre-
pared from single crystals which had been grown
by pulling from the melt. " The samples were
oriented to about 2' of the specified orientation by
x-ray techniques and were cut to size by a string
saw (-10 x 10 && 2 mm, with the largest surface
chosen as the optical face). The optical face was
lapped to an optical flat and then mechanically po-
lished, starting with 0.5- p, m alumina grit, and then
with finer grits down to a size of 0.05 p, m. The
optical surface thus obtained proved to be a good
flat mirror, and the experimental magnetoreflec-
tion traces demonstrate that no detrimental sur-
face damage resulted from this sample preparation
procedure. The same procedure described above
was used for the preparation of the optical sur-
faces of the bismuth-antimony alloy samples. '

To provide additional support for the model de-
veloped for the j=0 magnetic energy levels on the
basis of magnetoref lection experiments, Shubni-
kov-de Haas measurements were carried out at
4.2 K in bismuth for the magnetic field orientations
H parallel to the binary axis and H parallel to the
bisectrix axis as well as in Bi, „Sb„alloys for H

parallel to the binary axis. These measurements
were made in a steady magnetic field up to 220 kG
which was provided by a Bitter solenoid. In order
to improve the experimental sensitivity, the mag-
netic field was modulated at -10 Hz so that both the
transverse H-dependent resistivity and its first
derivative with respect to H could be measured.

In See. II we present the theoretical model that
ha. s been used to interpret the anomalous magneto-
reflection spectra which are illustrated in Sec. III
and are attributed to Landau-level transitions
originating from the j=0 levels. In Sec. IV we
present the results of a magnetoref lection line-
shape calculation based on the theoretical model
given in Sec. II. This model is shown to provide a
detailed interpretation for the experimental data in
Sec. III. Section V relates the present magnetore-
flection study to other experimental phenomena in
bismuth and in the bismuth-antimony alloy system,
with particular reference to Shubnikov-de Haas
phenomena at high magnetic fields. Also discussed
is the magnetic field dependence of the Fermi en-
ergy and of the carrier density for the various
carrier pockets.

II. THEORETICAL MODEL

To provide a detailed interpretation of the ma, g-
netoref lection experiments, it is necessary to
specify the energy dispersion relation and corre-
sponding wave functions for the magnetic energy
levels. The dispersion relation for electrons in

bismuth at the I point in the Brillouin zone has
been described in terms of a two-band model and
is written as a (4 && 4) matrix"

K, +iK, =(h/v'm, *)(k,+ik, ),
K, =(h/Vm+) k, ,

('la)

(Vb)

using the definitions

k, =k, +(eH/2hc) x, ,

k, =k, -(eH/2hc)x„,

(sa,)

(sb)

where the magnetic field is along direction 3 and
the directions 1,2 are perpendicular to each other
and to H. We note that with this definition of the
coordinate system, directions (1,2, 3) can be re-
lated to the crystallographic axes once the mag-
netic field direction is specified.

The strict two-band model was modified by
Baraff to include the effect of the other bands as a
perturbation on the two nearly degenerate bands of
the two-band model, so that

H~ =Ho+Hp,

where the Baraff perturbation Hamiltonian assumes
the form . 0

in which z= —,'E„o represents the three Pauli ma-
trices for spin —,', the summation is made over the
three n components, and lisa(2x2)unit matrix.

In a magnetic field, the vector K becomes an
operator satisfying the relation

K~ K=i p*H,

where p* is related to the cyclotron effective mass
m,* by

p+= ~e~ h/ m,
* c,

and p*H is interpreted physically as the Landau-
level separation in both the valence and conduction
bands in the limit of low magnetic fields, O*H«E .
The cyclotron effective mass m~ in Eci. (4) is de-
fined by

m,*= (det m*/m+)' "m'"

in which ni is the free-electron mass and the ef-
fective-mass component along the magnetic field is
given by

n~"„=(h m* h) m. (s)

Here h is a unit vector along the magnetic field and
the effective-mass tensor m* is written in dimen-
sionless form.

The vector K is related to the crystal momentum
operator kk and the coordinate operator x by""
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((K ' B' K) 1+ L' o'
(10)

(K B" K) 1+ L~ o~ /

in which 0 denotes a (2X 2) null matrix and the
summation is made over the three n components.

The dimensionless tensors B""are independent
of H and transform in the same way as the effec-
tive-mass tensor, "so that

82 I' -3
K B"" K=5" (k'+k2)+b;", k', , (lla)

for the conduction band; and

(15b)

for the valence band, in which f&($) and gz($) are H
and g-dependent functions of the energy:

fg(() =g&g(t')+ &]/2&g(t')P ", (16a}

g;(5) =2~/[E, ($)+~], (16b)

and Es(() denotes IE&(() I
. The functions I(s) are

spinors or pure-spin states

5""=h B"" h3

f)cI v (det Qcf ll/Qcf v)1 /2
3

(11b)

(11c)

0~
I(-,') = I, I(--') =

0)

using the notation of Eqs. (5)-(8).
The vectors L""in Eq. (10) are linearly depen-

dent on H, and it is convenient to define new di-
mensionless vectors 2""by

I

chill

—PQHQcy ll {12)

The solution of the Baraff Hamiltonian, Eq. (9),
is achieved by using perturbation theory starting
from the eigenvalues and eigenvectors of the strict
two-band model, Eq. (2). The remainder of this
section will first discuss the solution of Eq. (2) and
the selection rules for optical transitions; then the
solutions of the Baraff Hamiltonian will be pre-
sented. For reasons that w'ill be discussed below,
the solutions of the j40 and the j=0 Landau levels
are treated separately.

A. Strict bvo-band model

The Hamiltonian II, for the strict two-band model
can be diagonalized analytically to yield the eigen-
values" '

E,'(() =+ [~ '(1+ ]')+2eqP+H] '", (13}

in which the dimensionless wave vector along the
magnetic field $ is related to k, by

t' = kk, /(em))'", (14)

(1)j...q(x) ~fq(&) P,,q(x)
-fg&(&)I'(s)

(15a)

and the quantum number j is related to the orbital
and spin quantum numbers n and s by Eq. (1). Al-
though the eigenvalues E~~(() do not explicitly de-
pend on s, both quantum numbers j and s are need-
ed to specify the state which is represented by a
four- component eigenvector diagonalizing IIO. Be-
cause of the mirror symmetxy of the levels in the
two-band model, there is some arbitrariness in
the selection of the eigenfunctions. 4 The particular
choice of eigenfunctions used in the present calcu-
lation" is

while the functions I'(s) are pure-spin states only
at $ =0. Away from the band edge, the I'(s) func-
tions form a linear combination of I (s) functions,
as seen by the $ dependence of I'(s)

(18a)

in which the dimensionless energy function g is de-
fined as

)I~ =P*H/2&, (18c)

(19)

in which e specifies the vector component index,
and the notation of Eqs. (2) and (10) is used. If we
choose n = 3 to be directed along H„ then m is re-
lated to the effective-mass parametex s by m, = m,
=m,*, and m, =mH*.

Our magnetoref lection experiment w'as carried
out in the Faraday geometry using unpolarized
light so that the appropriate component of the ve-

where q' is the ratio of the Landau-level separa-
tion in the low-magnetic-field limit to the zero-
field-energy gap. Correspondingly, ($/2}' is the
ratio of the kinetic energy along the magnetic field
direction to the zero-field-energy gap. The non-
vanishing components of I'(s) at the band edge a,re
proportional to the raising and lowering operators
a and a~ which act on the states of the effective-
mass approximation P„&(x}, comprising the usual
product of harmonics oscillator and plane-wave
functions. 4

In the presence of an electromagnetic radiation
field, electric dipole transitions are induced by the
coupling of the magnetic energy levels through. the
effective-mass velocity operator
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locity operator V for inducing electronic transi-
tions is

T~o-band
model

Modified
two-band model

V, =(V, +V,)/W2. (20a)

Thus the (4 x 4) velocity matrix operator V, is
written

0 0 0 1+i
0 0 -1+i 0

V~ = Vo)

0 -1-s 0 0

0 0 0

Vo = {z/2mo)'/',

and V, corresponds to arbitrarily polarized radia-
tion propagating along the applied-magnetic-field
direction. Taking matrix elements of V, between
states specified by E(ls. (15) yields the general
selection rules &j=+1. The velocity matrix ele-
ments connecting states for which &j =+1 are

j=Q

j=Q

(2)

ik

(2)

EF

Conduct ion
— + band

E=G
+ Valence

band

fox' intraband tx'Rnsltlons' Rnd
(21b)

&j, s, + IV, I jul, s, +}=(I-f)Vo

(s, +a)(z, -a))'"
4g

(21a)

FIG. l. Schematic representation of the magnetic
energy levels of Bi for the strict two-band model (left)
and the modified Qaraff) model (right). The lifting of
the degeneracy of the j & 0 Landau levels is indicated,
and the + signs to the right refer to the sign of s f see
Eq. (1)] . The arrows give the allowed transitions at
k 3

= 0 in the framework of the strict two-band model
{light l.ines denote interband transitions and heavy lines
denote intraband transitions). The notation 1-6denotes
the j = 0 and j = 1 levels discussed in 8ec. II tsee Eqs.
/OH, and levels 7-10 are the four j = 2 level, s.

different for intraband as opposed to interband
transitions. More specifically, analysis of the
strict two-band Hamiltonian yields spin-conserv-
ing intraband transitions

s, —II', Ij+I, s, +}

dj=+I, &a=0 {intraband),

and spin-flipping interband transitions

&j=+1, 4s=+1 (interband), (22b)

for interband transitions. In E(ls. (21) the Landau-
level quantum number is specified by j, the spin
quantum number by s = + &, the band index for the
conduction and valence bands by (+) and (-), re-
spectively, and E/ denotes IE/($) I. Since the
dominant contribution to the optical conductivity
occurs for )=0, where the joint density of states
between magnetic energy levels is singular, the
matrix elements given by E(ls. (21) indicate that
the selection rules on the spin quantum number are

Rs ls lndlcRted Dn Flg. 1.
To interpret the magnetoref lection data we need

to use a more sensitive model than is provided by
H, . %e will now describe how our extended model
was developed using the eigenstates of H, as the
unperturbed basis functions. This model includes
both the E and H dependences of the eigenvalues
and eigenfunctions of H3 which are necessary to
carry out the m~etoref lection line-shape calcu-
lation described in Sec. IV.

8. 1%0Landau levels

Since these levels are doubly degenerate with en-
ergy E,(t') for the strict two-band model (see Fig.
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1), the perturbation arising from H~ can be handled
in first-order degenerate perturbation theory. For
each level j of the conduction (+) and valence (-)

band, we must solve the following (2 &&2) secular
equation, corresponding to the states s = +-, and
written here for a typical level j:

!

+ IHoI j — ~ &+E,'(&) E

(j '-+IH&l j,k, ~&

(23)

in which the notation follows that used in writing
Eqs. (21). The simplicity of the magnetoref lection
spectrum observed for Landau- level transitions
between jWO levels implies that the perturbation
parameters bf'" and 8 ",'" "given by Eqs. (11)
and (12), are related by

QC QO
1

Z3C = —Z,".
(24a)

(24b)

The terms in Eq. (23) can then be written in a rel-
atively simple form' for both the diagonal and off-
diagonal entries:

E&($)+(j,s, +!H~!j, s, +&

=+([e '(1+ $')+2m jpgH]'~' —2s !Gp*!H], (25a)

where the spin-splitting parameter 6 is defined by

G — (5'+ Z') = (5"+2") (26)

are consistent with those of Baraff for $ =0, which

The effective-mass parameters Ps* in Eq. (25a),
rather than I3*, are measured in the magnetore-
flection experiment. %'e therefore redefine P* to
include the small contribution made by the pertur-
bation Hamiltonian. ' In treating the various small
terms (proportional to !GP*!H) which occur in Eqs.
(25), it is not necessary to distinguish between P*
and Pg+.

The effect of the perturbation Hamiltonian is to
introduce both orbital and spin corrections to the
unperturbed states. The orbital corrections are
mainly contained in a redefinition of P~, while the
spin correction gives rise to a splitting of each j
c0 level which is proportional to the spin-splitting
parameter G. To lowest order, 6 is the same for
each j40 Landau level in both the valence and con-
duction bands. Solution of Eqs. (23) and (25) pro-
vides both the eigenvalues and eigenfunctions for
each of the spin-split levels E; ,(g) as a function o.f

The results obtained here for $ =0,

Eg .(o) =*[(~ '+ 2~jPg H)'" 2s
I
Ge*l H—], (2»)

is the case he considered. ' For the range of mag-
netic fields and $ values of interest to our magne-
toref lection experiment, the off-diagonal contribu-
tion in Eq. (23) is small and the $ dependence of

E; ,($) is .approximately given by

E; ,($) =.+{[&'(1+$')+2ej PsH]'~' —2s ! GP~!H)

as was previously given in Ref. 5. The first-order
perturbation theory treatment given here for the j
40 levels is sufficiently accurate for application to
the magnetoref lection line-shape calculation de-
scribed in Sec. IV.

C. 1=0 Landau 1evels

The j=0 levels of the valence and conduction
bands are special because they are the only non-
degenerate levels of the strict two-band model.
Since these levels are separated by a small energy
gap, which decreases as H begins to increase, ' the
separation between the two j = 0 levels can become
small compared with the Landau-level separation
at high magnetic fields. In this limit we consider
the two j =0 levels to be nearly degenerate (com-
pared with energy separations to other levels) and
the energies for these j=0 levels are found using
degenerate perturbation theory. Thus, in this high-
field regime, an interband coupling might be ex-
pected between the two j=0 levels. %e show here
that this coupling gives rise to an admixture of the
wave functions for the two j=0 levels and that this
admixture is responsible for the anomalous mag-
netoref lection line shapes observed experimentally.
There is no corresponding magnetic-field-induced
admixture between j40 levels because the spin
splitting and Landau-level separation each increase
proportionally witI1 increasing magnetic fields, so
that no additional quasidegenex acy ever develops.

In treating the two j=0 levels as quasidegenerate,
the lowest-order corrections are found by solving
a (2 x 2) secular equation including terms to first-
order degenerate perturbation theory. It was found
that these lowest-order corrections were not ac-
curate enough to describe the magnetoref lection
line shapes observed experimentally. A more ac-
curate solution can be obtained in two ways: The
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size of the secular equation can be increased to in-
clude other Landau levels, or alternatively, higher-
order perturbation theory terms can be used in the
(2 && 2) secular equation. Both approa. ches were
used and the solutions obtained are consistent with
each other, as will be described later. The model
used for the magnetoref lection line-shape calcula-
tions was the solution of the (2 && 2) secular equa-
tion because it results in a relatively simple ana-
lytical expression. Because of the great sensitivity
of the anomalous magnetoref lection line shape to
the form of the j=0 magnetic energy levels, and
because of the complexity of the line-shape calcu-
lation, it is necessary to have a very accurate but
simple expression for these magnetic energy lev-
els.

The (2 x 2) secular equation that was used is of
the form

(28)

The only nonvanishing terms of the perturbation
Hamiltonian H~ are between levels for which ~j
=+1. Hence, the next-order correction corre-
sponds to the coupling between the two j=0 levels
and the four j=1 levels, which is treated explicitly
in second-order perturbation theory. Further-
more, the mirror symmetry of the conduction and
valence bands causes the contribution from the
various second-order perturbation terms to nearly
cancel each other. It is therefore necessary to in-
clude third-order perturbation theory terms using
also the four j=2 levels since the second- and
third-order perturbation theory terms make com-
parable contributions. '

Also of importance is the fact that the conduction.
and valence bands at $ =0 have opposite parity.
Hence, any perturbation due to an external mag-
netic field will not couple harmonic oscillator
states with the same quantum numbers. There-
fore, the two j=0 levels at E=O will not be coupled
for any order of perturbation theory. Neverthe-
less, the experimental magnetoref lection results
provide strong evidence that such a coupling does
in fact exist at (=0, both from the magnetic field
locations of the resonant structures and (as shown
in Sec. IV) from the characteristics of the anoma-
lous line shapes. In fact, the original treatment of
Baraf f' included a nonvanishing coupling term be-
tween the two j=0 levels at t =0, and such a cou-
pling term was used successfully to interpret mag-
netoref lection spectra for H & VO kG.' For these
reasons, we introduce in X» a nonvanishing mag-
netic-field-dependent coupling term QP*H at the
band edge. A physical mechanism which could ac-
count for this coupling is the magnetic breakdown

H,„H,H„,,
(E E)(E E )

(29a)

X =H +MPH+ Q
vt1, 2

1P vll v 2
21 &

vgp X1y2 V V

in which H, „denotes the matrix element of H~ be-
tween states l' and v, using the eigenfunctions of
Eqs. (15) and the labeling of the energy levels is
given in Fig. 1. The zero-field unperturbed energy
E, is related to

with

The unperturbed energies for the jt 0 levels, E„,
a,re given by Eq. (13). In the off-diagonal matrix
elements no distinction is made between +F., and
-E, in the denominators, an approximation that is
very accurate for the high-H ranges considered
when ~E„~»E,. Retaining only the leading terms in
H and $, we obtain for the H and E dependences of
the matrix elements of the (2 x 2) the explicit ex-
pressions":

phenomenon associated with the different geometric
harmonic oscillator centers for the various band-
edge states degenerate in the wave vector k, (per-
pendicular to the magnetic field). These different
k, values introduce somewhat different arguments
to the harmonic oscillator wave functions, thereby
relaxing the harmonic oscillator selection rules.
However, our main justification for the introduction
of the coupling parameter Q is the excellent fit it
provides for the complex experimental line shapes
observed in the magnetoref lection experiment. To
yield a dispersion relation with zero slope at g =0,
the parameter Q is taken as a real num Jer." The
coupling term QP*H is of the same form as was
previously introduced by Baraff. ' Though the mag-
nitude of this term is small for most experimental
operating conditions, it is nevertheless a crucial
term in the magnetic field regime where a crossing
of the j=0 levels would otherwise occur.

Using these arguments, the matrix elements of
the (2 x2) secular equation for the j=0 levels are
given by



304 VECCHI, PEREIRA, AND DRESSELHAUS 14

R„=Eo—IGp*lH(1+$ }

IS I

2
p"~(I+ 5')'" (1+ 5'/4)

I I'&J. 1(puff)2 (31a)

and

30,.=&&(I+ 5') '" IGp*lff+ a*If
I I'b

+ ( J 1(Puff)2
2E

(31b)

where the parameters IZ, I' and b, are defined by
the expressions

l~, l'= la'- f~'I'= Iz,"-fa" I'

&, = Ib'I =
I b,"I.

(32a)

(32b)

The resulting energy eigenvalues E', ,($) are

E (g) =+(IX,
I

+ Iz, I

)'~ . (33)

For the special case ( =0, Eq. (33) can be written
in a very simple form"

E; .(o) =.[(.—IG.p" IH)'+(ep*E)']'", (34.)
where G, is defined by

IG.p*l=lGp*l+l(l~. l') p*+(I~.l'&, &')(p*)'~,

(34b)

in which
I
GP"

I
is the spin-splitting term for the

j4 0 levels. ""Values for the various parameters
in Eq. (31) are found from analysis of the magneto-
reflection data and are listed in Table I. The cor-
rection terms proportional to

I 2, I' and b„although
small, are found to be very important in the inter-
pretation of the experimental results. In evaluating
the g-dependent correction terms, the small dif-
ferences between IGp*l and IG,p*l are neglected.

The general features of the magnetic field de-
pendence of the E', ,(0) levels shown in Fig. 2 are
sensitive to the introduction of the QP*H coupling
term as well as to the use of higher-order correc-
tions of the Baraff secular equation, as is clear
from the form of Eqs. (34). At low magnetic fields
the separation between the two j=0 levels de-
creases with increasing H, due to the term in

I G,P*I. In the magnetic field regime where IG,P*I

-q, the term Qp*H is important and determines
the minimum-energy separation between the two j
=0 levels. The magnetic field corresponding to
this minimum-energy separation is denoted by
H „.At yet higher magnetic fields, the energy
separation between the two j=0 levels increases
with increasing magnetic field and again the term
in

I G,P I
H dominates. This behavior is illustrated

in Fig. 2. From the shape of the curves in this
figure, we see that there are three magnetic field
regimes of interest: the low-field regime H«H „,
the intermediate-field regime H-H „, and the
high-field regime H»H „.

In order to test the validity of the third-order
perturbation theory solutions of the (2 x 2) secular
equation, the dispersion relations for the j=0 lev-
els were also found by the alternate method of us-
ing a larger secular equation than (2 x 2). Since the
perturbation Hamiltonian only couples the j=0 lev-
els to the j= 1 levels, the appropriate size for the
enla. rged secular equation is a (6 x 6), where the
coupling to the j&1 levels is treated in higher-or-
der perturbation theory. The matrix elements
entering the (6&&6) matrix can be found using Eqs.
(10) and (15), and they are given in detail in Ref.
10. The eigenvalues and eigenvectors of this (6 x 6}
matrix are then obtained numerically.

A comparison is shown in Fig. 2 of the magnetic
field dependence of the energy E&=,(0) as obtained
from the (6x 6) matrix (circles) and the (2X 2) ma-
trix (solid curve). Excellent agreement is obtained
up to 200 kG, as can be seen from Fig. 2.

Excellent agreement is also found in comparing
the $ dependence of E;. ,($) as obta. ined from the
second-order (6&& 6) Hamiltonian and from the
third-order (2 x 2) Hamiltonian, a.s shown in Fig. 3
for the three magnetic field regimes of interest:

Of particular interest in the analysis of the
anomalous magnetoref lection line shapes is the
magnetic-field-induced admixture of the eigenvec-
tors for the j=0 levels. Expressing the eigen-
functions for the perturbed Landau levels

I
l )~ as a

linear combination of the unperturbed eigenfunc-
tions Il'),

(35)

TABLE I. Numerical values for the dimensionless parameters in Eq. (31) at T=22.5 K.

b', =-b;

Bi fight binary)
Bi fight bisectrix)
Bi (heavy bisectrix)
Bip p8Sbp pg fight binary)

-7.6x10 3

-7.3 x 10
-8.6x10 3

-4.8x10 3

3 78x]P-2
2.93x10
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FIG. 2. Magnetic field dependence of the j = 0 energy
l,evel. s at $ =0 (&&=0) for the light binary electrons of Bi.
The circles are the solutions to the second-order (6x6)
secular equation and the solid lines are for the corres-
ponding third-order (2x2) secular equation. The magne-
tic field for minimum energy separation H ~;„ is indicat-
ed and 2e denotes the L-point energy gap at H = 0.

we obtain coefficients a», from the solution of the
appropriate secular equation. The coefficients de-
scribing the admixture of the j=0 levels are a»,
a„, a„, and a,2, and a comparison is given here
between the results from solution of the second-
order (6 x 6) and the third-order (2 x 2) secular
equations. " The results for the $ dependence of

1 a„t' are shown in Fig. 4 where
1
a„' is plotted

versus P, for the three magnetic field regimes of
interest. The results of Fig. 4 are significant in
showing a large admixture of the unperturbed wave
functions at high magnetic fields. The figure also
shows that good agreement between the (6 x 6) and
the (2 x 2) solutions is obtained for fields up to 160
kG, which is the magnetic field range of interest
in our magnetoref lection experiments. The large
admixture of wave functions indicated in Fi.g. 4 is
responsible for the dramatic change in magnetore-
flection line shape that is found by comparing
spectra in the three pertinent magnetic field re-
gimes.

The solution of the third-order (2 x 2) secular
equation discussed above will be applied in the fol-

H=40 kQ j~
100 kG

Ir

0.75I- I

12—

10—

a 8—
+ .

bJ

0.25—

2—
k

0
0

l

I.O
I

2.0
l.0 l .5

I

2.0 2.5

FIG. 3. Comparison between the g dependence of
E& 0(() as calculated from the third-order (2x2) secular
equation (solid lines) and the second-order (6x6) secular
equation (dots, crosses, and circles) for magnetic fields
in the three magnetic field regimes defined in the text.
H;„=107 kG.

FIG. 4. Comparison between the $ dependence of the
expansion coefficient squared (at&[ t (see Zq. (35)1, as ob-
tained with the second-order (6x6) secular equation (dots,
crosses, and circles), and with the third-order (2x2)
secular equation (solid curves) for magnetic fields in the
three magnetic field regimes defined in the text. 8 ~;„=
107 kG.
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lowing sections to the interpretation of magnetore-
flection and Shubnikov-de Haas experiments. It
will be seen that excellent agreement is found be-
tween calculations based on this secular equation
and the experimental results. 5~4 34~5

4 3

2+3
3+2

1~2
2~1

III. EXPERIMENTAL MAGNETOREFLECTION RESULTS

A sequel of typical magnetoref lection traces is
shown in Fig. 5 for H parallel to the binary axis.
At low magnetic fields, the observed resonant
structures are associated w'ith interband Landau-
level transitions between valence level j, and con-
duction level j, and denoted by j„-j,. These reso-
nances for j„, j, tO are shown in more detail in the
experimental traces of Fig. 6, taken at a photon
energy of h~ =248.56 meV. The same characteris- 4

5
5+6
6+5

1~2
2+1

1~2
2~1

2~3
3+2

QA Qs Qcl

I

—j=1, s=-1/2

j=1, s=+1/2

Qo'

FERMI

ENERGY
I

0
H( kG)

loo

Conduction j=0, s=+1/2
= E=o

—j=O, s =+1/2

.16 rneV

FIG. 6. Comparison between experimental (upper
curve) and calculated (lower curve) magnetoref lection
line shapes for the j & 0 transitions, with ~ = 248.58
meV, Il parallel to the binary axis and 1 22.5K. The
resonant magnetic field for the j„j„+f and jg, f jg in-
terband transitions are associated with the reflectivity
maxima.

2~3
3~2

07.40 meV

l 50

FIG. 5. Experimental magnetoref lection traces for
bismuth at T - 22.5K for several incident photon energies
and H parallel to the binary axis. The insert defines the
notation used in the traces to label the intraband and in-
terband transitions originating from the j = 0 levels.
The solid arrows label transitions appropriate to low
magnetic fields and follow the selection rules of Eqs. (22).
The dashed arrows denote optical transitions occurring
at high magnetic fieMs due to interband coupling between
the two j =0 levels.

tic line shapes as are illustrated in Fig. 6 are ob-
served over a wide range of photon energies, mag-
netic fields, and quantum numbers. A single reso-
nant structure is found for each value of j,+j,.
Contributions to a given j„+j, resonance are made
predominantly by the four spin-flipping transitions
of equal energy in accordance with the selection
rule given by Eq. (22b).

More complicated magnetoref lection line shapes
are, however, found for the various resonant
transitions originating from the j = D levels which
appear at higher magnetic fields. These transi-
tions are shown in Fig. 5 for H parallel to the bi-
nary axis and are labeled in accordance with the
insert given in this figure. Both intraband and in-
terband transitions contribute to these resonant
structures, and the theoretical values for the re-
sonant magnetic fields for the (A), (8), (C), and
(D) transitions are indicated above the traces.
(See Sec. IV for a. discussion of the theoretical
line shapes and the relative intensities of the vari-
ous transitions. ) In the low-magnetic-field regime
(H «H „)which applies to the top trace taken at
g~ = 64.20 meV, interband transition (A) and intra-



ANOMALIES IN THE MAGNETOREF LECTION SPECTRUM OF. . . 307

band transition {B)are observed in accordance with
the selection rules given by Eels. (22). Differences
in the line shape for the interband transition (A),
as compared with those shown in Fig. 6, are large-
ly due to the much higher nonparabolicity of the
initial j=0 level so that there is a large difference
in curvature between the j=0 and j=1 levels near
k, =0. Therefore, for a given spectral width of in-
cident radiation, interband transitions will be ex-
cited for a greater range of k, values in the case of
the j w 0 interband transitions than for transitions
(A) from the j=0 initial state.

In the top trace of Fig. 5, the resonant structure
for the intraband transition (B) has a step-like
shape, while interband transition (A) exhibits a re-
sonant peak; these resonant structures are de-
signated as the "normal" line shapes and have been
discussed previously. "' These normal line
shapes occur in the low-field regime where cou-
pling between the two j=0 levels is relatively un-
important. On the other hand, for the trace taken
at he = 107.40 meV, the transitions originating from
the j=0 levels occur in the high-field regime (H
» H „), where there is a large interband coupling
between the two j=0 states. In this regime transi-
tions (C) and (D) are dominant, contrary to the
selection rules of Eqs. (22). The resulting line
shapes are very different from the normal line
shapes and are designated as "anomalous. "

Referring again to Fig. 5, we see the develop-
ment of the line shapes for the cluster of j=0
transitions as the incident photon energy is in-
creased and the resonances move to higher mag-
netic fields. For ke =82.16 meV, the cluster of j
=0 transitions occurs at H = 80 kG, and transitions
(C) and (D) begin to appear, although the normal
line shape is still dominant. For br@=91.35 meV,
the cluster of j=0 transitions has moved out to H
=100 kG. Here the admixture of the j=0 levels
has become important, and noticeable deviations
from the normal line shape are observed, with all
four transitions contributing significantly. As h+
is further increased to 97.27 meV, the cluster of

j=0 transitions moves out to H = 120 kG and trans-
itions (C) and (D) become more pronounced. The
observation of this sequence of anomalous magneto-
reflection line shapes provides strong evidence for
the coupling between the two j=0 levels a,nd the
breakdown of the selection rules of the strict two-
band model. In particular, we conclude that for H
~ 120 kG, with H parallel to the binary axis, this
coupling between the j=0 levels dominates the
anomalous line-shape characteristics, as is shown
in the trace for 8(d =10'7.40 meV.

To substantiate this interpretation, magnetore-
flection experiments were performed for H parallel
to the bisectrix axis, for which resonant magneto-

.67meV

/1 22-i),(, ,

Q O/

.52 meV

.84

50
H(kG)

l50

FIG. 7. Experimental magnetoreflection traces for
bismuth at T-22.5 K for several incident photon ener-
gies and H parallel to the bisectrix axis. The subscripts
I and h refer to the light and heavy bisectrix electrons
and the notation for the transitions originating from the

j =0 levels follows the insert in Fig. 5.

reflection transitions are observed for two sets of
electron pockets: The light bisectrix electrons
have a cyclotron mass somewhat smaller than that
for the light binary electrons, and the heavy bi-
sectrix electrons have a, cyclotron mass consider-
ably larger than the light binary mass. Since E, is
independent of the direction of H, one would expect
the interband coupling between the two j=0 levels
to be larger for the light bisectrix electrons and
smaller for the heavy bisectrix electrons as com-
pared with the light binary electrons. These pre-
dictions are in agreement with the experimental
observations described below.

Figure V shows a sequence of magnetoref lection
traces taken with H parallel to the bisectrix axis
and resonant transitions for the light and heavy bi-
sectrix electrons are identified in the figure. At
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higher magnetic fields, two clusters of j=0 trans-
itions are found corresponding to the light and
heavy bisectrix electrons and are labeled accord-
ingly. The trace for h~ = 65.67 meV shows the
"normal" line shapes for both the light and heavy
bisectrix electrons, though the resonances for the
heavy bisectrix electrons occur in the 90-ko
range. In fact, a normal line shape is observed
for the heavy bisectrix electrons up to the maxi-
mum available field of 150 ko. On the other hand,
at 70 ko the light bisectri" electrons show evidence
for the existence of the transitions (C) and (D) as
is seen in the traces taken for k(d = 82.16 and 87.32
meV. The transitions at kv =87.32 meV are of
particular interest because all the transitions from
the j=0 levels have approximately equal ampli-
tudes, though the intensity for the whole resonant
structure tends to be weak for H-H „.Finally,
the trace at ke =113.84 meV, corresponding to the
H»H „region, again shows a large intensity for
the cluster of j=0 resonances for the light bisec-
trix electrons. This line shape is dominated by
resonances (C), and (D), and provides clear evi-
dence for the strong coupling between the two j=0
levels which breaks down the selection rules of
Eqs. (22).

This interpretation of the anomalous line shape
of the magnetoref lection resonances associated
with the j=0 levels is further substantiated by
looking at the variation of the coupling between the
two j=0 levels caused by changing the energy gap,
either by alloying with Sb or by varing the temper-
ature. For example, the relative intensities of the
resonances (C) and (D) for a given magnetic field
are much stronger for the Bi, „Sb, „alloy(E, =8.0
meV)" than for pure bismuth (E, =13.8 meV)', and,
in fact, for H parallel to the binary axis, the line
shapes for the j=0 cluster of transitions for pure
bismuth at hv =107.40 MeV [H (resonance) = 130
kG] a.re almost identical to those for Bi, »Sb, „at
h'&o =84.46 meV [H(resonance) = 80 kG]."'" Our
study of the BiSb alloys show that the smaller the
energy gap the lower is H „, the field at which the
interband mixing becomes important. " It is fur-
thermore found that the anomalous magnetoreflec-

tion line shapes persist as the Sb concentration is
increased to produce a band crossing between the
I.-point valence and conduction bands. "

As the temperature is increased, the I.-point en-
ergy gap for pure bismuth increases, "the coupling
between the two j=0 levels is expected to decrease,
and the more "normal" magnetoref lection line
shapes should be favored. This prediction has in
fact been confirmed by magnetoref lection measure-
ments in pure bismuth up to 280 K,' and in the
Bi, „Sb,„alloy up to 77 K."

By comparing the observed and calculated loca-
tions in magnetic field and photon energy of the
various Landau-level transitions, values for vari-
ous band parameters for pure bismuth are deduced
and these are summarized in Table II. Also in-
cluded in this table are parameters for the
Bi, „Sb,~ alloy, which is well described by the
same form of the dispersion relations as apply to
pure bismuth. " A detailed comparison between
these results and previously published results""'
is given in Ref. 10.

IV. MA|JlNETOREFLECTION LINE-SHAPE CALCULATION

The calculation of the magnetoref lection spec-
trum in the "anomalous" line-shape regime pro-
vides a sensitive test for the details of the model
for the j=0 magnetic energy level structure. In
this section, we show that the band model dis-
cussed in Sec. II provides, with a single set of
band parameters, a quantitative fit to the variety
of line shapes observed for the cluster of reso-
nances associated with the j=0 initial states in the
three magnetic field regimes of interest: H «H „,
H-H „, and H»H „.This model also allows a
quantitative interpretation to be made for the reso-
nances associated with the j t0 levels, in agree-
ment with the work of Maltz x5

The optical ref lectivity is calculated using the
optical conductivity tensor ~

(f( -f) ) &f ~ V„~ f'
&

&f'
~ Vg ~ f &~ (E, -z, , )[(f/a)(z, -z, , )-a~+1/r] '

(38)

TABLE II. Numerical values of band parameters for Bi and Bio 988bo o2.

Bi g.ight binary, 22.5 K)
Bi fight bisectrix, 22.5 K)
Bi (heavy bisectrix, 22.5 K)
Bi {light binary, 84 K)
Bi fight bisectrix, 84 K)
Bi (heavy bisectrix 84 K)
Bio.988bo.o2 fight binary, 22.5 K)
Bio 988bp p2 fight binary, 84 K)

13.8
13.8
13.8
15.5
15.5
15.5
8.0
9.0

198
177
351
243
219
137
116
138

82.1
92.1
46.3
76.7
85.3
43.3
80.1
78.4
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where l and E' denote the full set of quantum num-
bers for the initial and final states, and f, is the
Fermi function at energy E, which enters Eg. (36)
because the electronic transitions occur from an
occupied to an unoccupied state." In a magnetic
field, the full set of quantum numbers includes the
band index +, the spin quantum number s, the
Landau-level index n, and the crystal wave-vector
components k, and k, which are, respectively, per-
pendicular and parallel to H. The summation over
states is simplified because the energies E, and E,,
do not depend on k, and because the velocity ma-
trix elements (I

~
V

~

I') only couple a restricted
number of states through selection rules such as
given by Eqs. (22).

In the Faraday geometry, used in the present
magnetoref lection experiment, it is only the veloc-
ity matrix elements of V, such as those given by
Eg. (21) which contribute c,~ Beca.use of the res-
onant denominator in Eg. (36), the major contribu-
tion to the optical conductivity occurs for photon
energies 5+ equal to the Landau-level separation
at k, -0 where the joint density of states is a max-
imum. The explicit sum over the quantum num-
bers (s, n, s) in Eg. (36) is carried out only for
those states with energy differences comparable to
the incident photon energy, and the sum over k, is
performed by integration. All other transitions are
nonresonant and are treated through the introduc-
tion of a background conductivity o'~ or core dielec-
tric constant 4wio~/v. For the case of the I.-point
transitions in bismuth, the background conductivity
was found to be almost purely imaginary and pro-
portional to v, yielding a real frequency-indepen-
dent core dielectric constant. " The zero-field
background ref lectivity is taken to be independent
of m for the small frequency range considered in
this experiment, "in accordance with the mea-
surements of Nanney. 2~ Because the experimental
magnetoref lection traces exhibit some background
field dependence on which the resonant structures
are superimposed, a weak magnetic field depen-
dence is introduced in the background conductivity
o~, such that at H = 100 kG, o~ is about one half of
its zero-field value. '0

The results of our line-shape calculations for the
transitions associated with the j40 levels are
shown in Fig. 6. A previous calculation by Maltz"
yielded good agreement with the general features
of the observed resonant structures by merely us-
ing a constant core dielectric constant. It is of
importance to note that the resonant magnetic
fields for the four transitions, which contribute to
a given resonant structure (j„+j,), are closely
equal to each other 2nd give rise to a single sharp
resonant structure. This observation is the basis
for the simplification of the Baraff Hamiltonian

used in the present work. "'"
It was noticed'0 that a better fit to the observed

asymmetry of the magnetoref lection line shapes of
Fig. 6 is achieved by assuming a $ dependence
[see Eq. (14)] in the relaxation time 7 . In particu-
lar, the calculated line shapes shown in Fig. 6
were obtained for v(E =0) = 4 x 10 "sec (or h/v
-1.5 meV), in agreement with the value used by
Maltz, "but the relaxation energy was assumed to
increase with $~ such that at )=1, 5/r 3m-eV.
This form of the 8 dependence of the relaxation
time is physically reasonable because as $ be-
comes smaller, the number of available final scat-
tering states also becomes smaller. It is of inter-
est to point out that our value of w is much shorter
than values of 7' obtained from the analysis of
Shubnikov-de Haas, " far-infrared cyclotron
resonance, "and transport measurements. " This
shorter relaxation time at infrared frequencies is
consistent with frequency-dependent relocation
processes in bismuth"'8 and indicates that differ-
ent scattering mechanisms are important for the
interband processes which dominate the magneto-
reflection experiment. Figure 6 shows that the
present calculation provides a good fit to the ex-
perimental spectrum associated with the j+0 lev-
els, both with regard to the position of the reso-
nances (located at the ref lectivity maxima) and to
their line shapes.

The observed magnetoref lection line shapes for
the cluster of resonances associated with transi-
tions originating from the j=0 levels are more
complex, as can be seen in the sequence of traces
shown in Fig. 5. These line shapes are dependent
on H and are sensitive to the magnetic-field-in-
duced mixing of the wave functions for the two j=0
levels, which results in a breakdown of the selec-
tion rules of Eqs. (22). In calculating the optical
conductivity for this cluster of transitions, the
initial state is one of the j=0 levels given by the

~
l)~ representation of Eq. (35), while the final

state is a j=1 conduction state, obtained from Eq.
(23). The velocity matrix element coupling the
mitiai ~tate Il)~ to a final state (I'I is written as
(I'

~
V,

~

I )~ where

in which (I'(V, [f~& is the velocity matrix element
calculated with respect to the unperturbed states
in Eg. (21). It is convenient to use the notation M,
and M„respectively, for the velocity matrix ele-
ments of the interband and intraband transitions
which are allowed at E =0 by the selection rules of
Eqs. (22). These matrix elements are generally
defined as
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M, =(l, --.', +lv, lo, -„-&,
M, -=(l, -„+

l v, l 0, —,', + ) . (38)

The band-edge matrix elements M„', M~, M~, and

MD (at $ =0) associated with the four transitions
specified by the insert in Fig. 5 are written

M~ = ap2My Mg QyyM2

M~ =a2, M~, MD =a,2M,',
(39)

in which M, and M, are found by evaluating the in-
dicated matrix elements in Eq. (38) at $ =0. At low
magnetic fields, H«H „, the coefficients any and

a» are nearly unity (as shown in Fig. 4), and the
coefficients a» and a» are very small, so that
there is negligible admixture of the j=0 wave func-
tions and the simple "normal" line shape results.
On the other hand, at very high magnetic fields
where H»H, „Fig. 4. shows that at )= 0, la» l

» la» l
and la»l»la»l, so that the strict two-band

model selection rules break down and transitions
(C) and (D) dominate. For intermediate magnetic
fields H-H „, all four coefficients a»„of Eq. (37)
are of comparable magnitude and the resulting line
shape shows contributions from all four types of
transitions.

The general features of the observed line shapes
can be reproduced by performing a calculation in
which only the transitions M, and M, of Eq. (38)
are considered. To improve the agreement be-
tween the calculated and experimental line shapes,
it is necessary to include also the transitions with
matrix elements M, (interband) and M, (intraband):

M. -=(l -' +
l
v. I

o -' -
&

M, =—(1, —2, +lv~l0, 2, +),

QA

12&QB 5%
QA QB

her = 64.20meV

time proved adequate for this line-shape calcula-
tion, in contrast with transitions between j 40
levels.

The results of this line-shape calculation are
shown in Figs. 8 and 9. Also included in these
figures are the experimental traces corresponding
to each calculated spectrum. The parameters
used in this line-shape calculation are given in
Tables I and II, and the values for o, and r($ = 0)
are approximately the same as were used for the
line shape calculated for the j 40 transitions shown
in Fig. 6.

The sequence of line shapes shown in Fig. 8 cor-
responds to the regime H ~ H „. The top trace
taken at k~ = 64.20 meV shows a typical normal
line shape. The line-shape calculation in this re-
gime (H«H, .„) is relatively simple since only the
interband transition (A) and the intraband transi-
tion (B) contribute significantly. The resonant
magnetic fields for transitions (A) and (B) shown
on the theoretical curve correspond to the contri-
bution from $ = 0, where the singularity in the joint
density of states occurs. Comparison between the
calculation and the experimental trace shows that
the resonant magnetic field for interband transi-
tion (A) is identified with the peak in the reflectiv-
ity, while for intraband transition (B) the identifi-
cation is with the maximum in the overshoot of the
step-like structure in the ref lectivity. As the pho-

which vanish at (=0. The $-dependent expressions
used in our calculations are obtained from Eq. (37)
and are given by

1+2
2~1 QA

QB

C3

2~1
QB

M„=a, M, +a„M, M~ = a] yM2+ a»M, hu) = 74.27meV

M~ = a„M, + a»M„MD = a»M, + a„c'VI, . (41)

It should be pointed out that all the quantities in
Eq. (41) are complex, and therefore great care
must be exercised in combining their magnitudes
and phases to calculate the velocity matrix ele-
ments given by Eq. (41).

In carrying out the magnetoreflection line-shape
calculation, the contributions from those transi-
tions having energy separations comparable with
the photon energy were treated in detail, while
other contributions were included using a back-
ground conductivity term. Since the resonant
terms in this case are especially sensitive to the
contributions from the region around the magnetic
subband extrema, the g-independent relaxation

'1 +2
2+I

2w3t
3+4

1~2
2~1

her = 88.45meV

I I I I I I I I i I i I

50 IOO l50 0 50 100 150
Magnetic field ( kG)

Experimental Calculated

FIG. 8. Sequence of magnetoref lection l.ine shapes for
three photon energies showing the change in line shape
in going from the low-field (H &&HmjB) to the intermediate-
field (H-H, „) regimes. The data are for 0 parallel to
the binary axis and T- 22.5 K in bismuth. The left side
shows the experimental traces and the right side the cal-
culated line shapes. The resonant transitions are labeled
according to Figs. 5 and 6.
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2~1

2 33~
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2~1
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2~1
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FIG. 9. Sequence of magnetoref lection I.ine shapes for
three photon energies following the sequence shown in
Fig. 8 to higher magnetic field from the H H ~ to the
H»H;„regimes. The data are for H parallel to the bin-
ary axis and T-22.5 K in bismuth. The left side shows
the experimental traces and the right side the calculated
line shapes. The resonant transitions are labeled accor-
ding to Figs. 5 and 6.

ton energy is increased to h+ =74.27 meV, the
observed decrease in intensity of transitions (A)
and (B}is reproduced in the theoretical curve,
and the same identification as described above is
made for the resonant magnetic fields for transi-
tions (A) and (B). This decrease in intensity is
associated with the onset of interband couyling be-
tween the two j = 0 levels which reduces the am-
plitudes for the matrix elements for the (A) and
and (B) transitions. Of interest is the small struc-
ture observed between the (A) and (B) resonances
in the experimental trace. The calculation shows
this structure to be associated with contributions
from the (C) and (D) transitions, which begin to
contribute in this magnetic field range.

The magnitudes of the (C) and (D) transitions
further increase as 6(d is increased to 88.45 meV,
and the resonant magnetic fields move into the
regime H=H „. For this photon energy, all four
transitions (A), (B), (C), and (D) are of approxi-
mately the same amplitude, and the line-shape
calculation is extremely sensitive to the detailed
description of the dispersion relation for the

j= 0 levels. The different phases associated with
the four velocity matrix elements in Eq. (41) can
make the overall intensity small, even though each
individual transition makes a substantial contribu-
tion (this effect is also seen in Fig. 7 for H parallel
to the bisectrix axis). The identification of the
resonant magnetic fields, which is extremely dif-

ficult in the H =H,„regime, becomes clearer as
the photon energy is further increased and the res-
onances move to higher H.

The sequence of magnetoref lection line shapes
corresponding to this higher-field regime H —H, ,
is shown in Fig. 9. The top trace, taken at h~
= 97.27 meV, already shows a strong contribution
from the (C) and (D} transitions. To reproduce
the experimental traces for both ~ = 88.45 and
97.27 meV for a single set of band parameters
proved to be difficult. The further constraints
imposed by also fitting the experimental traces
for H «H „an H»H, „made e magnetore-
flection line- shape calculation esyecially sensi-
tive to the form of the dispersion relations for
the j=0 levels and the values for the band param-
eters. The calculated line shapes in the regime
H- H,.„are yarticularly sensitive to the coupling
term QH*H in Eq. (29b), and they provided an
accurate method for the determination of the pa-
rameter Q.

As we follow the magnetoref lection line shapes
through S(d= 101.65 and 107.40 meV we get into the
high-field regime where transitions (C) and (D}
assume a dominant role. Here we see that intra-
band transition (C} is identified with a peak in the
ref lectivity and interband transition (D) with the
maximum change in slope of the step-like structure
characterizing this interband transition (see Fig.
9). This interchange in the line shapes for inter-
band and intraband transitions in going from the
H «H „regime to the H» H „regime provides
strong support for the interband coupling of the
two j = 0 levels. Our calculated line shape is suc-
cessful in reproducing both the great variety of
line shapes found in the experimental traces and
the relative intensities of the various resonant
structures.

We note that for all the traces in Fig. 9, the in-
terband transition (C) occurs at a higher magnetic
field than the intraband transition (D), which is in
contrast with the normal case where interband
transition (A) always occurs at lower magnetic
fields than intraband transition (B). This anoma-
lous effect arises because the spin splitting of the

j =1 levels is larger than the interband separation
between the two j=0 levels (at )=0) in this mag-
netic field regime. This point is illustrated more
clearly in Fig. 10 where we plot the resonant pho-
ton energies (at ) = 0) for each of the four transi-
tions versus H. Whereas transition (A) in Fig. 10
always occurs at lower H than (B), the relative or-
dering of (C) and (D) is more complicated, depend-
ing on the relative magnitudes of the j = 1 spin
splitting and the separation of the j = 0 levels.
Since the H dependence of the j = 0 level separation
at high fields is greater than the linear H depen-
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PIG. 11. Magnetic field dependence (H parallel to the
binary axis) of the square of the velocity matrix elements
for g =0 (solid curves} and $ =1 (dotted curves) for the
four transitions shown in the insert to I'ig. 5. Of parti-
cular interest is the magnetic-fiel. d-induced interchange
of M& with M& „and Ma with ~~, as well as the magnetic
field range over which this interchange occurs.
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FIG, 3.0. Resonant photon energy versus Inagnetic
field for the cluster of j = 0 transitions for the light bin-
ary electrons of bismuth at I 22.5 K. The solid and
dashed lines represent the calculated resonant positions
of the interband and intraband transitions, respectively,
and the circles show the experimental data. The transi-
tions are labeled as indicated in the insert of Fig. 5. Of
particular interest is the crossing of transitions (C) and
(D) at about 75 and 200 kG.

dence of the j = 1 spin splitting, we expect that the
(C) and (D) transitions will again cross; this oc-
curs in Fig. 10 at H =200 ko and K(d=128 meV.
Since 5(d = 128 meV is close to the 10.6- p, m CO,
laser line, it may be possible to test this predic-
tion experimentally. It may also be possible to
test this prediction with Bi, Sb„alloys, for which
these effects should be observable at lower mag-
netic fields.

It is of interest to examine the B and $ depend-
ences of the velocity matrix elements associated
with each of the four transitions (A), (B), (C), and

(D), and these are shown in Figs. 11 and 12, re-
spectively, using the same set of band parameters
as in Figs. 8-10. In these figures, the velocity
matrix element is expressed in units such that
IM l'=1.0 corresponds to approximately 25m~2,

I,O
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FIG. 12. ( dependence of the square of the velocity
matrix elements for the four transitions shown in the in-
sert to Fig. 5 at H = 40 kG (B«H, „) (solid curve), 100
kG (H Hm, „) (dotted curve), and 160 kG (H»Hm;„)
(dashed curve}. The magnetic-field-induced interchange
of wave functions is most pronounced for small ( values.

where vz= Fermi velocity, and the curves have
not been extended to H = 0 because in that limit
nonparabolic effects introduce complicating fea-
tures that are extraneous to our discussion. In
Fig. 11 we note that for ) = 0 (solid curves) there
is an almost complete intercha, nge between the
transitions (A) and (8), which dominate at low ff,
to the transitions (C) and (D), which dominate at
high B. This interchange occurs over a. narrow
range of H in the vicinity of 110ko, corresponding
to H „in Fig. 2. %e further observe that this in-
terchange is more gradual. for (40, as can be
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seen in the dotted curves of Fig. 11 drawn for
(= 1, corresponding to k, =1.4k~ where Kk~ is the
Fermi momentum. This can be understood be-
cause all the unperturbed velocity matrix elements
[Eqs. (21)j have finite magnitudes at (40. This
point is demonstrated in moxe detail in Fig. 12
where each of the squared velocity matrix ele-
ments IM~I', IM~I', IM~I', and IM~I' given by Eq.
(41) is plotted versus $ in the low, intermediate,
a,nd high magnetic regimes.

V. DISCUSSION OF OTHER RELATED WORK

It is of interest to investigate the implications of
the magnetic energy level model, which was de-
veloped to explain the magnetoref lection experi-
ments in the low-quantum-number limit, on other
experiments. Of particular significance is the con-
nection between the electron population in the j= 0
conduction subband and the magnetic field depend-
ence of the total carrier concentration and of the
Fermi energy, since only modest magnetic fields
are required to lift all other electron subbands
above the Fermi energy (e.g. , -15 kG for the light
binary electrons and -25 kG for the heavy bisec-
trix electrons). The Fermi level is determined by
the requirement

trace showing p(H) and sp(H)BH is given in Fig. 13,
where the hole and electron resonances are labeled,
respectively, by the passage of the nth and jth mag-
netic subband through E~. This figure clearly
shows the power of the modulation technique to en-
hance the resonant structures which appear as
small changes in p(H) on a large background re-
sistance. " A summary of the experimental re-
sults obtained for pure bismuth with H parallel to
the binary axis and H parallel to the bisectrix
axis is given in Table QI. Also included in this
table are the calculated values of the resonances,
using a value of 38.7 meV for the zero-field band over-
lap for pure bismuth'4 (which is determined from
the magnetic field position at which the j= 1 elec-
tron level crosses the Fermi energy) and the band
parameters for the electron j= 0 magnetic subband,
as given in Tables I and II. Since the band gap fox
the T point is large compared with the Landau-

where n, denotes the electron concentxation in poc-
ket i, and P is the hole concentration of the hole
pocket located at the T point in the Brillouin zone.
For H parallel to the binary axis, the electrons
with heavy cyclotron effective masses have a very
small density of states at high magnetic fields so
that the total electron concentration is dominated
by electrons with light cyclotron effective masses.
Thus at sufficiently high magnetic fields where
only the j = 0 level is occupied, we have the ap-
proximate relation

200

&i (i=0) p (43)

where n, (j= 0) is the total light electron carrier
concentration from the various carrier pockets.

To study the magneti. c field dependence of Ez and

P, Shubnikov-de Haas measurements were made at
high steady magnetic fields, in the regime where the
resonant structures are associated with the passage
of hole Landau levels through the Fermi level. Pr e-
vious workers have reported Shubnikov-de Haas re-
sults for pure bismuth and for bismuth-antimony al-
loys in steady magnetic fields up to 80 kG and in pulsed
fields upto 175 kG."" Our measurements were
made in steady magnetic fields up to 220 kG on pure
bismuth (Hparallel to the binary, bisectrix axes) and
on Bi, ,8b, alloys (Hparallel to the binary axis and
@=0.02, 0.03, 0.05). A typical Shubnikov-de Haas

l

100
H {IG5

l

l50
l

200

FIG. 13. Experimental trace of the Shubnikov-de Haas
effect in bismuth for H parallel to the binary axis at 4.2
K. The upper trace shows the transverse magnetic-field-
dependent resistivity p (H) and the lower trace shows its
derivative 8p(H)/BH. The magnetic fields at which the
Landau levels cross the Fermi level are labeled by the
Landau-l. evel index j for el.ectrons and n for holes.



VECCHI, PEREIRA, AND DRESSELHAUS

TABLE III. Shubnikov-de Haas resonant magnetic fields for holes (in koj.

Landau-level
index

Bismuth, H parallel to
the binary axis

Experiment Theory

Bismuth, H parallel to
the bisectrix axis

Experiment Theory

Bio 988bp 02& H parallel
to the binary a is

Experiment Theor y

134.3
83.8
58.0
44.7
34.0
28.7

135.6
84.8
59.5
45.0
34.5
28.3

146.1
92.5
62.6
43.8

145.2
93.1
62.9
42.4

172.5
129.8
94.3
54.0
38.8
28.8
21.8

170.8
129.3
93.8
62.0
42.6
32.0
25.0

level separation in the hole band, " a simple par-
abolic band model has been assumed for the holes.
Values for the band parameters for holes and heavy
binary electxons were taken from Smith, Baraff,
and Howell. 29 The excellent agreement obtained be-
tween theory and experiment for the Shubnikov-de
Haas data in Table III provides additional support
for the validity of oux' model for the j=0 electron
levels.

We also attempted an interpretation of our Shub-
nikov-de Haas experiments on the semimetallic
Bi, Sb„alloys using the same model for both holes
and electrons as was used fox pure bismuth. The
hole effective masses for the Bi, Pb„alloys with
x ~ 0.01 have been reported to be the same as for
pure bismuth, which is physically reasonable, be-
cause of the relatively larger T-point band gaps.
Our results, "however, suggest that for x & 0.02,
the hole effective-mass parameters depend on x.
For this reason, no quantitative interpretation
could be given to the present Shubnikov-de Haas
data for x& 0.02, with H parallel to the binary
axis. Both the experimental and calculated results
for x= 0.02 are given in Table III. The parameters
for the light binary electrons in this alloy were ob-
tained from our magnetoref lection experiments.
In the absence of direct measurements, the param-
eters for the heavy binary electrons were scaled
from the values of pure bismuth~ using the ratio
determined from the light binary electrons in bis-
muth and Bi~98Sb, „.The agreement between the
experimental and calculated values of the resonant
magnetic fields is not as good as in the case of
pure bismuth, indicating the need for careful mea-
surements of the effective-mass parameters for
the Bi, „Sb„alloys before a critical assessment can
be made of the validity of our model for the j= 0
levels in this alloy system. Recent cyclotron re-
sonance experiments~ on Bi, Pb„alloys for x
~ 0.04 indicate a nonlinear dependence of the elec-
tron effective masses on Sb concentration, in
agreement with the present work. ' The need for
careful measurements is also indicated by the dis-

crepancy between our determination of the overlap
energy of 37.0 meV for Bi, „Sb, » (from the analy-
sis of the magnetic fieM position at which the j= 1
electron level crosses the Fermi energy), com-
pared with the previously determined value of 45
meV." We feel that our value is mox'e accurate,
since it results in an agreement between experi-
mental and calculated data over a much wider
range of II than the previous work, "which was
limited to 10 kG. Their findings of a highly non-
linear variation of the overlap energy with Sb con-
centration" suggest a more complicated depen-
dence of the hole effective-mass parameters than
is used here. From our experimental Shubnikov-
de Haas data for the three alloys studied here, we
conclude that a detailed determixiation of the hole
effective-mass parameters in this alloy system is
feasible because the observed hole resonances fox"

the alloy system are more clearly resolved than
for the case of pure bismuth, "in contrast with the
situation for the electrons.

The magnetic field dependence of the Fermi en-
ergy E„and electron carrier density correspond-
ing to our interpretation of the magnetoref lection
data (H z 150 kG) and the Shubnikov-de Haas data
for H parallel to the binary axis (H s 220 kG) is
shown in Fig. 14. The Fermi energy in this figure
is measured with respect to the energy minimum
at f. =0 of the j=0 conduction level for the light
electrons (solid curve) and for the heavier elec-
trons (dashed curve). One should remember that
this enexgy reference for E~ is magnetic-field de-
pendent and different for each of the electron poc-
kets and therefore distinct curves must be drawn
in Fig. 14 for the light and heavy electrons. In this
figure, the structure on the curves of Zz(H) at very
low fields is due to the passage of light electron
Landau levels through the Fermi level, and for H
~ 15 kG, the oscillatory structure is due to hole
and heavy electron Landau levels crossing the
Fermi, level. At H =0, Ez is the same for all three
electron carrier pockets, but as a magnetic field
is applied, for example along H parallel to the
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FIG. 14. Calculated mag-
netic field dependence of
the electron carrier density
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the energies of the j =0
conduction level at ( = 0 for
the electrons with light (so-
lid 1.ines) and heavy (dashed
lines) cyclotron effective
masses. As H 0, the
l.ight electron carrier den-
si.ty for 5 parallel to the
axis becomes twice that for
the heavy electrons, be-
cause in this orientation of
0, there are bvo equivalent
electron ellipsoids with
light cyclotron effective
masses and a third electron
ellipsoid with a heavy cyc-
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binary axis, the electron pockets become nonequi-
valent; for this magnetic field orientation, there
are two equivalent light electx'on pockets and a sin-
gle heavy electron pocket, accounting for the 2:1
ratio of the light: heavy electron carrier concen-
tration shown in Fig. 14 at low H.

For H & 15 kG, all the light electrons are in the

j=0 level and their carrier density increases up to
about 100 kG as shovrn in Fig. 14 because of the
linear H dependence of the density of states. At yet
higher fields H &H „, the interband coupling be-
tween the j=0 levels becomes important and
the extremum of the j=0 conduction level rises
(see Fig. 2} so that there is a decrease in
both the light electron carrier density and the
energy difference betvreen the Fermi level and
the j=0 magnetic subband extremum. Figure
14 shows that in both the carrier density and
E~ this effect due to the interband coupling between
the two light electron j=0 levels occurs at lovrer
H for the Bio gsSbo Og aDoy, and this is associated
with the lower value of H~„ in this alloy.

On the other hand, the H dependence of the heavy
electron carrier density is quite different. For H
4 80 kG, the j=1 magnetic subband for the heavy
electrons loses carxiers more rapidly than the

density of states is increased through its linear H
dependence, and thus the caxrier density for the
heavy electrons decreases in this magnetic field
regime. Above 80 kG, all the heavy electrons are
in the j= 0 magnetic subband and the linear in-
crease in t e density of states dominates, causing
an increase in the heavy electron carrier density,
as shown in Fig. 14. Nevertheless, the concentra-
tion of electrons with light cyclotron effective
masses is dominant for H & 15 kG (see Fig. 14),
and this has been verified by Alfven wave propaga-
tion experiments up to 200 kG."

%e observe in Fig. 14 that the decrease in
carrier density for the light electrons at high fieMs
is partly compensated by an increase in the carrier
density for the heavy electrons, due to an increase
in both the density of states and E~ fox' the heavy
electrons. In this magnetic field regime, the hole
carrier density is slovrly decreasing.

Although vre have plotted the magnetic field de-
pendence of the electron carrier density and E~ up
to 300 kG in Fig. 14, we must remember that our
model is based on experimental data for H ~ 200
kG. These magnetic fields are too low to study the
semimetal-semiconductor tx ansition in pure bis-
muth, ' ""though in Bi, ~„aooys of suitable con-
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centration x, it may be possible to observe such a
transition and to develop a detailed model for the
analysis of this effect, using an appropriate model
for the two coupled j=0 levels. It should also be
mentioned that the model presented here for the j
=0 Landau levels should be applicable to the de-
scription of the magnetization of bismuth and

Bi, „Sb„alloys at high fields. '8 Further work
along these lines is currently in progress.

From this study we conclude that the model for
the j=0 magnetic energy levels for the coupled I-
point valence and conduction bands is consistent
with both magnetoref lection and Shubnikov-de Haas
data for pux e bismuth, The present wox k on the
B1, 988b«~ alloy suggests that the same form of the

dispersion relation also applies to semimetallic
Bi, „Sb„alloys for small x, though more careful
experimental work on this alloy system will have
to be performed before any definitive conclusions
can be reached concerning the applicability of our
model for the j=0 magnetic energy levels to these
alloys.

ACKNOWLEDGMENTS

We wish to expx'ess oux' thanks to L. Hubln and
the staff of the Francis Bitter National Magnet
Laboratory for help with the experiments. We also
thank Professor P. A. %olff and Dr. G. F. Dressel-
haus for valuable discussions.

~Based on a thesis submitted by one of the authors
(M.P.V.) in partial fulfillment of the Ph. D. degree in
Department of Electrical Engineering and Computer
Science (MIT, 1975) (unpublished}.
Work supported by the NSF.

& Work supported in part by the Instituto Venezolano de
Investigaciones Cientificas (IVIC); present address:
IVIC, Caracas, Venezuela.
Visiting Scientist: Fr ancis Bitter National Magnet
Laboratory, MIT, Cambridge, Mass. , supported by
the NSF.

~ Supported by Fundaqao de Amparo a Pesquisa do Estado
de Sao Paulo (FAPESP), Brazil. Present address:
University of Sao Paulo, Brazil.

'M. P. Vecchi and M. S, Dresselhaus, Phys. Rev. B 9,
3257 (1974). In this reference Q is denoted by gP.

~M. H. Cohen and E. I. Blount, Philos. Mag. 5, 115(1960).
'R.

¹ Brown, J. G. Mavroides, and B. Lax, Phys. Hev.
129, 2055 (1963).

4P. A. Wolff, J. Phys. Chem. Solids 25, 1057 {1964).
5M. Maltz and M. S. Dresselhaus, Phys. Hev. B 2, 2877

(1970).
6G. A. Baraff, Phys. Rev. 137, A842 (1965).
YN. B. Brandt, E. A. Svistova, and Yu. G. Kashlrskii,
Zh. Eksp. Teor. Fiz. Pis'ma. Hed. 9, 232 (1969)
[Sov. Phys. -JETP Lett. 9, 136 (1969)I; ¹ B. BIandt
and E. A. Svistova, J. Low Temp. Phys. 2, 1 (1970).

8N. B. Brandt, E. A. Svistova, Yu. G. Kashirskii, and
L. B. Lyn'ko, Zh. Eksp. Teor. Fiz. Pis'ma Red. 7, 441
(1968}ISoviet Phys. -JETP Lett. 7, 347 (1968}j.

~N. B. Brandt, E. A. Svistova and R. G. Valeev, Zh. Eksp.
Teor. Fiz. 55, 469 O.968) ISoviet Phys. -JETP 28, 245
(1969}].
M. P. Vecchi, Ph.D. thesis (MIT, 1975) (unpubliSeed.
In this reference Q is denoted by 4S'.

~~A more complete description of the experimental set-up
is given in Ref. 10.

(2The optical system was kindly made available to us by
Dr. H. L. Aggarwal of the Francis Bitter National Mag-
net Laboratory.

~3The bismuth crystals were kindly supplied to us by
E. J. Alexander of the Francis Bitter National Magnet
Laboratory.

~4The various bismuth-antimony alloy samples used in

the present work wer e kindly supplied to us by Dr. J.
G. Mavroides of the MIT Lincoln Laboratory.

~5M, S. Maltz, Ph, D. thesis (MIT, 1968} (unpublished).
'~B. McCombe and G. Seidel, Phys. Hev. 155, 633 (1966).
~'To make this comparison meaningful, the coefficients

are normalized by

Q ~ a„ I
'= 1, t = 1,2.

In the (6x6} secular equation, the coupling coefficients
a&& between the j = 0 and j = 1 levels are very sma11. , and
therefore this normalization condition is appropriate.

~ M. P. Vecchi, J. H. Pereira, and M. S. Dresselhaus,
Proceedings of the International Conference on the
Physics of Semiconductors, Stuttgart, l9T4, edited by
M. H. Pi1kuhn (Taubner, Stuttgart, 1974), p. 1181. In
this reference Q is denoted by 4P.

~9M. P. Vecchi and M, S. Dresselhaus, Phys. Rev. B 10,
771 (1974). In this reference Q is denoted by KP.

+E. J. Tichovolsky and J. G. Mavroides, Solid State
Commun. 7, 927 (1969).

~E. J. Tichovolsky, M. S. thesis (MIT, 1969) (unpublished).
+M. S. Dresselhaus and G. Dresselhaus, Phys. Hev.

125, 499 (1962).
2~Although the experimental spectra are taken at - 22.5 K,

the temperature dependence of the Fermi functions in
Eq. (36) was neglected.

2~C. Nanney, Phys. Rev. 129, 109 (1963).
2~R. D. Brown III, Phys. Hev. B 2, 928 (1970).
2 V. Strom, A. Kamgar, and J, F. Koch, Phys. Rev. B 7,

2435 (1973).
+H. L. Hartman, Phys. Rev. 181, 1070 (1969).
H. D. Drew and U. Strom, Phys. Hev. Lett. 25, 1755

{1970).
2~G. E. Smith, G. A. Baraff, and J. M. Howell, Phys.

Hev. 135, A1118 (1964).
~OH. T. Chu and Y. Kao, Phys. Rev. B 1, 2369 (1970).
~~P. W. Chao, H. T. Chu, and Y. H. Kao, Phys. Hev. B 9,

4030 (1974).
3~J. Vuillemin, IBM J. Res. Dev. 8, 232 (1964).
~~The experimental resonant points are taken as the mid-

point between the maximum and minimum of the reso-
nance in dp/dH. Since the derivative is a sensitive func-



14 ANOMALIES IN THE MAGNETOREF LECTION SPECTRUM OF. . .

tion of H, the error introduced by this method for the
determination of the resonant position is small.

~4This value is in good agreement with previous work
(Refs. 29 and 31). The band overlap onI.y has meaning
at H = 0, because at higher magnetic fields the energy
difference between the Fermi energy and the band ex-
tremum is different for the pockets with light and heavy
cyclotron effective masses.

3~B. T. Smith and A. J. Sievers, Phys. Lett. A 51, 273
(1975).
R. Herrmann, W. Braune, and G. Kuka, Phys. Status
Solidi B 68, 233 (1975).

'S. Takano and H. Kawamura, J. Phys. Soc. Jpn. 28,
348 (1970).

+J. W. McClure and D. Shoenberg, J. Low Temp. Phys.
22 233 (1976).


