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Experimental results on magnetic and elastic properties for the cubic intermetallic compound TmZn are
presented. The magnetic-susceptibility measurement gives a ferromagnetic ordering temperature of T, = 10 K
and an effective Bohr magneton number g[J(J + 1)]'/? = 7.67. We can interpret the high-field (up to 125 kOe)
magnetization curves for T < T, using the crystal-field split *Hy ground state for the Tm®* ion. For the cubic
crystal-field parameters we obtain A,{r*> = — 17020 K, 4,{r®> = —10+3 K. The elastic constant
¢, — ¢, shows a softening of 40% from room temperature down to 13 K. The c,, mode and the bulk modulus
show a normal temperature dependence for T > T,. We interpret the temperature dependence of the ¢, — ¢,
mode as due to a crystal-field effect, which is particularly pronounced in TmZn because the crystal-field
ground state is a doublet I';. The magnetoelastic coupling constant g3 = 8.9 mK together with an additional
quadrupole-quadrupole coupling constant g = — 9.6 mK are not strong enough to induce a structural
transition in the absence of exchange interactions. We compare these results to the recently investigated TmCd
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compound, which exhibits no magnetic transition but a structural transition at T, = 3.16 K.

I. INTRODUCTION

The equiatomic compounds of the rare earths
with divalent metals like zinc (RZn) have the
cubic CsCl structure. This simple structure
enables one to study the different interactions of
the 4f shell in a metallic surrounding. Recently,
various measurements on single crystals of these
compounds have been performed: magnetic,’
dilatometric,? specific-heat,® and inelastic-neu-
tron-scattering® experiments. In all these ex-
periments the effect of the crystalline electric
field (CEF) was shown to be important. With
the various experimental techniques the level
scheme could be determined for the RZn inter-
metallics. It was found that the CEF parameters
A, and A, are negative for the RZn. However,
their variation across the series is complicated
and does not follow simple point-charge model
predictions. This is somewhat analogous to the
case of rare earths in®® Ag and in Au or in Y and
Se,” but differs from the situation in the rare-
earth pnictides.?

The light RZn compounds (R-Ce, Pr,Nd) order
antiferromagnetically, whereas the heavier RZn
order ferromagnetically with ordering temper-
atures T, ranging from 10 (TmZn) to 271 K
(GdZn).° The strong exchange interaction is pre-
sumably of the indirect type, the large density
of 5d electrons may induce the main coupling to
the 4f shell'® and contribute both to the CEF
parameters® and to an anisotropic exchange term.
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In addition to this strong exchange effect, lattice
distortions were observed in some cases below
the ordering temperature,® indicating strong quad-
rupole-strain effects.

It is the purpose of this paper to present a de-
tailed study of magnetic and elastic properties of
TmZn. In particular we would like to give ex-
perimental results for the magnetic susceptibility,
the magnetization in high fields along different
crystallographic directions and for the temper-
ature dependence of the elastic constants. From
these experiments we are able to deduce the CEF
level scheme and various magnetoelastic and
quadrupole-quadrupole coupling constants. The
main result of this study is a quantitative ex-
planation of the magnetic properties and of the
temperature dependence of the elastic constants,
proving a quadrupole-quadrupole interaction. A
list of physical constants deduced from these ex-
periments is shown in Table I.

TmZn is an interesting substance for such a
study, because it has a low T, =10 K, enabling us
to study CEF effects both in the ordered and in
the paramagnetic states. Furthermore the re-
lated compound TmCd has been studied recently
in a similar way.!* It is therefore interesting
to compare the two substances.

In Sec. II we describe the experimental methods.
Afterwards we present and analyze the magnetic
and lattice properties. Finally, we discuss these
results.
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II. EXPERIMENTAL METHODS

TmZn was obtained by direct fusion of the two
components in a sealed tantalum crucible and
by cooling from the melt in a Bridgman furnace;
the temperature gradient was about 20 °C/cm.

By this method we obtained single crystals of
good size. Spheres of about 3 mm in diameter
were spark cut and used for magnetic measure-
ments. For the ultrasonic experiments we cut a
cylindrical sample oriented along a twofold axis
and polished the two parallel cross sections. The
diameter of the sample was about 5 mm and the
length 6 mm.

We have studied the magnetization in the ordered
state along the three principal axes of the cubic
cell in fields up to 150 kOe, using the facilities
of the Service National des Champs Intenses at
Grenoble. The field was produced by a 5-MW
Bitter coil and the magnetization was measured
by a conventional flux method. The susceptibility
measurements were performed at the Laboratoire
de Magnétisme with a translation balance in a
thermal range from helium temperature up to
650 K.

The elastic constants were determined from
velocity measurements of ultrasonic longitudinal
and transverse waves propagated along the ( 110)
direction of the sample. The pulse-echo overlap
method was used.!? The transducers were X-cut
and Y-cut quartz disks with a fundamental fre-
quency of either 10, 15, or 20 MHz. The trans-
ducers were bound to the sample with Nonaq stop-
cock grease. Temperatures were measured with
a platinum thermometer in the range 40-300 K
and with a carbon one below 40 K. Data were
taken from 300 K down to the transition tempera-
ture of 10 K and in some cases below T,. In par-
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ticular, in order to measure the c,, - ¢, elastic
constant, we had to reduce the sample thickness
because of the strong attenuation at low tempera-
tures close to T,. No thermal-expansion correc-
tions were necessary, the fractional velocity
changes being always much larger than the frac-
tional length changes.

III. RESULTS AND DISCUSSION

A. Magnetic properties: Experiment

The determination of the ordering temperature
was obtained in a constant field of 100 Oe: below
a Curie temperature of T, =10 K, we observed
ferromagnetic behavior (inset, Fig. 1). Above,
the reciprocal susceptibility follows a Curie-
Weiss law up to 650 K with a paramagnetic mo-
ment of 7.67u g close to the free-ion value
glJ@+1)¥2=1.5Tuy (Fig. 1). The slight dif-
ference between these two values may correspond
partly to the band Pauli susceptibility. Note that
the paramagnetic Curie temperature is ©, =0 K;
in all the RZn ferromagnets, ©, and T, are found
to be very close if not exactly equal.® Thedifference
for TmZn is the biggest one observed in the ser-
ies.

In the ordered range we have measured the
magnetization when the field was applied along
the three principal axes (100),(110),(111); (100)
is always the easy axis and (111) the hard one.

In Fig. 2, we show the three curves obtained at
T=1.3 K. The moment is strongly reduced by the
CEF effects, compared with the free-ion value

of Tug. This reduction is anisotropic and is due
to the fact that in cubic symmetry the crystal-
field Hamiltonian has important nondiagonal ma-

TABLE I. Physical constants for TmZn.

Lattice parameter at 300 K

Density at 300 K

Elastic constants at 300 K (in 10!! erg/cm?®)

Elastic Debye temperature
Curie temperature

Paramagnetic Curie temperature

Paramagnetic moment (free ion value 7.57pup)

CEF parameters

Magnetoelastic coupling constant

Two-ions coupling constant

a=3.516 A
p=8.95 g/cm®
cy1=9.96
c3=5.175
Cc44=5.215
®,=215K
T,=10 K
®,=0 K
Hp=7.6Tpp

A rty=-170420 K
Ag r®y=—103 K

£5=8.910.5 mK
g'=-9.620.8 mK
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trix elements. Besides, the field dependence

of the moment is very strong even along the easy
fourfold axis; the spontaneous magnetization is
weak and difficult to define exactly; it is about 3up
in null internal field and increases to 6u, at 125
kOe. Thus, studying the anisotropy of the ground-
state wave function as a function of field allows us
to determine the level scheme.

Another important feature of the magnetization
curves is the fact that they remain equal along
each direction at different low temperatures
(T<T,). For instance, the three curves at 4.2 K
can be superimposed to the three ones shown in
Fig. 2. This occurs in other RZn ferromagnets
and is associated with the existence of a spin-wave
energy gap A; in presence of CEF effects, the
spontaneous moment was found to follow an e~2/T
T3/ law, where A may be obtained from the level
scheme.!'® In TmZn, the equality of the magneti-
zation curves for T=1.3, 2, 3, and 4.2 K proves
that the moments are frozen in this temperature
range.

B. Magnetic properties: CEF determination

We attempt, in the following, to calculate the
field dependence of the magnetization in terms
of molecular-field theory and cubic crystalline
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FIG. 1. Reciprocal susceptibility for TmZn. Open
circles are experimental points, the line is the result of

our CEF calculation. In the inset we show the determin-
ation of the Curie temperature in a low field of 100 Oe.

field. The basic Hamiltonian is taken as

3(:=W<x'21+(1 - 1xl) _O—G> -gIJ'BJz (Hex +Hi )’
F4 F5
(1)

where O, and O are Stevens’s operator equiva-
lents, the expressions of whichare different along
the various crystallographic axes,'* W is the
scaling factor of the crystalline field, and x is

a measure of the ratio of fourth- and sixth-order
terms. H,; is the internal field, the exchange
field being taken as H,, =n(M,) p=ngug(J, )

with the molecular-field coefficient n=0/C. We
neglect here possible biquadratic terms in the
analysis of the magnetic properties. Our self-
consistent calculation starts with the diagonaliza-
tion of the whole Hamiltonian for any direction of
the moment in the plane defined by the easy axis
and the field direction, taking into account also
the J, component. We then calculate from the
level scheme, the partition function Z and the mag-
netization (M,) as different thermodynamic func-
tions of temperature using a Maxwell-Boltzmann
statistics. The best agreement between the ex-
perimental and calculated low-temperature mag-
netization curves along the three directions deter-
mines the couple (W, x) characteristic of the
scheme, the uncertainties in which are evaluated
by a least-squares-fitting procedure.

In the TmZn case, the best agreement is ob-
tained forw=2.2 K, and x=-0.80 as shown in
Fig. 2. Note, at lowfield, the smalldifference due
to the crystal defects. The calculations prove
that in a field of about 125 kOe the moment has
rotated to the field direction, and so there is

a large anisotropy of the moment. This an-
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FIG. 2. Magnetization curves in internal field at 1.3 K
(®:[001]; O:[110]; A:[111]). The full line represents the
fit along each direction with W =2.2 K and x =—0.80.
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isotropy is field dependent because Eq. (1) leads
to different energy levels for different axes in
the presence of a magnetic field.

The couple W=2.2 K and x =- 0.8 leads to CEF
parameter signs in agreement with those obtained
for the RZn series. Inside the rectangular area
defined in the (W, x) plane by W=2.2+£0.2 K and
x=-0.80+£0.05, any point gives a fit that is good
along one or two crystallographic axes and only
slightly imperfect along the other directions; the
fit remains reasonable despite the biquadratic
term neglected in Eq. (1). This may be justified
by the fact that its effect is stronger on the ener-
gy’s anisotropy than on the moment’s values which
arethe only ones considered here. (A rough proof of
this assumption may be obtained by use of the
Callen and Callen law.!?) In addition, we have not
taken into account the forced magnetostriction,
which may increase the moment and thus modify
a little the scaling factor W. In the inset of the
Fig. 3, we have given the level scheme corre-
sponding to W=2.0 K and x=-0.80.

From such a level spacing, one can calculate
the thermal variation of the reciprocal suscepti-
bility; the agreement with the experimental one
is excellent (Fig. 1). In particular, the calcula-
tion confirms that there does not exist any cur-
vature of x™! above 10 K due to Van Vleck coupling
between CEF levels.

According to our analysis, the CEF ground state
is a doublet I'; (see insert of Fig. 3), followed
by a triplet I'; at 27.5 K. This level scheme is
close to the one proposed for TmCd.! Since a
T'; level has no magnetic moment, TmZn has to
be considered an induced moment system. Note
that TmCd shows no magnetic order down to 40
mK, whereas TmZn has a T, =10 K.
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FIG. 3. Thermal dependence of the x ¢ function calcu-
lated for the paramagnetic level scheme defined by
W =2.0K and x=-0.8.

C. Lattice properties: Theory

The elastic constants as strain susceptibilities
probe various quadrupole matrix elements. The
measurement of their temperature dependence
allows the determination of magnetoelastic cou-
pling constants which are - zlated to the quad-
rupole interaction. In the 5e where the CEF
ground state has a non-Kr. .ers degeneracy, we
expect the corresponding symmetry elastic con-
stant to soften; for TmZn with a I'; ground state,
we expect the ¢ ,-c,, mode to soften. Such effects
were observed before in TmCd."

The corresponding magnetoelastic Hamiltonian
is given by!+15718;

0 _ 0

c 1/2 o
SEWE TSI

-g' (09 0%;. ()

Equation (2) has been written for the c¢,,-c,, mode,
09=3J% —J(J +1) denotes the quadrupole opera-
tor, and € =(1/V6 )(2¢,, - €, — €,,); the other
symmetry functions €,, O2 can be neglected in
the paramagnetic region. g, is the magnetoelastic
coupling constant. We have included in (2) a term
with a coupling constant g’, which originates from
quadrupole coupling other than strain-ion cou-
pling. 3C,. or similar expressions for other sym-
metry modes have been successfully used in the
past for explaining a great number of CEF effects
on elastic constants, mainly near cooperative
Jahn-Teller transitions.'®

3 me in (2) gives the following temperatue de-
pendence of the symmetry elastic constant!!"5718;

Cu=Cp _ 1-(gZ+8 )xs 3)

chi=Ch 1-g'%s
Here x, is the single-ion strain susceptibility.
Note that x; =-f,, the function used in Ref. 15.
¢, - ¢, is the background elastic constant.

According to Eq. (3) we expect a structural

(cubic-tetragonal) instability for ¢, —c,,=0 or
for (g2+g’)xs=1. The strain susceptibility x,
calculated for the CEF level scheme deduced
from the magnetic measurements (W=2.0 K,
x=-=0.80) is plotted in Fig. 3. One notes a di-
vergence of x, at low temperatures due to the
degenerate I'; ground state.

D. Lattice properties: Elastic-constant results

In Figs. 4—6 we show experimental results for
the temperature dependence of the elastic con-
stants. First we report, inFig. 4, the thermal
variation of ¢,, - ¢,,. It exhibits a very strong
softening, which reaches at 13 K, 40% of the
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room temperature value. A strongultrasonic atten-
uation accompanies the velocity change below 30 K.
We had to cut the sample from 6 mm down to

1.5 mm in order to observe echoes in the vicinity
of T,, but they completely vanished near 13 K.

In order to fit Eq. (3) to the experimental re-
sults of Fig. 4 and to e tract the coupling con-
stants g2 and g’, we ve first to choose a suit-
able background. Thi» we did from experimental
results for'® YZn: we have deduced the temper-
ature dependence of the (c,, —c,,), curve (Fig. 4)
by means of a simple affinity taking into account
the mass differerence between the two compounds
YZn and TmZn. Since the total level spacing for
the J =6 manifold is more than 400 K (see the
insert of Fig. 3), one still has a noticeable effect
at 300 K. The final fit of Eq. (3) to our experi-
mental results then consists of a two-parameter
fit for g2, g’. We obtain the following values:

g2=8.9 mK; g’'=-9.6 mK.

With these values one attains an almost perfect

fit to the experimental results as shown in Fig.

4, with a calculated curve meeting the background
slightly above 400 K. Only close to T, we note

a slight deviation which might be caused by higher-
order magnetoelastic terms becoming noticeable
or by short-range-order effects. g’ enters Eq.

(3) both in the numerator and denominator; there-
fore, the g’ value is less accurate than gZ. But
for various combinations of g2 and g’ we always
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FIG. 5. Thermal dependence of the elastic constant ¢y .
Full circles are experimental points and the full line
the theoretical fit. The dotted line represents the back-
ground variation.

got g2<|g’|. A least-squares-fitting procedure
gave small uncertainties of about 0.1 and 0.2 mK
on g2 and g’ for a fixed couple (W, x). But the
uncertainties on W and x led to an error bar Ag
less than 1 mK (Table I).

In Fig. 5, we show analogous results for ¢,
=3(c,, +¢,, +2¢,,), the longitudinal mode in a (110)
direction. One notes a much smaller softening
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FIG. 4. Elastic constant c¢y; —cy, as a function of tem-
perature. Full circles are experimental points, full line
is the theoretical fit. The dotted line represents the
background variation of ¢y —c,, without CEF effect.
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FIG. 6. Thermal variation of the elastic constant cy
and of the bulk modulus cg. The full line follows the tem-
perature variation of the ¢y mode in YZn. The calculated
dependence of cz from our experiments (full line) devi-
ates only slightly below 40 K from the corresponding
variation for YZn (broken line).
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in this case of about 1.3% at 10 K. Below T, the
echoes were more damped and this influence of
domain-wall stress effects on the elastic constants
is clearly visible, We made an analogous fit for
¢y as for ¢, —¢,,. The background ¢} was again
estimated from the corresponding results for
YZn.'* With ¢, =cp+5(c), = Cpp) + Caq and cp = 3(cy,
+2¢,,), €, showing no softening, we again get
an excellent fit to our experimental results, using
the same values for g2 and g’ as above. This
demonstrates the consistency of our analysis
(energy level scheme and coupling constants).
Figure 6 shows experimental results for the
shear mode c,, and the bulk modulus cg. For
the ¢,, mode we practically observe no CEF ef-
fects, indicating that the corresponding mag-
netoelastic coupling constant g, is quite small.'®
Therefore, we shall not discuss this mode any
further here, except to remark that below T,
one observes again domain-wall stress effects.
From the three experimentally determined c,,
—Cyy, C44, and ¢;, we have calculated the tem-
perature dependence of the bulk modulus cg. This
is shown as the full line in Fig. 6. We compare
this to ¢y from YZn,'® which corresponds to the
dotted line and which was matched to the full line
at 300 K. The agreement is good except at low
temperatures, where the large change in ¢,, - ¢,
can induce large errors. Note that in linear mag-
netoelastic theory, which was used in Eq. (2),
the strain susceptibility for ¢, is zero as dis-
cussed before.'®

IV. CONCLUSIONS

The successful analysis reported in Sec. IIID
produced a number of important physical param-
eters. From these, we can draw a number of
important conclusions, which we would like to
discuss now.

A. CEF parameters A4 and A¢

As for other RZn compounds,®® W and x lead to
corresponding parameters A (7*) and A (7°),
both negative:

A (r'y==170£20 K
A7) =—10£3 K.

These values are very different from the results
of a point-charge estimate which leads to a small
positive fourth-order term and a negligible sixth-
order one, even taking into account the density of
conduction electrons in the ligands obtained by
augmented-plane-wave (APW) calculations.'® With
several authors®’?! wefind that thefield onthe 4/
shell is due mainly to the conduction electrons of 5d
character (¢, type) inthe 4f ionitself. This oppo-

site-sign contribution to the anisotropic exchange
is found to be larger than the Coulomb contribution
to A, (") in the RZn series.” As in the case of
PrZn and NdZn,* its magnitude is stronger than
in RZn compounds with rare earths in the middle
of the series. This variation in the 4f electron
number may be due to the orthogonal wave func-
tions of the band and the 4/ shell. The sixth-order
term cannot presently be interpreted, its large
magnitude is of the same order as in* ErZn and
may be related to anisotropic exchange effects.

Note that the strong nondiagonal matrix ele-
ments in the cubic CEF Hamiltonian lead to an
important reduction of the moment. On the other
hand, in the RZn compounds as in isomorphous
ones the strong CEF parameters induce a level
spacing larger than the ordering temperature.
Thus, according to the level scheme, the an-
isotropies of the magnetization and of the energy
are strongly field dependent.

B. Magnetoelastic coupling constant g3

In the case of the rare-earth antimonides, the
magnetoelastic coupling constant g, followed
rather closely an effective point charge model de-
scription'® in a similar way as the CEF param-
eters A ,,A,. This is not the case here, where
we get g2=57 mK using a ligand charge of Z=122
which is far off from the experimentally determined
value of 8.9 mK, as quoted above. A similar ob-
servation can be made for TmCd.!' Note that
from the elastic constants one can only determine
the square of the coupling constant g,. A mea-
surement of the actual lattice distortion can how-
ever determine the sign of g,. From the quoted
value of gZ we can easily estimate the expected
c¢/a ratio for T=0. With

E= %Coezz; - gz(CaN)l/zes(\ F;I Ogl F;); (4)
one obtains through minimalization of the energy
& =g2(N/Co)l/2< I‘;l Ogl F;>

With the matrix element ( T;| O T';) =36, we get
|c/a-1]=0.6x10"2, This estimate could be
changed by inclusion of higher-order terms. An
effect of this magnitude can easily be observed
with x rays. Another method to determine mag-
nitude and sign of the magnetoelastic coupling
constant g, is by magnetostriction experiments

in the paramagnetic phase as demonstrated for?
TmCd; c¢/a —1==0.7%X1072% in agreement with its
absolute value and corresponding to a contraction
along the ¢ axis. Such experiments are underway
on TmZn.
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C. Effective quadrupole-quadrupole interaction

Equations (2) and (3) show that elastic constants
determine an effective ¢ =0 quadrupole interaction
constant G(g=0)=gZ+g’. For TmCd, G=1.68 mK
(Ref. 11) and for TmZ, G=-0.7 mK. Using Eq.
(3) this leads in the case of TmCd to a transition
temperature T,=2.3 K, not far from the observed
structural transition 7,=3.16 K. In the case of
TmZn, there is no structural transition, but
¢/c, attains the limiting value (gZ+g’)/g’ =0.073.
It is the near cancellation of g2 and g’ which pre-
vents a structural transition for TmZn in absence
of exchange interactions. It is of interest to spec-
ulate on the physical nature of the quadrupole
interaction described by the g’ coupling constant.
For CsCl as well as NaCl structures, the ¢=0
optical-phonon branch cannot couple.'” Apart
from self-energy contributions which for a Debye
solid amount to — 3g2,'8 there must be other mech-
anisms operative both for TmCd and TmZn. One
obvious possibility for good conductors such as
TmCd and TmZn is the aspherical Coulomb scatter-

ing. There is a rapidly growing literature giving
experimental and theoretical evidence for this
type of mechanism.'®'?* The accumulation of APW
calculations on nonmagnetic compounds with CsCl
structure proves the main importance of the ¢,
band, always close to the Fermi level®?5; its
exact position determines the CsCl phase sta-
bility or the existence of a martensitic trans-
formation.?® In RZn compounds, at the ordering
temperature, a f-d quadrupolar coupling may
split the e, band degeneracy and explain the spon-
taneous magnetostriction.® In RCd the marten-
sitic transformation of LaCd proves that the CsCl
phase stability is weaker than in RZn; this may
explain the existence of the transition which oc-
curs in TmCd according to the CEF level scheme
without magnetic ordering.

We go on with the study of the elastic constants
in the RZn series. A preliminary result is the
agreement on the order of magnitude of the te-
tragonal distortion between elastic-constant and
low-temperature x-ray experiments,?*” in par-
ticular for DyZn and ErZn.
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