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Quantum corrections to domain walls in a model (one-dimensional) ferroelectric*
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A one-dimensional model Hamiltonian is considered, representative, for example, of a displacive unstable
lattice ferroelectric. Krumhansl and SchriefFer have shown previously that domain-wall displacement patterns
arise in a classical analysis, as a consequence of inherent nonlinearity. Using a simple variational method, a
quantum description of these walls {both stationary and moving) is given, and it is shown that their

appearance as elementary excitations in the system survives the passage from classical to quantum
mechanics.

I. INTRODUCTION

The properties of highly anharmonic physical
systems have recently been subject to considerable
renewed theoretical interest. In particular, the
problem of a linear chain of atoms, each in an
anharmonic "on- site" potential and interacting
through nearest-neighbor harmonic forces, has
been treated by Krumhansl and Schrieffer' (here-
after KS) as a simplified model unstable lattice
ferroelectric. The Hamiltonian describing this
system is

K= Q ' + 2An', + —,'Bu', +C(u, „.—u, )',
m

where i denotes position along the chain, and gg,.

is the displacement of particle i from its lattice
site. This Hamiltonian is the discretized version
of the one-dimensional Q field theory of current
interest, ' and may be considered generally as a
Ginzburg-I andau expansion for a one-component
order- parameter situation.

KS and others have called attention to character-
istically nonlinear solutions of the classical equa-
tions of motion for this system. ' The solutions
they discussed are moving "domain walls. " They
were able to work out the statistical mechanics of
this model using a classical functional- integral
method, and found the results to be in substantial
agreement with a phenomenological derivation
based on a picture of independent phonons and do-
main-wall (solita. ry wave') gases. The domain
walls give rise to equally distinctive physical
characteristics, including the phenomenon of a
"central peak" in the one-dimensional model's
structure factor, as has been observed in computer
simulations. ' The extent to which these ideas apply
in higher dimensions is as yet uncertain, however
there remains the possibility that the central peaks
observed in real ferroelectrics' may be attributed
(a,t least in some cases) to the appearance and
dynamics of microdomain patterns.

It is„ then, of interest to investigate the Hamil-

tonian (1) in a quantum-mechanical context. Since
the low-temperature limit is essential in the KS
procedure, it is important to establish that the do-
main-mall solutions to the classical equations of
motion have an analog within the quantum eigen-
states of Eq. (1). In previous work we considered
a variational description of the static walls in the
quantum version of Eq. (1) corresponding to the
order-disorder limit. ' For that case, analogy with

a two-state spin system was possible, but this
mapping is no longer available in the displacive
limit C» ~A ~, when thick walls are expected. ' In
the present work, we will be concerned primarily
with the displacive limit. We have considered
Eq. (1) as a nonrelativistic quantum Hamiltonian
and obtained an approximation for the spectrum
and eigenstates corresponding to a quantum gener-
alization of the moping classical domain walls.

In Sec. II we introduce a simple variational meth-
od to construct a static domain wall. States de-
scribing a moving wall are constructed in Sec. III
and the expectation value of K in these states is
interpreted as an approximation to the moving-wall
eigenvalues. The moving quantum wall is com-
pared with its classical analog in Sec. IV, and Sec.V
contains a discussion and summary.

II. STATIC QUANTUM DOMAIN %ALL

For A &0 the on-site part of K is a double-well
potential, and the ground state of the system is
assumed to be doubly degenerate. We construct a
Hartree-type approximate eigenstate by

p, [o.', (n,. —It,.)],

where Q', and R,. are variational parameters and
we have introduced normalized Gaussians as trial
wave functions. The expectation value of 3C is found
after some calculation to be
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(4iKi4) =E(o„R,)=E. s(R)+E,s(n, R)+E (o),
(8)

where

E,(R) =g f ,'AR',-+ ,'B.R',-+C(R. ..—R,)'], (4)
0.2 I.O

(b)

CfC, )

E s(o. , R) = Q ', BR,—ni.
E (a}= P [(ff'/4 m)o', +-,'(A+2C)o, '+ ,',Bei—,'].

I
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In general we can now proceed to minimize
(q'~K~4) with respect to the variational parameters
(0.„R,.). However, for extended wall patterns,
continuumization is a, good approximation and
Euler-Lagrange minimization is possible (cf. Refs.
1 and 6). In this way we find the following coupled
equations 1'or R(x) and u(x)(Q. - f dx, with unit
lattice spacing):

~=-,'P'+P'(2C/IA I+-.'r'-1).
Here we have introduced the notation p= (&Re) ',
r=R/Ro, Re=(IAI/B)'~', and

g2 @2 ] @2

A' 2m 4 2m',' I V, i

'

I
}'o

l

=- ,'A'/8 is-the well depth and M, are the
equilbrium displacements in the classical KS cal-
culation. The displacive limit emphasized by KS
is C» ~A

~

and in this ease our continuumization
1s valid.

The quantum correction factor s in (9) is char-
acteristic of the Hamiltonian (1) and has the ex-
pected form of a de Boer factor (squared) —pre-
cisely this factor occurred in our analysis of the
order-disorder limit. ' If z =0 then the classical
KS result is recovered: from (8), P(x) =0, cor-
responding to pure 0-function trial wave functions,
and then {7}becomes the nonlinear equation deduced
by KS to describe their classical, stationary do-
Dlaln wall:

r„(x)= taiih[{ ~A ~/C)' "-,'x] .
For finite & an analagous domain wall is possible
with some modified characteristics. The ground
state is parametrized by r„, p„determined as
solutions of

p'„- -', (C/iA i+-.')p'+ ', e =0, -
~2 $ p2

Using the solutions of (11) (see Fig. 1) as initia, l

FIG. 1. (a) Asymptotic variance (P„) of Gaussian
single-particle wave function as a function of quantum
parameter e. and for C/IAI = 5.0 (dashed line) and 10.0
(solid line). (b) Asymptotic position of the wave-function
center r„ I,:—(1 —2p„)1~ ] and wall width I,$//$~&ccr„~; see
Eq. (15)]. Same parameters as (a).

conditions we have solved (7) and (8) numerically.
The domain patterns are compared in Fig. 2 for
e =0 and O.l and C/~A

~

=10. However, the basic
features can be easily deduced: from (8) we see
P(x)'=s[2C/~A

~

—1+-r(x}'J ' for small e, so that
P(x) increases (the wave functions spread out) as

~

r(x)
~

decreases, i.e., as the wall center is ap-
proached. It then follows from a simple scaling
argument in Eq. (7) that the local wall gradient
decreases on approaching the wall center, and the
wall width increases with increasing e [see Fig.
1(b)]: r(x}= a' t'(x)tanh[x/$(x)], a(x) = 1 —eP (x),

—I.O
p(x}

D.O 0.0 (o/, }

O. t I l I & I

-2.0 O.O 2.0

FIG. 2. Variations of the center [r(x)] and variance
[P(x)] of the Gaussian trial wave function for a domain
wall, in the classical limit (dashed lines) and with e = 0.1
(solid lines). The chain coordinate is x =x(IAI/2C)~~i,
and C/IA( = 10.0 on both cases. Note the coupling between
r(x) and P(x) in the quantum case (see Sec. II).
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$'(x) =4(C/lA )a '(x). These effects are small for
~«1 and C» A l.

III. MOVING QUANTUM DOMAIN WALLS

We proceed to calculate the energy E(q) of a
moving wall according to

(16)

The classical domain walls move according to a
"relativistic" prescription": the wall width d is
Lorentz contracted as d(v) =d(0)(l —v'/vo)'~' and
the harmonic sound speed vo=—(2C/m)'~' acts as a.

limiting wall speed (playing the role of the speed
of light). Similarly, the classical wall energy is
given in the continuum limit by'

E„(v)=E„(0)(1—v'/v', ) '",
E„(0)= —", (c/l~ l)'&'l y, f

.
(12)

4 =X-'~'~ e "'4
e g ) (13)

We will investigate the basic features of a quan-
tum analog of this behavior by studying

where 4, is defined in terms of the variational
solutions deduced in Sec. II. A rigorous variational
approximation would be to minimize E(q) in (16)
and deduce jR,.(q)j—the resultant wall shape would
then be a function of q to be compared with the
classical I orentz contraction. We leave this full
variation for future work and content ourselves
here with the partial scheme above, which will be
reasonable for small q. Thus the domain-wall
shape remains fixed by (15) in the continuum ap-
proximation but we will find a q-dependent energy
to be compared with the classical result (12).

We note in passing that the Hamiltonian (1) is
translationally invariant, i.e. , under the trans-
formation u, -u, , , (The labels l, not the dynamic
variables g&„are translated. ) Thus we can expect
the eigenstates of (1) to transform as

e, = II y,.[n,.(u,. -R, .)J. +,[u, .J =e'"+„[u,J. (17)

4', describes a wall centered on site a. In the
following we will take ~,. as the constant m„given
by (11), and allow only R to vary from site to site.
This assumption is made for computational con-
venience and can be improved, but from Sec. II
the variations in & are small for small &. In this
approximation the continuum' wall solution is
found from (7) to be

r(x) =~„tanh(x/(), (=(2/r„)(C/lA l)'". (15)

(y
l

@ ) 6(q qI) Q e-iqa - u Iy(a)/4 (18)

and

Although the approximate eigenstate constructed
in Sec. II does not; possess this property, +, of
Eq. (13) does.

Calculation of the various matrix elements in

(16) is laborious but straightforward. The normal-
ization is found to be

(q; l36l~) = p e '" -'~" "((@'~2/4~)[N-2 ~2 I, (a)J+-,'X[NR'„- —,'I, (o)+2Na„2J

+ ,'B(NR„- —,',I-(a)+3&„'[NR'„——;I,(a)J+ —,'No.'-'J+C[No '+I,(o)J), (19)

I,(a) = Q (R,. —R, „)',
1 R +R 2

normal-ordered form of (19), corresponding to the
excess energy localized in a single wall. Thus

E( ) Q e-4a-a Ey(a) j4E(o) Q e-iqu- u Ig&a) jc

I, =—.g [R'„- —,'(R,. + R, ,.)'],
I~ =4 (R,. +R; „—R, ~

—R, ~, ,)
1

The sums in (20) have been defined in convergent
form, so that the only divergent terms in (19) are
proportional to N and are a independent after
normalizing according to (18). These terms corre-
spond to the ground-state energy in the absence of
a wall. Henceforth we will take E(q) to be the

with'o

F(a) =-(h'o '„/8m)I, (a)+-,'lA lI, (a) ,', BI,(o)-—
——,', B ~„' I,(a)+ CI,(a) . (22)

We will examine the quantum corrections con-
tained in (21) and (22) in Sec. IV, but we can note
immediately that I, (a) and E(a) are even in a, so
that dE(q)/dq-0, as q-0. Thus, as for the clas-
sical case, E(q) has no term linear in q. It is
also instructive to represent E(q) in terms of aver-
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ages with respect to the distribution function de-
fined by

z(o) . =„g [-.'Ix IR',(1-r', ) —,'R—R,'(I —r', )

(0)= g e a &y(a) /4 0(a g"o2 I (a)/4
(23)

+CRO(r, —r, , ) ]

After a little algebra we find

z(q}= {z(a})—q'{(a'- {a'))[z(a)—{z(a})])+o(q') .
(24)

We will see in Sec. IV that, for small a, F(a) =F(0)
+I',a~, with I', &O. Hence, since small a domin-
ates the average (23), the coefficient in q

' in Eq.
(24) is positive, as for the classical result (12).

IV. QUANTUM CORRECTIONS AND THE CLASSICAL LIMIT

For comparative and numerical convenience we
rewrite (22) as

E(a)/
I V, I

= -e p„'R,' I,(a}+-,'(1 ——,
' p'„)R I (a)

——,', R I,(a)+4(c/I~ l)R-,'I, (a) .

where the last line follows from continuumizing
in i [see (29)]. However, the classical limit of a
moving wall is more subtle, because it is evident
from (30) that the exponential terms are dominant
and in the classical limit, n —~, no q-dependence
survives. This problem would also occur in the
classical limit of any %annier-like current repre-
sentation: the wave functions are completely local.-
ized and the overlap between two distinct sites is
therefore identically zero. The malady is re-
medied by examining (13) after continuumiztng in
a, as follows.

Equations (27) and (21) imply Z(q) =Zo+Z»
where Z, is given by the first term of Eg. (30) and

z, =-lv, l~p-„'R I',
o dQ cosgQg & i g

~ da cosqae " '~ "/'

%e recall from Sec. II that the classical limit
corresponds to e -0 and P„-o, but from (ll) we
deduce that &P~ approaches a finite value:

~p-' '--'2C/Ixl+-, '. (2

The I sums (20) are readily evaluated. In particu-
lar, in the continuum approximation, using (15),
we find that for small a (i.e., a few lattice spac-
ings)

I,(a) = ', r'„R',a'[-', -I, (a) = sr'„R', [,
I3(a) 3r Ro),—I~(a) =I,(1) =~ r„RO) ',

where $ is defined in Eg. (15). Inserting (27) into
(25) yields

with

z(0)/I v, I
=6(c/I& I)'"~.(I —-'~'-- ' p'-}

with I', =I,(a)a of(a). The integrals in Eg. (32)
can be evaluated in terms of Hermite polynom-
ials"—the troublesome exponentials cancel ex-
actly and the result is

z,il v, I
=-2e p-„'+4R', (~/I', )q'.

In view of Eq. (26), the first term of Eq. (33) van-
ishes in the classical limit and we are left with

Z, -h q /2mI', .
%e now identify velocity with

, dz(q)'=I'
d

where z, --,'mI,' 'v--,'m R'( XII/O)'/'v'. It is now
straightforward to check that the classical result
(12}is exa,ctly recovered [to the order allowed by
(27)]: Z(v) =Z„(0)(1+-v'/v', ). If the classical
limit is not taken in this continuum result we find

z(v)/I v. l
=4(c/I& I}'"r.(-', —2p'. )

If a is treated as a discrete variable we see
immediately from Eq. (21) that only the low-a
terms contribute significantly when a „»1 (follow-
ing from «&1). If only the a=0 and a=1 terms in

(21}are retained we find

Z(q) =Z(0) —2[Z(0)- Z(I)]e

+q'[Z(0) -Z(I }]."-""'"+o(q') . (30}
with

—2p'„(2c/I/t I+-,'- —,
' p'„)

+-.'v'[-', (mR', /I v, I)(l~ I/c)'"& „]

-=[«0)'Iv. l](1 l "/. )

In the classical. limit the statignmy wall energy
agrees with that found elsewhere': Eqs. (30), (25),
and (20) give

v,"= v;[z(o)/z. ,(o)]r -„'.

The result (36) should be compared with the dis-
crete-a expression (30).
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TABLE I. Quantum renormalization of the wall rest
mass and kinetic energy for various strengths of quan-
tum parameter (&) and intersite coupling (C).

&(0)/&(0). I
'

Vp /Vp

0.01
0.01
0 ' 1

10
100
10

0.89
0.87
0.68

1.03
1 ~ 07
1.12

Evaluated in the continuum-a approximation (see
Sec. IV).

V. CONCLUSION

In the preceding sections we have seen how the
quantum analog of the classical domain-wall solu-
tion for the Q4 Hamiltonian can be generated with-
in a var iational approximation. Both the stationary
and moving walls were found and it was shown how
the classical limit could be recovered —requiring
some care for the dynamic case (Sec. IV).

However our major theoretical conclusion from
this work is that the concept of a solitary wave as
an elementary excitation (KS) appears to survive
the passage from classical to quantum mechanics.

The quantum corrections are compared numeric-
ally in Table I. In view of the very approximate
nature of the variational calculation the quantita, —

tive results should probably not be taken too
seriously. However, the qualitative trends indic-
ate that an increased quantum parameter E leads
to lower potential (rest) wall energy and wall
effective mass' (kinetic energy). Furthermore,
these quantum effects are greater in more dis-
placive cases (i.e. , larger values of C/~A ~). Note
that (for the parameter values in Table I) most of
the wall energy renormalization can be attributed
to changing the rest wall energy, so that the ap-
proximations introduced in Sec. III are relatively
unimportant.

In so far as these walls correspond to simple
model ferroelectric domain walls, it should be
appreciated that the wall motion deduced here cor-
responds to the ideal ballistic limit. It omits any
interactions with other excitations (cf. Ref. 8) or
pinning effects of impurities, dislocations, grain
boundaries, surfaces, etc. , which are undoubtedly
important in real materials. " Furthermore, the
quantum effect discussed here is only one of sev-
eral aspects. Thus, correlation functions might be
limited in the true ground state; indeed quantum
critical fluctuations may completely suppress an
exact phase transition. " We defer consideration of
these questions to future work. Again, there has
been much discussion, particularly in the field
theory literature, ' of the renormalization of the
classical domain energy by dressing with quantized
small (linear) perturbations —corresponding to
quantization of the particlelike solutions. In fact
for the quantum sine-Gordon problem" even the
(soliton) bound-state solutions ("breathers") are
now known exactly, both for a discrete lattice"
and the continuum limit. "

In the variational calculations reported here
very simple Gaussian trial wave functions were
chosen to demonstrate quantum corrections quali-
tatively. The main numerical conclusions (Sec. IV)
were that the quantum effects lower the domain
wall rest mass and kinetic energy (for a given
velocity), especially for thick walls. For the thick
walls and relatively large quantum factors con-
sidered in Table I, the quantum corrections to the
wall energy grea, tly exceed the barrier to wall mo-
tion from the lattice discreteness. ""For sufficient-
ly sma, ll & and C/~A

~

these energies could be com-
parable, and a more careful minimization [e.g. , in
Egs. (8) and (16)] will be necessa, ry.
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