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The temperature dependence of the linewidth of the antiferromagnetic resonance is shown to arise from

multimagnon processes. At low temperatures a four-magnon process usually dominates. As the temperature

increases towards the Weel temperature T„, higher-order processes such as six-magnon, etc. , become

progressively more important. An analytic expression is derived for the n-magnon relaxation rate in the high-

temperature limit. The theoretically predicted temperature and frequency dependence of the linewidth agrees

quantitatively with data on MnF„FeF„GdA10, , Rb, MnF4, and K,MnF4 up to 0.8T„.

I. INTRODUCTION

The manner in which a magnetic system relaxes
to equilibrium governs its device potential and also
provides a test of both relevant microscopic inter-
actions and theoretical methods. In many cases
the device potential stimulates the need for micros-
copic under standing. For example, the tremendous
potential in ferrite microwave devices led to a
thorough investigation of the ferromagnetic reso-
nance relaxation mechanism. Antiferromagnets
have not had the benefit of such a driving technol-
ogy. They do, however, share the same sublattice
features as canted antiferromagnets such as the
orthoferrites, or ferrimagnets, such as the gar-
nets, near their compensation temyeratures. Thus,
antiferromagnets serve as prototypes for studying
processes in multiple-sublattice systems in which
the net magnetization is nearly zero.

The quantum theory of magnetic systems is com-
plicated by the cyclic commutation relations of the
components of the spin operators. Well below the
magnetic order ing temperature it is possible to
work in a boson representation which simplifies
matrix elements and forms the basis for spin-
wave theory. The only condition on the boson rep-
resentation is that it satisfy the spin commutation
relations. One such representation is that of Hol-
stein and Primakoff' (HP)

8,' =v 28 at(l -ata/28)'
S' v 28 (l ats/28)~l2

$/ —S gag

The boson operators a~ and a are associated with
spin-wave, or magnon, creation and annihilation
operators, respectively. The components of the
spin S' defined by this transformation have the
desired commutation relations. However, S' can-

not be identified with the real spin 8, for the
eigenvalues of S,', for example, have no lower
bound whereas those of S, do. Nevertheless, the
matrix elements of an arbitrary function G(8) of
the components of the real spin S between the
orthonormal eigenvectors of S„~n), may be re-
lated' to a matrix element of the HP spin X' in the
larger Hilbert space spanned by the eigenvectors
of a~a, 4„, according to

(~l G(8)I n') =(C „,G(PS'P)C „,),

where P is the projection operator,

(2)

l„, n «2$

. 0) g &2S.

We notice that the operators S+'and S" are not
Hermitian in the Dyson-Maleev representation.
As a result, one must introduce a metric operator
E in order to define a scalar product. This has
the property that

This metric operator also enters the relationship
between the matrix elements of 3 and those of 5',

The spirit of spin-wave theory ls to assume one
is in a regime where n«2S so that the projection
operator may be neglected.

Maleev' suggested an alternative representation
based on Dyson's work, 4

8,"=v2Sa~,

S" =M28 [g —(l/2S) ataa],
S"=S-a a.
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The presence of the metric operator I introduces
the same nonlinearity that appears directly in the
HP transformation. " This may easily be seen by
taking G(g) =S in Eq. (7) and using Eq. (5). We
shall see that these nonlinearities are responsible
for the relaxation in antiferromagnets.

In principle there may be numerous boson rep-
resentations each with its own metric. In this
paper we shall use the HP approach.

The work presented here was motivated by the
recent success in unraveling the intrinsic thermal
contribution to the experimental antiferromagnetic-
resonance (AFMH) linewidth. Due to the large
AFMH frequency gap simple antiferromagnets
such as MnF2 and FeF~ were initially studied with
millimeter wavelength or far-infrared techniques.
Despite the difficulties of working at these fre-
quencies magnetic resonance studies of MnF„'
and FeF„'were first carried out over fifteen
years ago. Since then a number of theoretical
attempts have been made to explain the observed
linewidths. The mechanisms investigated include
two-magnon pit scattering, ' magnon-phonon scat-
tering, '0 and four-magnon scattering. "" Although
some of these mechanisms gave a temperature
dependence similar to that observed, the actual
linewidths were orders of magnitude too small.

The key to this discrepancy was discovered by
Kotthaus and Jaccarino" (KJ). By measuring the
linewidth of MnF, in large magnetic fields and
relatively low frequencies they found much smaller
linewidths than those found at low fields and high
frequencies. This indicated that. the large line-
widths observed in earlier experiments were large-
ly due to radiation damping. Not only does radia-
tion broadening contribute to the temperature-in-
dependent linewidth ~(0), but it also contributes
a temperature dependence through the sublattice
magnetization M(T).

Once this contribution to the MnF, linewidth is
eliminated, "' one finds that the temperature-
independent contribution is well explained by the
two-magnon pit scattering calculated by Loudon
and Pincus. Similarly, the intrinsic temperature
dependent contribution is well described up to a
temperature of the order of T„/4 by four-magnon
scattering. " Above this temperature the linewidth
increases more rapidly with temperature than four-
magnon scattering predicts. The purpose of this
payer is to show that this stronger temperature
dependence may be described by higher-order
magnon processes. " Such processes appear na-
turally in the Holstein-Primakoff representation
through the expansion of the square root, and, as

we shall show, are ubiquitous in antiferromagnets.
In Sec. II we derive the general expression for

the relaxation of the AFMB due to its confluence
with —,

' g —I thermal magnons to give —,
'

n output
magnons. The special case of n =4 is evaluated
analytically within certain approximations, using
the numerically evaluated results of White, Freed-
man, and Woolsey2' (WFW) as a guide to the vali-
dity of these approximations. Using these approxi-
mations the temperature dependenc es of the higher-
order processes are identified. In Sec. III these
results are compared with data on several repre-
sentative antiferromagnets, for which the intrinsic
thermal contribution to ~ has been extracted.
These include MnF2, FeF~, Gdh103, and the two-
dimensional antiferromagnets K2MnF~ and Rb,MnF~.

II. RELAXATION THEORY

A. Multimagnon Hamiltonian

We shall take for the Hamiltonian of our system
that of a uniaxial two-sublattice antiferromagnet
consisting of Zeeman, exchange, and anisotropy
terms. The applied field is assumed to be parallel
to the symmetry axis and smaller than the spin-
flop critical field, so that

X=gpsH, QS;. +gS; ++2J,, S, ~ S,

$Z 2+ $Z 2

j
where ~ and j refer to up and down spin sublattices,
g is the electron gyromagnetic ratio, II, is the
applied magnetic field, J„. is the exchange con-
stant, and K is the phenomenological anisotropy
constant. The anisotropy energy has different
origins in different materials. When these differ-
ences are taken into account the form of the aniso-
tropy energy in Eg. (8) may vary. One result of
this is to make the anisotropy contribution to the
syin-wave energy wave-vector dependent. Al-
though this may affect certain thermodynamic
properties of the system it will not affect the re-
sults of this paper where the exchange interaction
is always the dominant interaction. In the crys-
tals we shall consider the exchange interaction is
strongest between spins on opposite sublattices
(which are second nearest neighbors in MnF~ and

FeF2). Therefore, for the sake of simplicity we
write the exchange term as

2 J2 Q f; S, =J2 Q (2S;S,*. + S+( S~ +S, S j+) .

A HP boson representation is introduced for both
sublattices,
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S+, =v2S f, a, , S&+=~Sb,~f&, of the Hamiltonian then becomes

S, =W2Sa(tf„

S,. =S -a, a;,z—

where

S, =&2&f, b„
S~ =-S+Q~ Q, ,

where

= P (@(vs» o» o»+@(v8»!»!») ~ (22)

f;=(1—ata(/2S)' f =(1 —btb&/2S)'
yH0, (dgk = (a)k+yH (23)

As long as one is not very close to the Neel tem-
perature, the square roots in Eq. (11) can be ex-
panded in a, power series which takes the form

(2 —3)!!(,~,.
. =1— 2"n!

n=1

(12)

where (2n —3)!!= 1x3x5x ~ ~ ~ x(2(( —3).
In the usual manner one defines spatial Fourier

transforms of the boson operators

-1/2 ~ + eik rz b ~-1/2 ~ g eik r&

k k

(13)

where Ãis the number of spins per sublattice in

the crystal. In terms of these operators the Ham-
iltonian, Eq. (8), takes the Iorm

X =E +X("+X("+X("+"~
0 7 (14)

where each term contains an even number of boson
operators including various intra- and intersub-
lattice couplings. In order to diagonalize the quad-
ratic part of the Hamiltonian one introduces new

boson operators by a Bogoliubov transformation '

The higher-order terms of the Hamiltonian, Eq.
(14), must also be transformed according to Eq.
(15). When this is done we obtain terms which
contain all types of combinations of ak, o.„-, pk,
and pk operators. The paper of Harris, Kumar,
Halperin, and Hohenberg" (HKHH) contains the de-
tailed form of X"'. As shown by those authors and

in WFW, the only four-magnon processes which
contribute to the relaxation of antiferromagnetic
magnons are those described by terms of the type
+kl+k2+k3+k4 +kl. ~k2+k3~k4 an ~kl ~k2~k3~k4
diagrams for these processes that can relax a
k =0 o( mode are shown in Fig. 1(a). Using energy-
momentum conservation arguments one can extend
the results of four-magnon processes to general
n-magnon (n even) processes and conclude that
the major contributions to the decay rate involve
the absorption and emission of —,'n magnons. These
may all involve the same mode (intramode scat-
tering) or may involve intermode scattering. The
n-magnon term is illustrated in Fig. 1(b). The
n-magnon Hamiltonian for intramode scattering
can be expressed in the following form:

a-=u n —v 13~
k k k k -k& b~ ——v-n +u-P~- (15)

(n)
~ ~ ~ ~ ~ ~ Q~

k1 k2 kg kl k2 k~/g k„/24. 1 kg

(16)

In Eq. (15) n» and P» are the new normal mode
boson operators associated with eigenvalues one
of which decreases with increasing applied field
and the other of which increases with the field.

The transformation coefficients are given by

u» = [(A + (d» )/2(d» ] ', v» = (u~» —1)'

kl k2 ~ "k„

xg(k +k + k,, — . . -k ).1 2 n/2 fl

B. Relaxation rate

(24)

with

2 =y(H~+H~),

(d»=y[(2H +H„)H„+H'(1-y»)]'~'

=y [H /H2 (1 y2)](/2

y eik ~ &i

2.

(17)

(18)

The expression for the relaxation rate of a given
k, mode can be derived in a manner similar to that
employed for three-magnon processes based on the
Fermi golden rule. 24 This gives the same result
that one obtains by calculating the imaginary part
of the magnon self-energy to lowest order. De-
noting by n, the occupation number of the k, mode,
the relaxation rate q, is defined by

Hs ——2'

2�1~~/yh,

H„= (2S —1)K/yh, (20) q, (n, -n-, ), (25)

yk = cos2k. a cos 2k' a cos 2k, c . (21)

Note that y0=1 while yk =0. The quadratic part

where z2 is the number of intersublattice nearest
neighbors. For a body-centered tetragonal lattice
yk becomes

where n, represents the thermal equilibrium oc-
cupancy. g, is the total relaxation rate obtained
by summing over the relaxation rates q," associ-
ated with the different n-magnon channels. With
Eqs. (24) and (25), and the use of the golden rule,
one can show that
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k3

k2 k3 ~ k„

I
C(") I' n, n, n„„(n„~~,+ 1) ~ ~ ~

k4

where

P =1/ksT,

x. (n„+1)5((u)n(k), (26)

n/2+1

(
8h~h 1)-x

()((d) =6((u +(u, + +(o„g, —(d„g„,— —(d„),

n(k) =n(k~+kh+ ~ ~ ~ +k„yh —k„(h~, — —k„) .
Using energy conservation and the result (n, + 1)/

n, = e " ~ we can write an alternative expression
for Eq. (26) which we shall prefer to use in this
paper,

(h)
(

8ha&2r
QI N2

(b)

n/2

n/2+2

k2k3 '

8h(+8++3+ ~ ~ ~ + Wn/h)e

x n, n, n„5((o)n(k) (27)

FIG. 1. Various multimagnon processes: (a) four-
magnon process; (b) n-magnon process, as the term is
used in this paper; (c) six-magnon process arising from
the four-magnon process carried to second order in

perturbation theory.

C. Four-magnon relaxation

For n =4 Eq. (27) was evaluated numerically by
WFW for MnF2. The sums over the six coordinates
associated with the two independent wave vectors
were evaluated by dividing the range from k =0 to
the Brillouin zone boundary (kz8) into 50 points
and weighting the contribution of each point to the
sum appropriately. This process involved 50' op-
erations, which took about 90 min to run on a fast
computer. Similar numerical computations of
high-order processes would become prohibitively
long. The analytic evaluation of Eq. (27) for large
values of n, on the other hand, becomes very dif-
ficult, and has to be done under suitable approxi-
mations. A similar problem was faced by Sparks
and Sham" in dealing with multiphonon absorption.
However, in their case they had one virtual pho-
non of frequency co decaying into n phonons. These
n phonons were all assumed to have the same fre-
quency u, the frequency at which the density of
states is largest. In our case the situation is more
complicated because we have additional input par-
ticles whose frequencies depend upon the temper-
ature, as does the density of states. Our first
step, therefore, is to develop approximations for
the four-magnon process which lead to reasonably
simple calculations. The results are tested

against the accurate results of WFW and the ex-
perimental data for MnF, . Once the various ap-
proximations are understood they may then be
applied to higher-order processes. The approxi-
mations developed are such that one can obtain
completely analytical results in some cases, such
as for MnF, in the high-temperature regime. In

other cases the approximations yield expressions
which can be evaluated by reasonable numerical
integrations in k space. This section will be de-
voted to the presentation of the model developed
for the calculation of four-magnon scattering re-
laxation rate.

Four-magnon terms arise from both the exchange
and the anisotropy energies in Eq. (8). The pro-
cesses that can relax a k = 0 n mode can be of the
"intramode" type, in which only n modes are in-
volved, or of the "intermode" type. The Ham-
iltonian for the former is

where

(28)

X "= C": n n n- n n, (k, +k, —kh —k, ),
kz k2 k3 k4 kz k2 k3 k4

kz k

k3, k4
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C - - =(J z /2N) (u- v- v v- y- +u- u- u- v- y- +u- v- u- u- y- +v- v- u- v- y-
kz k2 k3k4 2 2 kz k2 k3 k4 kz kz k2 k3 k4 k4 kz k2 k3 k4 k2 kz k2 k3 k4 k3

—4u- v u- v- y- - ) —(K/N) (u- u- u- u- + v- v- v- v- ) .k z k2 k3 k4 k2-k4 kj k2 k3 k4 kz k2 k3 k4
(29)

The Hamiltonian for the absorption of an n- and a p-mode magnon and emission of new a and p magnons is

-8 - o- P o P- n(k +k —k —k )cx ~ kzk2k3k4 kz k2 k3 k4 z 2 3 4

kz k2

k3, k4

where
a-8
kz k2 k3 k4

=(J z /N) (u- u- u- v- y- +u- v- v- v- y- +u- u- v- u- y- + v- u- v- v- y- + v- v- v; u- y-
2 2 kz k2 k3 k4 k2 kz k2 k3 k4 k3 kz k2 k3 k4 kz kz k2 k3 k4 k4 kz k2 k3 k4 k2

(30)

+vk uk uk uk yk +vk vk uk vk yk +uk vk uk uk yk 2uk, uk uk uk yk k
—2uk vk vk uk yk k

Z 2 3 4 4

—2v- u- u- v- y- - —2v- v- v- v- y- - ) —4(K/N) (u- v- u- v- + v- u- v- u- ) .
kz k2 k3 k4 k2+kz kz k2 k3 k4 k3 kz kz k2 k3 k4 kz k2 k3 k4 (31)

The following approximations were employed in

eValuating g&,4'.

(a) The sums in Eq. (27) were converted into

integrals in k space according to the usual re-
lation

k' dk d(cose ) dP.NQ (32)

(b) The magnon dispersion relation was approxi-
mated by cu, =(d, +vk, where v expresses an aver-
age magnon velocity. As will be discussed later
in the applications of the theory, magnon renor-
malization is introduced in su~ through v(T). The
use of the linear dispersion relation is justified
for MnF, by the fact that in the temperature range
where magnon-magnon interactions dominate the

relaxation, which is approximately 0.1T~ &T

&0.&T„, magnons from the whole Brillouin zone
contribute to the decay of the k =0 mode. This is
illustrated by Fig. 2, which shows plots of the
weighted n mode population for MnF, in the pres-
ence of a magnetic field close to the spin-flop
value for several temperatures, using the exact
dispersion relation. Since a linear function is the

best simple relation that describes the magnon

frequencies over the whole zone, it was chosen
to represent &„. It should be pointed out, how-

ever, that the use of a linear dispersion relation
is not essential for a simple numerical evaluation
of the four-magnon relaxation rate. In fact we
have also done calculations with the nearly exact
spherical model &u, =y(H,'+Hs2 sin2k)'~2+ yHO, where
k =-,'ka, a being an effective lattice parameter to
be adjusted for different cases. However, as will
be seen below, the linear approximation greatly
simplifies the energy-momentum conservation
rules in such a manner that the calculations can

= [(k, —k, )gvk, k, ]5(cos9» —1),

k, ~k, (33)

where 8» is the angle between k2 and k, and the

0.8
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FIG. 2. Weighted magnon population curves as a func-
tion of wave vector for MnF2 in the presence of an. ap-
plied field equal to that employed in the linewidth mea-
surements discussed in this paper (Ref. 18).

be extended to higher-order processes.
The linear approximation to the dispersion re-

lation enables us to simplify the energy-conserving
5 function considerably. Since the uniform pre-
cession mode has no momentum, i.e. , Tt, =0, then

k4=k2-k3. Using this expression and the linear
dispersion relation in the energy 5 function gives

g(~, +(g2 —~, —&u4) =5(vk2 —vk, —v
~
k —k~()
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condition k, ~k, also follows from energy conser-
vation. The integral over k4 has been eliminated
by the Kronecker delta A(k). The integrals in 8„
P„and P, are freely evaluated, giving 8w'. The

integral over 8, is taken care of by the 6 function,
Eq. (33). With approximations (a) and (b), the
four-magnon decay rate for the ky 0 mode ob-
tained from Eq. (27) becomes

(4 m) 2Q2(e Bhw~ 1) @max eBhw2

h' v(2v)' 2 2 5hfd2
0

k2 (NC)'
(esnwq 1) (e8nw2 3 1) (34)

where k will be defined below Eq. (44).
To calculate the a-intramode decay rate from

Eq. (34) we use m~ = +0+ vk in all magnon frequency
modes and take

[C 4))2= —', [Cnn +Cnn +Cnn +Cnn ]z (35)

where the factor of —,
' accounts for the fact that the

two output magnons are equivalent, and that the
processes in which they are exchanged should not
be counted twice.

Since &u, =y(If, -H, ), the frequency of a P mode
is taken to be u» =u~ —2+o+2ya, . Therefore,
the intermode scattering contribution for the decay
of a k =0 o. mode is obtained from Eq. (34) by us-
ing &oz» for &uz and &u4, &u~ for &u3, and [Ct~]'
= (C,",~)'.

Equation (34) is already in a form which lends
itself to reasonably simple numerical calculations.
These will be discussed in Sec. III.

At this point let us introduce an additional ap-
proximation to obtain a full analytical evaluation
of the four-magnon relaxation rate, valid for MnF,
in the high-field case.

(c) Since with k, = 0, the energy-momentum con-
servation requires that k2, k„and k4 be collinear
[Eq. (33)]. For temperatures above about 0.1T„,
the joint density of states is largest when k, =k3
=k(large) and k, = 0 in one of the possible scatter-
ing processes. Thus the vertex for this process
can be approximated by C,», . Also numerical
investigations show that C,"», is nearly independent
of k. Therefore, we approximate the coupling
coefficients for the four-magnon processes by

C(4) C(4) +C(4) + C(4) + C(4)an OkLBkZB O+ kZB OkZB O OkZB OkZB+ kZB OOkZB

C(4) C(4a8 okzB.okzB

(36)

(37)

NC"" =(uo vo —v20) 2zz J,—4uozK,

NC" = —(2uo-uovo)z2J2 —4voK.

(38)

(39)

This greatly simplifies the expression for the
coupling coefficient due to the fact that at the zone
boundary y»=vzB=O, uzB=1, and at the center
of the Brillouin zone yo= l. With Eqs. (29), (31),
(36), and (37) we have

where

(40)

~ ~=J~ n} d~e-i. -ie--i
(41)

x =hvk, /ksT, y =hvk, /ksT. (42)

In the low-temperature regime the integral peaks
at a value of x«x, and therefore the upper limit
of the integral in x can be extended to infinity. In
Fig. 2 we can see that this is a good approxima-
tion in MnF, at temperatures below about 20'K,
which is approximately —,'T„. In this regime the
three exponentials are all much larger than unity
so that Eq. (41) becomes

f's(T) I ...=
X

dzxe" dyy(z -y) =4.
0

(43)

Since this integral is independent of the tempera-
ture, in the low-temperature region the four-
magnon relaxation rate is proportional to T4.

As the temperature increases higher-energy
magnon states become more populated and the
peak of the integrand in Eq. (41) shifts towards

Note that since u, & v, (for MnF, u, = 1.87 and v,
=1.58), the exchange and anisotropy scattering
amplitudes interfere destructively in the intra-
mode case, Eq. (38), whereas in the intermode
case, Eq. (39), they interfere constructively.

With Eqs. (38) and (39) the coupling coefficients
can be taken out of the integrals in Eq. (34). The
temperature dependence of the relaxation is now
entirely contained in the exponential functions.
This dependence can be studied in two limiting
approximations: a low-temperature approximation,
which is valid in the range where most of the con-
tribution to the integrals comes from the region
in k space where h&k»k~T; and a high-tempera-
ture limit in which Seek «k~T. We further assume
that kazoo«k~T, which is satisfied in the high-field
experiments on MnF, . We now write Eq. (34) as

q, =[20 (oo/(2v)'] (NC)' [(kzT) /(hv) )I @(T),
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+max x

Y --.~max ' (44)

We can now compare the analytical results, Eqs.
(40)-(44), with the experimental data of Kotthaus
and Jaccarino for MnF, and with the numerical
calculation of WFW. We take &p = 1.4x10" sec ',
Qp: 1 82& vp 1 52& J2:1 84 K& z2 8y 2K:0 52
(these values correspond to Hs = 549 kOe and H„
= 7.87 kOe), and II = (4.87)'(3.3) A'. For k„,„we
use the value w/O' '. This does not correspond to
the value of k .x which yields a total number of
magnon modes in the spherical zone equal to 1V.

We shall return to this point later. At low tem-
peratures we use v =[a(k,„)—&u ] /k, „=1.2
x10' cm/sec and at high temperatures we take
v = l.1xl0' cm/sec to account for the renormali-
zation of the magnon energy. In the two limiting
situations the intramode four-magnon relaxation
rate becomes

the Brillouin zone boundary. This is clearly seen
in Fig. 2. As a consequence the upper limit of
the integral in x limits the increase of the net
magnon population with increasing temperature.
Since x,„~1/T, the temperature dependence of
the relaxation rate is smaller than at lower tem-
peratures. In order to evaluate Eq. (41) in this
regime we further assume that h&„«kaT and make
a binomial expansion of all exponentials. Keeping
only the lowest-order terms, I @ reduces to

D. Higher-order magnon relaxation

Let us now use the experience gained in Sec.
IIC to evaluate the general n-magnon process
given by Eq. (27). In particular, let us employ
the same approximations:

(a) The sums over wave vectors are replaced by
integrals according to

, k dk d(cos& )dp„.NQ
(46)

treatments have given the observed T' dependence.
The most complete treatment of the problem is
that of HKHH. " They have treated only the case
of zero applied field, but their regime B', which
corresponds to ySH «k&T«k~T» is essentially
our small ~„ low-temperature regime. In this
situation they obtain a temperature dependence of
the form T'In(ksT/h&uo) which does not agree with
our results. Since the vertices for the four-mag-
non process in the Dyson-Maleev and in the Hol-
stein-Primakoff formalisms are the same and the
relaxation rate equation used by HKHH is the same
as ours, the origins of the discrepancy between
the two results lie only on the different approxi-
mations used in the evaluation of the integrals.
These are mainly the form of the dispersion re-
lation and the approximations made in the coupling
coefficients. At higher temperatures the calcu-
lation of HKHH fails because they maintain the
upper limit of the last integral in k as infinity.

2 .2~10'T' sec ', T &4T„(4 m)

2.06x10'T' sec ' T&4T„.
(45) Since momentum conservation removes one of the

This result is shown as dashed lines in Fig. 3.
In the two temperature limits these analytic re-
sults overestimate the relaxation rate slightly.
For T & —,'T„both the analytic result and the WFW
calculation give a T4 dependence for the linewidth
and are in good agreement with the KJ data for
MnF, . Above —,'T„ the experimental data maintain
its T dependence, but the four-magnon decay rate
assumes a T' dependence, for the reason explained
above. This suggested to us, that other interac-
tion processes come into play and dominate the re-
laxation rate of the k = 0 magnon mode in this high-
temperature regime. Below we shall, in fact,
show that higher-order magnon processes give
such a behavior.

At this point it is worth comparing our results
with those of other authors. First of all we note
that four-magnon processes have been considered
as the prevailing mechanism for the thermal decay
of magnons in antiferromagnets, but there is
considerable disagreement concerning the explicit
temperature dependence of the linewidth. Except
for the recent work of WFW, none of the previous
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FIG. 3. Comparison of the high- and low-temperature
approximations of the four-magnon process with the
numerical evaluation of White et al. (Ref. 21). The points
are the experimental dat~. of Kotthaus and Jaccarino
(Ref. 18).
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integrals in k space and k, = 0, there are g —2 in-
tegrals over k, 8, and

(b) The dispersion relation is assumed linear.
Even with this approximation the manner in which
energy and momentum are conserved becomes
complicated.

In order to simplify matters we shall make an
additional approximation (b') that all the wave
vectors are collinear. The energy 5 function then
becomes

~(n) —o(n)I(n) (T) T'n-'
OI (48)

where

and 8„,is the angle between kn I and k k2 + ~ ~ ~

-kn, . As a result of this restriction on 8n, there
remain n- 3 integrations over 8 and n —2 over

(c) If we now approximate the coupling coeffi-
cient C " by an average value C " the relaxation
rate becomes

5(&o) = " ' 5(cos8„,—1),
k fx-x„, f

XX

Where X =X 2+X3+ +X /2 X /2+I X

x„=kv k„/ks T

(47) -2 k3 n-8

0~ i 2+2 (av)3n-6 (49)

I(")(T)—
&p

x' Ix -x„,i
X X dX e "2+ 3 " "nh)g pg

~ ~ ~ pgn-I n-I 2 3
0 n-I

"&max &max (x2+ x 3 ~ "xn/2)'
2 2 22' ' '

J x„hdx„h J x„/2+adx„/2~, ~ ~ ~

0 p

Note that energy and momentum conservation set
the upper limits of the integrals associated with
the output magnons and makes n„= (e&"-"n-x' —1)-'
The primes have the meaning, 'g I I hi~z(n) ~ (53)

Since x,„-1/T the high-temperature dependence
of the relaxation rate is

X (Xmax

Xmax p
X Xmax y

(51)

where x,„=hk,„v/ks T
It is through these limits that I!"'(T) acquires its
temperature dependence.

1. Low-temperature limit

In the low-temperature limit the exponentials in

the integr and ensure that integral is insensitive to
the upper limit making I!"!(T) independent of tem-
per atur e. Therefore

Due to the fact that all the magnons but two have
k k zg only terms with one v~ exist in the effective
vertex for the n-magnon interaction. These arise
from the expansions of S" and S in Eq. (9), in

which only the two terms with (n —1) a, operators
and one b,. operator are retained. From Eqs.
(9)-(12) it is not difficult to show that the terms
involving only + modes have the form

2 J'2g 2 (n —5)!!
2'/2 I $n/2 2 (I y) f

(,u, u, ~ u„y, +u, u, u„,v„y„) .

q( n) ( T3n-8
g I ~low& (52) (54)

2. High-temperature limit

In the high-temperature limit the magnon dis-

tributionn

peaks at the Brillouin-z one boundary .
Thus the thermal input magnons may all be taken
to have k =kz~ . Similarily —,

' n —1 of the output
magnons will have zone-boundary wave vectors
and one with k = 0. In this case the upper limits
of I!"!(T) in Eq. (50) will become x,„. The in-
tegrations thus "decouple" giving It"!(T)-(—,'x2 )" 3.

As we have seen above this gives the dominant
contribution to the relaxation rate. Therefore,
we shall reglect the n -P combinations.

To find the effective coupling constant we set
all k =k z~ except two, which are made equal to
zero, one of them being the one for the v„. The
sum of all nonzero terms will give a factor of
(~n)! (,'n —1)!. As—there are also (—,'n)f (—,'n —1)!
identical magnons, the factor entering the effec-
tive vertex is the square root of this number. The
effective vertex then becomes
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( ) Qp Vp J2z2
( ff) gn/2-2~n/2-1 (55) We now recall the expression for the Noel temper-

ature
where T„=—', S(S+1)jpnp (63)

t ( „)= ~n (n —5)!!j2" ' . (56)

There are also contributions to the n-magnon
vertex arising from combinations of lower-order
processes. In Fig. 1(c), for example, we indicate
how one of the four-magnon processes in second
order leads to an effective six-magnon process.
The effective interaction associated with this pro-
cess is

2 J2z2
y2, 3y, 6u~ V2u3Q4V5Q6

which allows E(I. (62) to be written in terms of the
temperature normalized with respect to the Neel
temperature. Using the value for Qpvp from Eq.
(16) with the approximation H„«H~, and using E(ls.
(56) and (63) in (62), we obtain

(n) , n [(n —5)!!]' S + 1
'gg =21((dpQ(„) (H@jHc)

(64)

xV' Mf
k((d n + (d n + (d 8 —(d n )

q

X Q yQpPpQ4 Q p!I pA (~) ~ (57)
a(„)—-1j2" '. (65)

Finally, we note that the coefficient a(„) from the
high-temperature value of the integral I("), can be
written

If we approximate the energy denominator within
the sum by 2z,J,S then this interaction would ap-
pear to be of the order of 2 J,z, jNS, the same as
the six-magnon interaction in first order. How-
ever, as we noted above, the density of states
favors thermal magnons with large wave vectors.
This means that the wave vectors k, +k, and k, +k,
will be large making y2+3 and y5+6 small. This
makes higher-order vertex corrections of this
form small. Furthermore, all the four-magnon
terms which can be combined in this manner in-
volve P modes, in the input or output, and pos-
sibly the intermediate state. Consequently, their
lower occupation further reduces this contribu-
tion so that it may be neglected.

Having obtained the vertex of the interaction in
closed form, we can reach a general expression
for the n-magnon relaxation. We first note that
in the high-temperature approximation the inte-
gral I " (T) can be written

Thus the n-magnon relaxation rate in the high-tem-
perature region becomes

y!," In(d„= ~~.
2H

n [(n —5)!!]'
A 48S )y

(66)

E. Other relaxation mechanisms

A Priori one cannot identify the dominant re-
laxation mechanism. This can only be determined
by exploring various possibilities. The point of
this paper is that in all the antiferromagnets we
have analyzed the relaxation for T &T„ is governed
by magnon-magnon processes. We have, however,
considered various other possibilities. In this
section we shall review some of these.

where

Zg max

5Vk max

B

Also we approximate the magnon velocity as

(58)

(59)

l. Magnon-phoeon

The magnon-phonon interaction arises from the
phonon modulation of the exchange (exchange
striction) and anisotropy (magnetostriction). The
latter is generally larger and takes the form

(d&&
= y(Hs +H& ) = yHs,

k,„=y(jQ'y'.

(60)

(61)

8 BR~
X~nn p„—Q bn()ypS, S)

Bx
(67)

(„) )y, , (y(kpT)" '
y)y 4 p (n)(dk( u)(1cpvnp) (4Sp r yn-p

CJ 2Z 2/
(62)

Using these results in E(ls. (48) and (49) we ob-
tain for the relaxation rate due to the n-magnon
processes

where u,' is the displacement of the ith ion in the
y direction. This is just an expansion of the an-
isotropy energy in powers of the strain. By con-
sidering only the first term we are restricting
ourselves to one-phonon processes. In particular,
the strain is related to phonon amplitudes cq@
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Q3&

2P v(dq p

x (c e(Q'R( ct e-i(( R()
qP ~ p

(68)

+ permutations (69)

where && is the polarization vector associated with
the p. th mode.

In the presence of inversion symmetry the in-
teraction (67) reduces to

P, ((3.) '"..(') '""
(3 )

'"
)

l=i, j
8Q» BQy

+b ~ (S*S9+S'S*) * +
2 ~ l l l l gy

lm3 j

Among the "permutation" terms are those involving
S l S l When these operators ar e expanded in mag-
non amplitudes they give one- and three-magnon
terms multiplying the one-phonon amplitude. The
one-phonon-one-magnon terms hybridize the mag-
nons and phonons giving rise to the coupled modes
observed, for example, in FeF, by inelastic neu-
tron scattering. " Such experiments provide a
direct measure of the interaction constant b, . The
three-magnon-one-phonon terms constitute a re-
laxation channel as do the four-magnon-one-mag-
non terms arising from the contributions to Eq.
(69) involving S",S(3) S» etc. As in the four-
magnon case those magnons near the Brillouin
zone boundary will be most effective in relaxing
the k =0 mode. The dominant contributions to the
four magn-on one p-bono-n interaction are therefore

Z/2

[(e0'&) q, +(&0 y) q. ](2....„
&& (c40+c 40) [uiu2 v3u4i23Q2 p3 Q44 (k) +ugu2 v3u4pi p2 i23p46 (k) + H. c.] .t (70)

This involves three distinct mechanisms for re-
laxing the k = 0 mode depending upon the other in-
put and output particles. It can be shown that the
contributions proportional to b, are much smaller,
assuming b, itself is not appreciably larger than

b2.
The calculation proceeds just as in the magnon

case. The phonon polarizations slightly compli-
cate the angular integrations. Let us define q
=q(sin8cos(f), sin8 sin(f), cos8) and choose one trans-
verse phonon polarized in the xy plane,

ei = (Sing) —COSQ) 0) . (71)

The other polarization then becomes

e 2
= e,x —= (- cos 8 cos(f), —cos 8 sin(t), sin 8) . (72)

Following the same procedure used to calculate
the four-magnon relaxation rate with the additional
approximations that all the wave vectors are col-
linear and that the phonon group velocity equals
that of the magnons (this gives optimum coupling)
we obtain

36nb2 64m k3+k4 —k
(4mag -&ph) 0'2) dk k' dq

' dk k e" "4'2 (e" 3+2 &)n�nn-'ni k 2 5(2v)9 0 4 4 'q'q 3 3 4 ' k, +k~

(73)

where k, =k, +k4- q.
We have also carried out the calculation for the

three -magnon-one -Phonon process. Although this
involves one less particle its contribution is an
order of magnitude smaller than that given by Eq.
(73) due to restrictions imposed by energy and

momentum conservation.

2. Magnon-exeiton

The optical spectra of many antiferromagnets
show narrow, weak, magnetic dipole transitions.
These are associated with pure electronic transi-

tions within the ground-state multiplet configur-
ation and correspond to Frenkel excitons with
k =0. The linewidth of these excitons is due to
magnon scattering. This suggests that we con-
sider the contribution to the magnon linewidth
arising from exciton scattering in those cases
where low-lying excitons exist.

FeF, is a likely candidate for this mechanism.
The Fe'+ ion has a 'D ground state. In the rutile
structure this splits a,s shown in Fig. 4. Kambara"
has estimated that the orthohombic crystal-field
splittings are much larger than the spin-orbit and
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FIG. 4. Lowest-lying electronic states in FeF2 (after
Ref. 27).

exchange effects. Therefore, the excitons will
not intersect the magnon dispersion curve.

Physically, the magnon-exciton interaction arises
from the fact that when an ion is excited to some
higher-lying spin multiplet both the spin of this
state S' and its exchange coupling to its neighbor-
ing spins J' may differ from the ground-state
values. Thus, in the presence of an exciton, a
magnon effectively sees an impurity from which
it scatters. This interaction takes the form

$0,„„.,g
= g (J'S'; ~ St+&- JS, ~ S,.+z) d, d

i, ~

(74)

where dt creates an excited state at site i. The
ground-state spin operators have the representation
given in Eq. (10). We shall express the excited-
state spin by expressions of the form '

S'+ =v'2S'a. .i

Note that we use the same boson operators for
these excited-state spin deviations. The inter-
action Eq. (74) then takes the form of a Aeo-mag-
non-theo-exci ton process. The relaxation calcu-
lation is then mathematically identical to the four-
magnon calculation. However, in antiferromagnets
the excitons have very small dispersion because
nearest-neighbor transfers are spin forbidden.
Consequently, if the k=0 mode scatters with a
thermal exciton, and if the output exciton has the
same energy then the output magnon must have
k =0, which is to say that this is not a viable re-
laxation mechanism.

In this section we shall apply the relaxation the-
ory presented in Sec. II to several uniaxial anti-
ferromagnets for which there are available AFMR
linewidth data. We have chosen materials that
have simple crystallographic and magnetic struc-
tures and that are somewhat representative of dif-
ferent classes of antiferromagnets. The first ap-
plication is MnF, . As we noted in Sec. II many of
the approximations in this theory were developed
with the data on MnF, as a guide. GdA10, is an-
other widely studied antiferromagnet. Its exchange
field, and consequently its Neel temperature, is
an order of magnitude smaller than MnF2. Thus it
provides a test for the numerical results of the
theory for a different scale of parameters. Also,
perhaps more interesting, its Gd'+ has an S ground
state with S = » which being larger than in MnF,
(S =-', ), implies that it should be even better de-
scribed by spin-wave theory. FeF, has the same
structure as MnF, and comparable exchange con-
stants. However, due to the Fe'+ nonzero orbital
angular momentum and associated spin-orbit-
crystal-field couplings, it has a large magneto-
crystalline anisotropy field and magnetoelastic
interaction. The large anisotropy results in a
large spin-wave gap which produces marked
changes in the magnon-magnon scattering pro-
cesses. The magnetoelastic interaction provides
an additional relaxation channel through magnon-
phonon scattering. Finally, Rb,MnF~ and K,MnF,
are nearly ideal two-dimensional antiferromag-
nets, which provide a test of how sensitive the the-
ory is to dimensionality. Due to this variety of
different aspects associated with the different
materials we shall discuss them individually.

The integrals remaining in Eq. (34) are easily
evaluated numerically. Such numerical evaluation
also enables us to take into account several effects,
such as the finite size of the Brillouin zone and the
magnon energy renormalization, which become
important at higher temperatures. The energy
renormalization is an important feature of spin-
wave theory, whose effect appears in various
physical properties such as the sublattice mag-
netization. ' Since this renormalization arises
from the same n-magnon interaction we have been
considering, one could in principle calculate u~(T)
However, this has to be done self-consistently
and even for the four-magnon interaction the cal-
culation is not simple. In our linear magnon dis-
persion relation we shall represent the effect of
renormalization by writing

(a)q(T) (uo(T) + [(uq (T) (oo(T)] k/k ~ (75

i.e., we assume that the renormalization is linear
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which is a measure of the relative renormalizations
of the zone-boundary and zone-center magnons.
Having &d6(T) we can calculate &u, ,„(T) for each
value of the temperature.
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FIG. 5. Results of the four- and six-magnon calcula-
tions for MnF2.

in k. For MnF, the temperature dependences of
both the gap frequency and the zone-boundary ener-
gy have been measured, respectively, by AFMR
techniques and neutron scattering. For the other
materials we are considering there are available
data for &o6(T) but not for u1, (T). Thus we have
Ultroduced an ad]ustable parameter

I —u1, ,(T)/u1, (0)

I —u16(~)/u&, (0)

A. MnF2.

The low-temperature linewidth of MnF, was mea-
sured in AFMR experiments at zero fields (f6=260
GHz) several years ago by Johnson and Nethercot'
(JN). As discussed in the Introduction, the JN
results at low temperatures are not applicable
mainly due to radiation damping effects. The
Kotthaus- Jaccarino" experiments avoided this
problem by means of a large applied field which
drives one of the magnon branches down into low-
microwave frequency ranges. The KJ data, , taken
up to about —,'T„(T„=68'K), are compared with the
results of the theory in Fig. 5. The integrals of
the four-magnon relaxation rates were evaluated
numerically by dividing the range from k =0 to
k =k,„ into 50 points and using simple coarse
sums. The integrals in the six-magnon rate were
calculated with only 15 points, to save computer
time. Some checks indicated that the results dif-
fered from the ones with 50 points by no more
than 10/~. The calculations were made with no
additional approximations. In particular, we have
used the full k-dependent coupling coefficients.
For the four-magnon processes these are given

by Eq. (35) and in the text below this equation. The
correspondlllg expression fox' the six-magnon co-
efficient arising from exchange is

(J22 2/ + ) (u1 v2 v3 v4 v5 v6 Yl+ vl v2 v3 v4v5u6 YG + V~ g2M3Q~QSQ6+~+ R~Q2M3R~Q5 V6+6

2u1v2v3u4u5v6y. . .—2u, u, v, v4v5u6y445 3) (77)

The relaxation rate fox' the six-magnon process
was obtained from Eq. (27) with Eqs. (46) and (47).
For MnF, we used co, = 2m ~23X10' sec ', II~ = 549
kOe, and H„= 7.67 kOe. The values &66(T) were
taken from the AFMB data of JN. For R defined
by Eq. (76) we used 0.45, which is an average
value obtained from the neutron scattering data'0
in the high-tempex'ature region where renormali-
zation is important. There is one more param-
eter which may be considered adjustable in the
ayylications of the theory, namely, the value of
the maximum wave vector k,„. It determines
not only the upper limits of the integrals in Eq.
(34) but also the slope of the dispersion relation,
Eq. (59). Therefore its value should be chosen
so as to weight properly the region of the Brillouin
zone that contributes most to the integral. In

MnF„with its gap of 1 K, the relevant magnons
are those near the center of the zone, as demon-
strated by the weighted magnon population shown

in Fig. 2. Therefore, we use the value which cor-
rectly describes the dispersion relation at small
k, which is k,„=v/a. " The total relaxation rate
shown in Fig. 5 is in excellent agreement with the
KJ data. At temperatures below about 25 'K, the
relaxation is dominated by four-magnon intramode
(nn-nn) scattering, as previously found by WFW.
At this temperature intermode scattering (nP-nP)
is already comparable to the intraInode, which is
explained by the fact that the gap of the P mode is
22 'K. Above this value the six-magnon decay rate
dominates the linewidth. The reason that the six-
magnon process becomes important at a relatively
low temperature is due to the partial cancellation
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FIG. 6. Results of the four- and six-magnon calcula-
tions for GdA103.

of the Rpvp and vp terms in the four-magnon vertex,
Eq. (38). Such interference does not occur in the
six-magnon vertex or higher-order vertices as
given by Eq. (54). Consequently, the higher-order
process will be reduced by successively higher
powers of the average magnon population n given,
for example, in Fig. 2.

B. GdA103

This material is an orthorhombic antiferromagnet
with T„=3.87 'K in which the magnetic ions (Gd")
are in the S state and therefore free from strong
interactions with the crystalline fields. Despite
the fact that its anisotropy is orthorhombic, if the
external field is applied in the bc plane it behaves
essentially as an uniaxial antiferromagnet. "
Therefore, we have calculated its AFMR linewidth
due to four-magnon scattering using Eq. (34) and

the analogous equation for six-magnon scattering.
We used S =3.5, g=2, HE =21 kOe, H„=3.6 kOe,
and assumed that ~,(T) scales with M(T), for which

there are available data" (this is a very good ap-
proximation at higher temperatures). The AFMR
linewidth for this material has been measured by
Rohrer, "with standard magnetic resonance tech-
niques and by Doussineau and Ferry, ~ using acous-
tic absorption. Since they are in reasonable agree-
ment, we compare our results with those of Rohrer,
who has also measured the frequency dependence

C. FeF,

The inelastic neutron scattering experiments by
Rainford et al." clearly show that the phonons
couple strongly to the magnons in FeF, an effect
which, incidently, cannot be detected in MnF2.
The coupling constant b, derived from these mea-
surements is of the order of 10 "erg. As we
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FIG. 7. Comparison of the theoretical (lines) and ex-
perimental (points from Ref. 33) frequency dependence
of the linewidth in GdA103.

of ~. Figure 6 shows the results of the calcu-
lations for f, =5 GHz. Here we have used k
=(6v'/0)' ', which is the proper value of k,„ that
gives the total number of magnons in the Brillouin
zone equal to N. The reason for this choice is that
the k =0 magnons have an energy which is nearly
half the zone-boundary energy. Therefore the
density of states peaks sharply around the zone-
boundary energy and one cannot use the small-k
approximation; otherwise the missing states close
to the zone edge result in gross underestimates of
the linewidth. These observations have also been
made in connection with other calculations" and
are also applicable to the FeF, case considered
next. Figure 6 shows that the calculations done
with R =0.75 are in very good agreement with
Rohrer's data. Notice that the six-magnon decay
rate does not overcome the four-magnon rate, in
this case, due to the fact that the low thermal
population of the zone-boundary magnons favors
the latter. In Fig. 7 we also compare our results
with the linewidth data as a function of frequency.
Note that at low frequencies the energy gap can be
neglected in the magnon populations which enter
in Eq. (34), so that the frequency dependence of
the relaxation rate is contained solely in the term
(e ' —1). Thus in this region the decay rate varies
linearly with the frequency, as seen in Fig. 7. At
larger frequencies the magnon population tends
to decrease and the decay rate becomes nearly in-
dependent of the frequency.
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saw in Sec. II E 1 the strongest magnon-phonon
mechanism is the four-magnon-one-phonon pro-
cess. The measured value of b, makes the ratio of
the four-magnon-one-phonon vertex to the four-
magnon vertex only of order —,',. The relaxation
rate given by Eq. (72) is shown in Fig. (8). Param-
eters used in the calculations are S =2, g =2.2,
H„=200 kOe, and H~ = 580 kOe. We see that this
contribution cannot account for the measured, ' "
linewidths.

The decay rates from the magnon-magnon in-
teractions were evaluated as in the previous cases
and are also shown in Fig. 8. As in the QdA103
case we have chosen k =(Go'jQ)' ' because the
weighted magnon population over the entire tem-
perature range of interest is largest at the edge
of the Brillouin zone as shown in Fig. 9.

The results of the calculations are in satisfac-
tory agreement with the experimental data, if one
considers the approximations used and the fact
that the experimental errors (the vertical bands
in the figure indicate the instrumental width) are
quite significant at lower temperatures, because
the zero-temperature linewidth was subtracted
from the measured values. We note that the re-
laxation is entirely dominated by four-magnon
processes of the two types. The higher-order pro-
cesses give negligible contribution as in the GdA103
case because the magnon population is small due
to the large energy gap (compare the populations in

Fig. 9 with those for MnF2, in Fig. 2).

D. Two-dimensional antiferromagnets
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FIG. 9. %eighted magnon population curves as a func-
tion of wave vector for FeF2 in zero applied field. Insert
contrasts the spin-wave dispersion relation of FeF2 with
that of MnF2.

The isomorphic compounds Rb,MnF~, K,MnF~,
and K,NiF~ behave as almost ideal two-dimensional
(2D) antiferromagnets, due to the very weak ex-
change interaction between the spins in planes
perpendicular to the c axis. Their magnetic prop-
erties were extensively investigated by Breed et
al."and the AFMR linewidths of the first two com-
pounds were recently measured by de Wijn et al."
The linewidth data are shown in Fig. 11. It is in-
teresting to note that in this lower dimension the
linewidth also has a T dependence as one finds in
several of the 3D systems.

The two-dimensional aspect, however, presents
distinct differences. When the sums over wave
vector are replaced by integrals the integration
over k, is trivial since the magnon energies are
independent of k, ~ This leaves us with two dimen-
sional integrals of the form fkdkdp. The fact
that we integrate over p and not cos(It) introduces
an important difference. In the four-magnon pro-
cess, for example, the energy conserving 5 func-
tion is given in Eq. (33). Since 5(cosg» —l)
=5(8»)/sin0» the integral over g» gives zero
since 5(9) is an even function of 9 while sine is
odd. This is a consequence of the fact that in two
dimensions energy and momentum restrict the
phase space to one point. Equation (47) shows
that a similar restriction occurs in all the higher-
order processes if we make the "collinear" ap-
proximation. However, due to the presence of k,
rather than k in the integrals, small-k magnons
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u, XC~ ~ 'ea" n„,n, n,

where the coupling coefficients are the same as
given in Eq. (24).

The numerical calculations for Rb,MnF~ and

K,MnF~ show that the four-magnon relaxation rate
has a smaller T dependence than the measured

play a much more important role here than in 3D

systems. This is cleaxly seen in the plots of the
weighted magnon population shown in Fig. 10. In
this low-k region the magnon dispersion relation
deviates from a true linear relation due to the
presence of the gap. We shall therefoxe use a
quadxatic relation of the form &, =&, +Dk'. An-
other consequence of the reduced dimensionality
is that the high-temperature approximation Phu~
«1 is very good for temperatures larger than the
energy gap, which in the case of the experiments
we shall consider is only 1'K. This offers the
hope for obtaining a completely analytical result
for the linewidth.

With the quadratic dispersion relation one can
treat energy and momentum conservation exactly
in the four-magnon processes in which k, = 0 and

5(a&) = (2Dk, k, ) '5(cosp~), where 4)~ is the angle
between k, and k,. In this case%, and k, must be
at sight angles to each other, rather than collinear.
Elliminating the integral in k„ the decay rate for
the k, magnon due to four-magnon px'ocesses can
be written

(6 m) )v2
~

c(8 m)
[

2(rP) Q k T 4

2'm'O'D h
(81)

where

T4 and is nearly an order of magnitude smaller.
We therefore consider the six-magnon process.
There are two reasons why we might expect this
process to be more important. First, since small-
@ states dominate the integrations, the coupling
coefficient for four-magnon processes is approxi-
mately C(@(0, 0, 0, 0), which involves factors of the
type (u, —v, )'. This greatly reduces the exchange
four-magnon coupling. Due to the effect of aniso-
tropy this is slightly enchanced in the ep scatter-
ing but reduced even further in the ncy scattering.
In the six-magnon coupling coefficient all the con-
tributions add constructively to enlarge them rel-
ative to the four-magnon coefficient as we pointed
out for MnF2. In addition to this, in 2D systems
the addition of more particles in the scattering
process does not reduce the decay rate as much
as in 3D because the occupation number is rela-
tively large. This is so both because the energy of
the dominating low-k magnons is small and because
the energy of all magnons with Tr//c have the same
small gap.

Let us now consider the six-magnon process in
detail. The relaxation rate is obtained in a manner
analogous to the 3D case. As in that case the con-
servation of energy and momentum results in a
complicated coupling between the wave vector
sums. The energy 5 function is

5((u) = (I/O) 5(k,'+k,'k', k', ——k,') -.

In the 3D, four-magnon case we found that energy
and momentum conservation required that all the
wave vectors be collinear. We therefore extended
this condition to the six-magnon case. In the 2D
four-magnon case we have just seen that the two
output wave vectors must be orthogonal. There-
fore, let us introduce the relative wave vector
k =k, -k, and require that k&k, and k~&k, . The
energy 5 function then reduces to

5(~)-(I/2Dkk, )5(e, ——,
' w), (80)

where 8, is the angle k, makes relative to k. Since
momentum conservation requires k =k~+%, —k„ the
sum on%, (or, equivalently, k) may be performed.
If we assume that the coupling coefficient is in-
dependent of wave vector and make the high-tern-
perature approximation the relaxation rate be-
comes

&max k'36fk'3 ~ max k4 Qk4 &m~ ~ 56f 5 f'~max date

(v, +Dk3 0 (d, +Dk4 o (L), +Dk, ~0) ((d, +Dk8) (k~+k, —k~)'~ ((d, +Dk~+Dk, -Dk~+Dk~)

(82)



2954 S. M. REZENDE AND R. M. WHITE 14

I ~ ~ Rb2MnF4

K2MnF4

0
Z

ZI-0

Z 1.0— //

//

10
(

20

TEMPERATURE (K)

I

30
I

40

FIG. 11. Comparison of the six-magnon calculation
for the trvo-dimensional antiferromagnets Rb&MnF4 and

K2MnF4, with the experimental results.

Estimating this integral we obtain

I=m'/4(u', D' .

For the coupling coefficient we use the approxi-
mate form

This is plotted as the dashed lines in Fig. 11. The
crudeness of our approximations have suppressed
the differences between the two compounds. How-
ever, we see that the six-magnon process gives
the correct order of magnitude and temperature
dependence.

IV. CONCLUSION

In this paper we have demonstrated that the tem-
perature dependence of the magnetic resonance
linewidth in antiferromagnets arises primarily
from spin-wave scattering processes. In particu-
lar, we have investigated magnon-phonon and
magnon-exciton processes in several antiferro-
magnets and find that these are not effective relax-
ation channels. Presumably if one has a mate-
rial consisting of non-S state magnetic ions and
having a very low Noel temperature the magnon-
phonon mechansim could become important.

Another interesting result of our investigation
is that in a number of situations, particularly the
two-dimensional antiferromagnets, the lowest
order spin-wave process that dominates the re-
laxation at T & 4T„ involves six magnons. The fact
that one must go to this order in spin-wave theory
makes one also question its role in describing
other thermodynamic properties of antiferromag-
nets. The general theory developed in Sec. II
works surprisingly well for all the materials con-
sidered over a relatively wide range of tempera-
tures up to 0.8 T„, a conclusion which is also sup-
ported by the calculation of other quantities based
on spin-wave theory.

=(4J /]2/7 $ ) (g g2)

The relaxation rate therefore becomes

q', - [(k~r)'/384h'S'(yH, )'(u, ] .

(84)
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