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The dynamic spherical model introduced by Ma and Senbetu is investigated in the neighborhood of the

critical point. Singular parts of the transport coefficients are calculated. The heat conductivity diverges as

7 " '~' " "where 7 is the reduced temperature and d is the dimension of the space (2 g d & 4). The singular part
of viscosity is proportional to 7. The volume viscosity is zero.

I. INTRODUCTION

Most of the present theories of dynamical criti-
cal properties (transport and kinetic coefficients,
frequency-dependent correlation functions) are of
phenomenological nature, being based either on
mode-mode coupling ideas' or on Langevin-type
stochastic equations. ' Although these theories
account for the existing experimental data, they
have not been derived from the microscopic equa-
tions of motion. '

Recently, Ma and Senbetu' made progress in
the direction of constructing a theory based on
first principles. They studied a system of m

coupled Bose fields in the limit m —~ (dynamical
spherical model). With the Hamiltonian as the

only input they derived a kinetic equation and from
this they calculated transport coefficients: heat
conductivity, viscosity, and sound attenuation.
The results are unexpected. In particular, the
heat conductivity and the sound attenuation do not
diverge at the critical point. The viscosity is also
finite, but this is to be expected.

In this paper the dynamical spherical model is
taken up again for the case T &T, and the trans-
port coefficients are computed. The results are
as follows: Let p, be the inverse correlation
length, P, = constr' for r —0, where T = (T —T,)/T„
v=(d —2) ', d is dimensionality of space. Then
the heat conductivity z = constp", ' ', the viscosity
q= const+const'p', ', and the sound attenuation
I'=constp, ' ', where the dynamical critical ex-
ponent z =2. The above forms of the temperature
dependence of transport coefficients are in agree-
ment with the predicti. ons of dynamical scaling hy-
pothesis" and are consistent with the mode-mode
coupling approach which was applied to this prob-
lem by Halperin. '

The reason why our results are different from
those of Ma and Senbetu is the following. Both
papers use approximations which replace the col-
lision operator by a simpler expression. In this

paper, in contrast to Ma and Senbetu, the approxi-
mation was chosen so as to preserve the conserva-
tion laws of the number of particles, momentum,
and energy. Another difference, which is of more
technical nature, is that our kinetic equation con-
tains the Vlasov term. As a consequence it yields
the hydrodynamic modes directly without the ne-
cessity of using the two-step procedure in which
one solves the kinetic equation without the Vlasov
term and subsequently calculates the zeros of the
dielectric function in the complex frequency plane.

After formulating the kinetic equation in Sec. II,
we derive the kinetic-theoretical formulas for
transport coefficients in Sec. III. Approximate
eigenvalues and eigenfunctions of the collision
operator are found in Sec. IV and are used to find
the singular part of transport coefficients in Sec.
V.

II. KINETIC EQUATION

Qur starting point will be the kinetic equation
for the one-particle distribution function. It was
derived by Ma and Senbetu' by summing diagrams
in the leading order in the number of fields, ~f.
Since the limit is performed at constant concen-
tration of particles for each field, the total con-
centration goes to infinity as m -~. By analogy
with the theory of electron gas' we can argue that
in this limit the random-phase approximation
(RPA) becomes exact. So we just write down the
RPA-Boltzmann equation: Maxwell-Boltzmann
statistics is replaced by Bose-Einstein, the inter-
actions are screened by the dielectric constant,
and the Vlasov term must be concluded. Let
f;{r,p, t) be the one-particle distribution function,
i =1, . . . , m. It satisfies the following kinetic equa-
tion:

~f; - df » ~f
R er &r &p

We put the mass of the particle equal to unity, u
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RPA

FIG. l. Effective interaction in the random-phase
approximation.

of the particle, u is considered of order m ', as
usual], N is the total concentration,

(2)

is the coupling constant [the interaction potential
is V( r„r,}= u5( r, —r, ), independent of the type and I; is the collision integral,

j =l

[fc(p)f (p, )[1+fi(p'}l[1+f(pi')]- fi(p') f (pi)[1+fi(p)][1+f (p, )]'t.

The collision probability (with the 5 function fac-
tored out) is determined by the first Born approxi-
mation (u is of order m ') in the screened inter-
action:

The effective interaction is given by the sum of
the diagrams in Fig. 1. All we shall need to know
is its dimensionality in the momentum transfer,
which is 4 —d:

~ q' 'g ', (4)
e „p (q, e) 1 —uq g(r/q', e/q')

where g. is some function.
The quantity r, which is the inverse suscepti-

bility (or the effective chemical potential), is a
measure of the deviation of the system from the
critical point and is used instead of the reduced

The temperature dependence of x is given by the
exponent y as r - r~ = T' t' " (in the spherical mod-
el). The correlation length is of the order r 't'

The equilibr ium distribution function is of the
Bose-Einstein form with -r playing the role of
the chemical potential

P(p) = exp —1
r +p'/2

T (6)

The first step in the calculation of transport co-
efficients is to linearize the kinetic equation. Let
us write

f (r, p, t) = 4(p)+ 4(p)[1+4(p)] 0;(r, p, t), (q)

substitute this into (1) and (3) and keep only terms
of the first order in g;. We get

temperature. In the spherical model it is related
to the chemical potential in a simple way:

y = —p. + uN.

&g;(r, p, t) &p;(r, p, t) ep(p) ~ "d'p' . . . , Bg,(r, p', t) 1
&t &r &p ~ ~ (2v)' ' er y(p)[1+y(p}]

1 d Pld P d Pl ~ ~t ~ t 2 2 &2 t2

( )[l ( )] ~ (2 )2d ~~6( P +Pl P lP) (6P +Pl P Pl
j =1

&& 4(P) 4(P, )[1+4(P'})[1+P(Pl)][0;(P')+kg(Pl) —0;(P) —0;(P, )] (8)

The many-component Bose system discussed here has some special properties which can be used to sim-
plify the problem. Suppose that a temperature gradient is applied but there are no gradients in the com-
position of the system. Since all particles have the same mass and same interactions, noparticlediffusion
will be triggered by the temperature gradient. Therefore the thermodiffusion coefficient is zero. The
pressure gradient also cannot cause diffusion in our model. As a result the particle-diffusion modes are
decoupled from the sound, viscous, and thermal modes and the latter group can be studied separately.

Let us introduce the function

4(r p, t)= P4(r p t)

and sum (8) over i. Furthermore, the Fourier transform of g is introduced:

x(k, 5, &)= Jd' 0(', R'Ie '" '

We get for y



14

I

T (2w)'
—+ fk px+ —fk p ~ e(p')ll+ 0(P')) x(k, p', f)

= —sxnh— 2„)a4 ~5(P+P& —P —P4)~(p +P4 -P Pg-)

gl -j.
sinh —'sinh —sinh —'

y p')+y p,') —y p) -X p, =-Kg, 10)

where the explicit form (6) for (P was used and

we introduced the notation

E =@+&p', E, =r+ &p'„etc.

The collision operator K is defined by the right-
hand side of (10).

ing vectors form an orthonormal basis in the null

subspace:

X, = linc,
x. = (lac, )p„
x =(lac, )p„

ni. umARIZED HV DRODVX~KS

To solve (10) we shall use the expansion in the

uniformity parameter k. This procedure comes
in two equivalent forms, the Enskog-Chapman
method' or the eigenfunctions method. ' We use
the latter formulation. We look for solutions
which decay exponentially with time. Such a solu-
tion of (10) with time constants X„(k) leads to the
eigenvalue problem

1
X,d+2= gc

— P" —
C

'
d+2 1

where, from (14),

cx=(1 1)=
2 ub(1+0),

NTc, =(p., pa= „, ,

C„,= T(d+2)Nm '(p'},„— (18)
(&- &IP*- &i &)x.(u p) = &.(u)x.(u, p) (12)

k is assumed to point in the x direction, and Q is
the Vlasov operator:

fix(p)= —, P. J („).~(p Kl+~(P')]x(p) (»)

Qne starts by putting Q = 0. The resulting eigen-
value problem

&X.(P) = x'"X.(P)

has a (d+2)-fold zero eigenvalue corresponding to
collisional invariants (number of particles, mo-
mentum, and energy) which form the null sub-
space and an infinite number of relaxational modes
with nonzero decay frequencies. Let us define the
scalar product as

(p'),„ is the average of P' with the equilibrium dis-
tribution function (6).

In the next step we let 0 be different from zero
and treat the terms linear in 0 as a perturbation.
Since we want to calculate the transport coeffici-
ents, we are interested in the modes which con-
verge to the null space of K in the limit 4=0. We
use the degenerate perturbation theory. The
Vlasov operator is not symmetric under the de-
finition of the scalar product (14). The adjoint to
Q is

d

&&'x(p) =
z 2„).P*'4(p') [1+0(p')]x(p'),

which is different from (13). Therefore we must
distinguish between the right and left eigenvectors

and g, respectively. The eigenvalues to first
order in k will be denoted by A. ('~. The results
are

(x(p) 4()x))= ) (4 )
4(p)() (4))1xx ()x()4&)). ()4)

With this definition Kis a symmetric operator. It
has a negative semidefinite spectrum. The follow-

~('~ = ice $&

= —iA, Cs(x)

z('~ =" = ~(',~, =O.d+2

The velocity of sound Cs is given by

(19)
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C'= 1 Cd„C, m
CO' C, C, T (20)

which can be checked to be the inverse adiabatic
compre ssibility.

The right eigenvectors are

1 1 C, '' mu

S

1 Cd~2+ X2 dC C Xd+2
S 2

X3 X3) ' ' ' 7 Xd+1 Xd+1 7

(26)

(27)
1/2 1 C 1/2

Xk ~2 C C Xk X2 C d C X +2
S S 2

t 1 C 1/2 C 1/2
d+2 2

Xd+2 C d C Xk
—

C Xd+d . (28)
S '- 1

1 C / ]
+ + d+2

X2 ~2 C C Xl X2 C d C Xd+2$1 S 2

X3 X3& ~ ~ ~ 7 Xd+1 Xd+1 7

(21)

(22)

(23)

The values of 1 and 2 for a correspond to two
sound modes, a =3, . . . , 0+1 are viscous modes
and o. =d+2 is the heat mode.

In the next step we evaluate the eigenvalues to
the second order in k, and denote by A.

' the term
in x (k) which is quadratic in k. The perturbation
theor y gives

1
Xd+2 C d C X1

S 2

X"'= Q (Xa k(P*+fl)X8),(o)
g&d+2 8

-
C '/' mu—(& C )'* k...I

. )kk)
1

x(X8p k(p, +0) Xkk) . (29)

To remove the restriction on P, (29} can be re-
written" using the identity

For the left eigenvectors one obtains

1 1 C, '/' mu
X

= ——— —' + —(CC)'' Xk ~2 C C T 1 2 k

1 Cd„
X2 dC C Xd+2

S 2

(25)

(X, (kP, +kQ) X )= id"5,
and the spectral resolution of (K- e) ':

1 1
K-& A.

' —e8

We get

(30}

(31)

kk'= k )kP, ~ kd —ik")k, , d )kk, kd —ik ')X )o+
' K-e (32)

To obtain specific formulas for the attenuation of the hydrodynamic motion we substitute into (32) the
values (19) of X~'' and the expressions (21)-(28) for the functions X and X„. Let us start with the viscous
mode, a =3. Equation (32) reduces to

1
A3 lim k' x37 Pg Pg x3

e ~o+ K —6
(33)

This is to be compared to the relaxation frequency of the viscous mode predicted by hydrodynamics" ":
d,"= -(q/p)k',

where ))p =N is the density and q the viscosity. Using (15) we have an expression for q:

1 1
0 = —»m —

PxPy~ PxPy
o+

To get the heat conductivity N set o =d+2 in (32) and equate the result to the hydrodynamic expression:

(34)

(35)

K

pc@
1 + ' lim P, P' — (P'),„, P, P' — P',„ (36)

Let us note that the heat flux in (36)
p,(p' —[(d+2)/p](p'), „J is perpendicular to the
null space and coincides with the conjugate flux
in the sense of Mori." (d+2)(p'), „/2d is the en-

thalpy per particle. As in the case of the Boltz-
mann gas, kinetic theory automatically produces
Kubo-type formulas with conjugate fluxes.

Finally, let us get an expression for sound at-
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tenuation. The hydrodynamic result is
1" 1 1 2(d —1)I'= — ———K+ q+g =- F +1 +I'
P C„ Cp d

(37)

where g is the volume viscosity. Qn the other
hand, if we put a =1 in (32), we get after some cal-
culation [using (36)]

I' = I",——lim p'„——p', p'„- —p'

to find whether it diverges as r -0 and what is the
exponent of the leading singularity.

Let us first look at the temperature dependence
of the factors outside the current-current corre-
lation function in (36) as r -0. C~ is finite, since
the specific-heat exponent a =(d —4)/(d —2) is
negative for 2& d&4. C, and C,+, are also finite,
whereas C, diverges as r' "'. C~remains fi-
nite. On the whole, the numerical factor in (36)
remains finite at the critical temperature and the
singular behavior of x comes from the correlation
function

Comparing the angular integrations in the second
term of (38}and in (35) it can be shown that

lim p, —-h, p„—-h

2(d —1) 1
PXP3)y g PX P31

as in the Boltzmann gas.

(39)

IV. EIGENVALUE PROBLEM

so that the second term in (38} is equal to I'„.
The I

&
piece is missing, from which we conclude

that
'

&P*(P /2 ~ ) Xg) (40)(0)~0+ 8
XB' —e

where 6 is enthalpy per particle.
We need to know the relaxation spectrum Az~"

and the relaxation modes of the system, which
means to solve the full eigenvalue problem Kys

This is probably impossible to do in
closed form and we resort to approximations. An
often used argument in the kinetic theory, which
was also used by Ma and Senbetu, ' runs as follows:
Write the collision operatorKg(p) as a sum of two
terms,

Qur next problem is to calculate the heat con-
ductivity from (36). Actually, all we want to do is

&X(P) = ~(p}X(P}+ffX(p},

where [see (10)]

(41)

P /2+& d Pld P d Pl ~(p+Pl —P Pl} ~(P +Pl -P -P )
2T (2w)' sinh(E, /2T) sinh(E'/2T) sinh(E, '/2T) '

and H is the Hilbert operator consisting of the re-
maining three terms in g. If we neglected the Hil-
bert piece of K, the relaxation spectrum would
consist of the range of the function u(p). In some
cases (when the Hilbert operator is completely
continuous'~) it can be proved that H can at most
add discrete values to the spectrum ~(p). This
is probably not our case, but something else ean
happen. Look at the integral (42). The collision
probability w depends on the momenta as [p -p'P '
[see (4)]. We are interested in the low-frequency
end of the spectrum and small r and can replace
sinhx by x. Then the integral becomes dimension-
less in momenta and we must expect it to depend
logarithmically on ~ or p, whichever cuts if off
first in low-momenta regions. However, since
the logarithm comes from the integration region
where all momenta are small simultaneously it
will be suppressed by the corresponding contribu-

tions in the Hilbert operator. This can be seen
in the full collision operator where the factor
[g(p,')+li(p') —y(p, ) —y(p)] will be small and there
may not be any logarithms in the spectrum after
all. In what follows it will be assumed that the
spectrum of K is given by the explicit P dependence
in front of the integral in (42) and the possibility
of logarithms w'ill be ignored. Qur results may
therefore be wrong by logarithmic factors. We
proceed on the assumptions that the relaxation
spectrum has the form

u)( q) = Cl4' slnh[(g'/2+ t)/2T], .

where C is some constant and q is a d-dimensional
vector.

I et us turn to the problem of determining the
distribution functions of the relaxation modes
which we need in (40). One could try to replace
the collision operator by the multiplicative opera-
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+ ' ' ' Xd+2(xd+2x X) ] .

This operator has the same null space as K:

K X (p)=0, n)=l, . . . , d+2

(44)

(45)

and the spectrum (x&(q). Let us solve the eigenval-
ue problem

«r Kx-(P)- (L)(p) X (p). This is a relaxation-time
Q

approximation with the difference that a whole
spectrum of frequencies is present instead of one.
However, this procedure would violate the con-
servation laws. In particular, the solutions could
be taken in the form X-(p) x&-5(p —q) but this func-
tion is not orthogonal to the null space of K. There
exists a generalization of the relaxation-time ap-
proximation which is free of this drawback. " The
preservation of the conservation laws in our treat-
ment accounts for the difference between the re-
sults of Ma and Senbetu4 and ours. Define an op-
erator K:
Kd)X( P) = (x&(P) X(P) (x&(p)[xx( P)( Xxx X)+Xa( P)&X2x X)

q'-x«T. In this limit the equations can be sim-
plified. Consider, for instance, the coefficient of

A, in (50):

The scalar product can be estimated
(53)

A, = —fl,( X„5(q - p)) . (54)

" cu(p) —(u(q)"' C, 3 (2)&)' p' —q'

p2

4 sinh'[(p'/2+r)2T]

= const[max(r, q')]"~' '.
Since this expression is multiplied by ((&(q)

-max(q', r) the second term on the right-hand
side of (53) behaves as [max(q', r)] ' '~ ', which
is small for d & 2. Replacing the coefficient of A,
in (50) by unity we have

K.x-(p) = ~-x-(p) .

The eigenvalues are

(46) The other constants can be estimated by similar
arguments, but we shall not need them. The nor-
malization constant B, has the form

= (d(q)
q

and the corresponding eigenfunctions

(47)

B,=2sinh
2 p (55)

x (p)=fl.5(P-q)

~(p)+P
( ) (

)[A, x, (p)+Ax x2(p)

+ ' ' 'Ad+x Xd+a] (48)

where P is a dimensionless function. The first
factor in (55) normalizes the 5 function, and the
factor P adjusts the normalization after orthogonal-
ization.

P means principal value and A s are constants to
be determined from the orthogonality conditions

&x, x-)=o:

().(x, x(t) —x)& & x, )'
x ( &

x,)
~(p)

d+2 Xl P
)

Xd+2 0 49~(p)
urP -eg

fl.&x., 5(q-p»+A. X~»
( ) x. =o, (5o)~(p)

xx.(x„., x(t( —X))&'&, x...,
x'

( )
x )

~(p)

+Ad X P
)

Xd 0 5~)~(p)
(d P —(d g

We have a system of linear equations for A;. After
solving for A& one finds B, from the normalization
condition

V. TRANSPORT COEFFICIENTS

We are now ready to evaluate the expression
(40) giving the singularity in the temperature de-
pendence of the heat conductivity. We need the
matrix element (the enthalpy terms do not contri-
bute by orthogonality)

~(p)
(x) x*)

"(x* x(x -t))&) (56)

Here only the 5 function and the A, term in X con-
tribute and we also used (54). For small q the sec-
ond term in (56) dominates and gives

(x- x-p= (»)'5(q - q') .q' q
(52) sinh[(r + q'/2)/2T] ' (57)

As we shall see later, we need only solutions for Thus we get finally for z
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u' ~ (2x)' sinh'[(r + q' /2) /2T]

1= const —,p', ~, (58)

K constp",

we conclude that

(59)

z =2. (60)

The calculation of viscosity is much simpler and
we will just quote the result:

1 , 1
q= —,const+const' —,P", '. (61)

g remains finite at T,. This is consistent with
scaling, which predicts

1
q =—const+ —const'p'-' .

R Q
C (62)

The most singular part of the sound attenuation

where p, is the inverse correlation length, p, -vr .
Comparing this result with the form expected from
scaling

coefficient is determined by the 1 „part and has
the same singularity as v:

I' = constp", ~ . (63)

Formulas (39), (59), a,nd (63) are the principal
new results of this paper. The result (62) for
viscosity is the same as obtained by Ma and Sen-
betu. 4

It is gratifying to see that a kinetic-theoretical
approach to critical dynamics works and gives
sensible results at least for one example. It was
crucial that we have a kinetic equation which is
valid in the neighborhood of the critical point.
Moreover, the equation is quite similar to the
Boltzmann equation, so that the machinery of the
kinetic theory can be used on it. In contrast to
this situation, explicit kinetic equations for realis-
tic systems (e.g. , helium) are not known. Their
derivation (perhaps by e or 1/n expansion of the
collision integral) is a major unsolved problem
of critical dynamics.

I thank E. Abrahams for comments and G.
Grest for useful criticism of the original manu-
script.
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