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It is shown how the tricritical crossover exponent P can be determined directly from experimentally accessible
quantities. The analysis of previously published data gives $ = 1.95~0.08 for 'He-'He mixtures, and

P = 1.95 ~ 0.11 for the antiferromagnet dysprosium aluminum garnet. These results are in good agreement with
the present theory which predicts P = 2.

I. INTRODUCTION

There has been considerable interest recently in
the behavior of systems near tricritical points. '
In analogy with the theory of critical points, ' the
values of the various tricritical exponents are of
prime importance. One tricritical exponent which
plays an important role in the theory is the cross-
over exponent P.' ' The exponent P describes the
shape of the phase boundaries in field space, and
also determines how exponents are "renormalized"
depending upon the path used to approach the tri-
critical point. ' Although Q has been estimated
from experimental data by indirect means such
as from the ratio of two other exponents, e its val-
ue has yet to be determined directly. The reason
for this is that until now it has not proved possible
to separate the contribution containing P from the
regular or nonsingular contribution in various
thermodynamic quantities. In this paper I point
out how this separation can be made and thus show
how P can be extracted directly from experimental-
ly accessible quantities. This makes possible the
first direct experimental determination of P.

According to both scaling"' and renormaliza-
tion-group' theories, the "fundamental" fields for
describing tricritical behavior are the scaling
fields g, and g, . Although it has not yet proved
possible to determine the scaling fields for any
real system, it is known that the scaling fields
are analytic functions of 0 and T, and that one
of them is parallel to the phase boundary at the
tricritical point while the other is not. In the fol-
lowing we will take g, to be the tangential scaling
field (see Fig. 1). The theories predict that; near
the tricritical point the singular part of the free
energy obeys the functional equation4

&.(1 'g „fz2) = i'" "'&.(~i z2»
where a, is a susceptibility exponent and l is an
arbitrary (positive) constant.

As shown by Riedel, ' and Hankey, Stanley and
Chang, ' the equation of the A line in the g, -g, plane
follows directly from (1). On the A. line E, is singu-
lar, ' and from (1) we see that if E, is singular at
the point (g„g,) then it must also be singular at

II. THEORY

The phase diagram in field space near a tri-
critical point is shown in Fig. 1.' Here T is the
tempexature and II is the nonordering field. In
antiferromagnets, & is the internal magnetic field
while in 'He-4He mixtures it is the chemical poten-
tial difference between the two isotopes. The
phase boundary separates the ordered phase which
is present for small T and H, from the disordered
phase. In antiferromagnets these two phases are
the antiferromagnetic and paramagnetic states,
while in helium mixtures they are the superfluid
and normal fluid phases. For temperatures less
than the tricritical temperature (T,) the phase
transition is first order while for T & T, it is sec-
ond order. The phase boundary for T &T, is a
line of critical points and is often referred to as
the a line.

FIG. 1. Tricritical-point phase diagram with the tri
critical point (TCP) as indicated. The heavy line is the
phase boundary. Also shown is one possible orientation
of g& and g2.
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(l @g„lg, ). As l is arbitrary, this gives a para-
metric representation of the A. line. Elimination
of l glves5, 7 ~ lo, ll

where D is a constant. From (2) the equation of
the A. line in II-T space can be derived. Defining
l =(T —T, }/T, and h =(H H&)/-~„where H, is the
tricritical value of H, and using the analyticity of

g, andg, we have

dh
g = h- —t+at'+ bh'+ cth +

dt t

g, =t+eh+ ~ ~ ~,

where (dh/dt), is the slope of the phase boundary
at the tricritical point in the appropriate units
and a, h, c, and e are (unknown) constants. In-
serting (3} into (2) gives for the equation of the ~
line to lowest order in t

the tricritical point. Assuming only that P&1 and
that the exponent P„~l (which has been found ex-
perimentally to be the case for the systems we
mill be considering), it is shown in the Appendix
that the equation of the path M=M& has the form'

where the effects of the regular part of the free
energy have been included. From (8) and (3) the
equation of this path in h-t space is

h = — t+E't +a't'dh
dt S

7

where E' is defined in analogy with D' and we have
again dropped all terms of order higher than t'.
The crucial feature is that the regular contribu-
tions in (4) and (7) are equal, and thus the differ-
ence h~ -h~ is free of regular contributions to
order l'. From (4) and(7) we find

dh
h = — t+D't @+a't'

where D' and a' are given by

O' =D e — +1

a'= —a —c ——b

(4) Since the quantity h„-hz can be readily measured,
{8)can be used to determine P.

I should also note that there is another combina-
tion of quantities mhich can be used to determine

From (1) it can be shown" that the equation
for the first-order line has the same form as (2).
This leads to a relation analogous to (4); we find

In (4) we have dropped terms of order i', l», . . . ,

which arise from the expansion of g„and also
terms of order t' ' t'~ ' . and t ~" t
which arise from the expansion of g, . In the fol-
lowing we will be concerned only with cases in
which P & -,' and thus these terms can all be safely
neglected in (4).

The last term in (4) is the regular or nonsingu-
lar contribution. The present theories'" predict
P = 2, and hence the "singular" and nonsingular
terms in (4} are predicted to be of the same order
in t. However, experimental data in conjunction
with (4) cannot be used to test this prediction for
the following reason. Given data for hz over only
a finite range of t, it is impossible to distinguish
in(4) between the case @=2, and the case Po2
with D'«a'. The fact that experimental data for
h~ ean be fit to (4) with Q =2 may only indicate
that D'«a', and therefore it is not possible to
determine P from the shape of the A. line alone.
This fact has been noted previously by Riedel,
Meyer, and Behringer. '

I would like to point out that it is possible to
use additional experimental data to separate the
singular and nonsingular contributions in (4). Let
M denote the nonordering density (the magnetiza-
tion in an antiferromagnet and the 'He concentra-
tion in helium mixtures) and let M, be its value at

where h, denotes the value of h at the first-order
line. Since the regular contributions in (4) and (9)
are equal, it is possible in principle to separate
it from the singular terms. There are, however,
several complications which would be encountered
in the use of (9) which do not arise when(8) is
used. First, since l is positive in(4), but nega-
tive in (9), the difference h1-h, is given by

Thy' the slope of the pllase boundary (dhldf)1
must be estimated before (10) ean be used to de-
termine Q. Second, (10) requires the comparison
of measurements made at different values of T
(but at the same value of I tI). Because of these
complications, it would appear that the use of (10)
is intrinsically less accurate than the use of (8)
in the determination of P. However, (10) may be
useful in cases where the path M = JI/J, cannot be
determined.

III. EXPERIMENTAL RESULTS

The data tabulated by Goellner, Behringer, and
Meyer" and Riedel, Meyer, and Behringer has
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been used to estimate ~x, —~~ as a function of T
for 'He-'He mixtures. " Here and below we use
the conventional notation for helium mixtures and
denote the nonordering field and density by ~ and
X, respectively (i.e. , &- 6 and M-X). hz is the

t
value of ~ along the path X =X, and &„ is its val-
ue on the a line. [The reduced quantities
(&„—6, )/&, and (&~ —&,)/4, cannot be estimated
since &, is not known. '] A plot of (&„—4~)'" vs

t
T is shown in Fig. 2." The data are plotted in
this way so as to test the theoretical prediction' "
/ =2, and we see that the results are in good
agreement with this prediction. Even though the
data correspond to fairly large values of t, we
note that the scaling region in helium mixtures
has been found to extend up to T = 1.25 K,' and
therefore (8) should be valid up to approximately
this temperature. It is interesting that the data
seem to follow the asymptotic behavior out to at
least 1.40 K. This may be due to partial cancella-
tion of the higher-order terms in (4) and (7) when
the difference (8) is taken. A least-squares fit to
the data shown in Fig. 2 with the value of Tt con-
strained to lie within the limits determined in Ref.
13 gives P =1.95+ 0.08 where the quoted uncertain-
ty is the standard error. " This is in good agree-
ment with the value 1/p = 0.48 + 0.03 determined by
indirect means. '

Fig. 3 shows a plot of (h„-h ~)'~' vs T for dys-
t

prosium aluminum garnet with H along the [110]
direction. The data are taken from the work of
Giordano and Wolf, "' and are all from within the
scaling region. From Fig. 3 we see that the data
are quite consistent with the theory although the
scatter is somewhat larger than in Fig. 2. It
should be pointed out however that in terms of

0.2—

1.8
I

2.0

FIG. 3. Plot of (h~ -h), )' vs T for dysprosium
aluminum garnet with H along [110]. The arrow indicates
the value of 1t, 1.808 K, as determined in Ref. 1.
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reduced temperature units, t, all of the data in
Fig. 3 lie within the range covered by only the
first two points in Fig. 2. A fit to the data in Fig.
3 with the value of T, constrained to be within the
limits" determined in Ref. 1 gives (II)

= 1.95 + 0.11.
In summary, it has been shown how the tricriti-

cal crossover exponent P can be determined direct-
ly from experimental data. Previously published
data for 'He-'He mixtures and dysprosium alumi-
num garnet have been used to estimate P, and the
results for both systems are in good agreement
with the theory. The method of analysis is quite
straightforward and should prove useful in the
analysis of other tricritical-point experiments.
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APPENDIX

It will now be shown that the path M =I, in the

g, -g, plane is given by (6). Let M, denote the sin-
gular part of M. Differentiating both sides of (1)
with respect to Il and setting the arbitrary parame-
ter L equal to ~g, (

' gives

Ig, l
"+'M, (g„g,)=lg, l

~ ' F„(g,/Ig, l~, +1)

-i 82+lg, l

'
sH' +..(g, /g, ', +1),

FIG. 2. Plot of (Dzt-L&)' vs T for He- He mixtures.
The arrow indicates the value of Tt, 0.872 K, as deter-
mined in Ref. 13.

where the subscripts 1 and 2 on I, denotes differ-
entiation with respect to the first or second argu-
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ment, and the argument +1 indicates g, &0. Re-
arranging and using the scaling relation4 p„
= p(1 —o. , ) gives

R is a correction term and we will show that R is
of order g,' with e &0. Substituting (A4) and (A5)
into (A3) with M=M, gives

M(g„g) =
I gP. (,»' F„(g II @~I', ~ &)

+It, l

-'
~

* F„&g,/I g, l~, ~ 1&) .

0 =aug, i
~ F„(E+ER)+Bg,+AEi g, i (1+R)

+b, l g, l

8~'@ 'F„(E+ER)

+&pig, i "g, F„(E+ER), (A6)

(A2)

Inherent in scaling theory and hence (1) is the
assumption4 P & 1, so just as is the case for the
equation of state near an ordinary critical point, '
the second term in the large parentheses in (A2)
will become negligible near the tricritical point.
However, this term will be included in the follow-
ing, so that we can estimate the functional depen-
dences of the correction terms to (6).'o

To get an expression for M, the regular part of
M must be added to (A2). The regular part of M
can be expanded about the tricritical point in a
power series in g, and g, . Sufficiently near the
tricritical point we need keep only the terms lin-
ear ing, andg„we have

where we have dropped terms of higher order in
g„which as will be seen can be neglected in the
following. Away from the critical line, F„and
F» can be expanded to give

0 =
[ g, [

s"[ao F„(E) + CR ]+Bg, +AE I g, I (1 +R )

+ 5,[ g, [
s~+ @ '[ F„(E) + C 'R ]

+( g, [8~g,[a, F„(E)+C "R], (A7)

where C, C', and C" are constants.
As the solution for R depends upon the relative

values of P„and P, we will for simplicity discuss
several possible cases separately. If 1 & P„&0 and

P„+P &2, then we need consider only the first two
terms in (A7). (A'I) is then satisfied to order g.,
when

M —M, =Ag, +Bg, +
~ g, ~

" F»8„gi F„(E)=0,

R = —(B/C)( g, )'

(A8)

(A 9)

+Is I' ',z &. (
~g

)

(A3)

where we have condensed the notation for F»(x, + I)
to F„(x), etc. , for F„. From (3) &g, /SH and Sg,/
BH are analytic functions of h and t, so to lowest
order we can write

F„(E)= -B/a„
R = —[[AE+b Fo„(E)] C/) ) g(@- u8.

(A10)

(A11)

(A8) determines the value of E," and from (A9)
we see that R vanishes as g, -0.

Next, consider the case p„= 1, 2 & p & 1. Now

only the last term in (A7) can be neglected. (A7)
is then satisfied to order g, when

Qp +a,g, +a,g,

Ap + 5] gy + 52g2
Bg2
~H

The equation for the path M =M, in the g, -g,
plane is found from the solution of (A3) with M
=M, . It will now be shown that this solution is
given by

g, =&I g.l~(1+R) .

(A4)

(A5)

(A10) determines E, while (All) shows that once
again R vanishes as g, -0.

Similarly, one can show that for P„=1, p&1,
the solution to (A7) is given by (A5). It is inter-
esting that although the regular part of the free
energy can affect the value of E in (A5), to low-
est order in g, it does not affect the form of the
result. The presence of R in (A5) will lead to
terms of order t ~" in (7). Since as we have
shown, e &0, these terms will be negligible as
t -0.
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