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The hydrodynamic energy for a system of vortices in a flowing superfluid is considered. We obtain the
conditions in which the energy of vortices is reduced due to superfluid flow under a specified set of
constraints, and the amount of this reduction. The deceleration of the superfluid (or the amount of extra
pressure required to maintain constant superfluid flux) on vortex generation is calculated. The general theory
is applied to two simple situations: superfluid flow in a smooth channel and superfluid flow through an

orifice.

I. INTRODUCTION

Onsager' and Feynman?® proposed the existence of
quantized vortices to explain the results of experi-
ments on the moment of inertia and meniscus of
rotating superfluid helium. Quantized vortices
have since been observed in helium in flow through
channels®* and orifices,® and in the transport of
ions.%7 In these latter experiments vortices form
as rings. The significance of vortices in producing
phase slippage and deceleration of the superfluid®®
has also since been recognized.

Some nagging questions about production of vor-
tices have, however, largely remained unan-
swered. One concerns the critical velocity of flow
to produce vortices. This question has only been
answered by a dimensional argument by Feynman.?
Several later authors have sought to use the Landau
criteria for phonon and roton generation for gen-
eration of vortices. Since the momentum of a vor-
tex is not a well-defined quantity owing to the long-
range nature of the velocity fields associated with
a vortex, they have replaced momentum with im-
pulse in the Landau criterion. The appropriate-
ness of this substitution is, however, far from
clear, particularly in bounded media. (This ques-
tion is discussed at length in Sec. IIID.)

In this situation a hydrodynamic calculation of
the energetics of vortices in a flowing superfluid
is worth doing. We have sought to answer the
questions: What are the conditions in which
the energy of vortices is reduced because of super-
fluid flow under a specified set of constraints, and
what is the amount of this reduction? Besides the
constraints imposed by the geometry of super-
fluid flow we have found it important to specify
whether the flow is with total flux held constant or
the total circulation along a given path held con-
stant. With this information in hand, we have ob-
tained the conditions for vortex generation in a
given geometry and the amount of deceleration of
the superfluid on vortex generation for the case

of constant circulation (or the extra pressure re-
quired to maintain constant flux). Unambiguous
answers to these questions are obtained from
purely hydrodynamic considerations and without
introducing the concept of impulse, In turn we are
then able to clarify the use of the Landau criterion
for vortex generation.

There are other more fundamental questions con-
cerning the process of vortex nucleation. As em-
phasized especially by Vinen,® superfluid helium
and vortices are described by macroscopic wave
functions, which in effect make them “classical”
objects. The tunneling barrier from one state to
the other involves changes in the wave function
over macroscopic distances and is well-nigh im-
penetrable. The way out of this difficulty is to in-
voke the presence of surfaces from which vorticity
may be introduced into the liquid. This gets one
into questions of coherence near a surface and the
microscopic nature of the core of a vortex. Such
things are very imperfectly understood. We will .
not be able to say much about this basic question.

The plan of this paper is as follows: We con-
sider, in Sec. II, general properties of the hydro-
dynamic interaction energy of superfluid flow and
vortices. In Sec. ITII, we specialize this discussion
to a superfluid flow in a single channel with a vor-
tex. We derive the condition for vortex generation
with specified constraints and clarify the connec-
tion between the results here and the interaction
energy obtained from a naive use of impulse. For
detailed applications, we consider in Sec. IV and
V, respectively, two cases: a vortex ring in flow-
ing superfluid in a circular tube and a vortex in
front of an aperture through which helium is flow-
ing. The energies of the vortex ring in these two
geometries, with superfluid flow specified to be
zero, have been considered by Van Vijfeijken,
Walraven, and Staas'® and by Walraven,!! respec-
tively. One of the results obtained in Sec. IV and
V is that the interaction energy for the same flow
is larger for the orifice geometry than for the
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smooth channel. This puts on a quantitative footing
the preconception that vortices preferentially form
near sharp protuberances.

II. HYDRODYNAMIC ENERGY FOR ARBITRARY
FLOW PATTERNS

Our approach is as follows. We suppose that the
energy of a container of superfluid with or without
vortices—except perhaps when the cores are close
to the walls—is given by classical hydrodynamics.
The only question about this assumption seems to
involve small corrections to the energy of a vor-
tex, due to proper treatment of the core. Our
treatment is sufficiently general that these could
produce only minor numerical effects.

Next we suppose that we can discuss vortex for-
mation under conditions of no outside interference;
that is, we start with a flow pattern in a multiply
connected region and ask whether vortices can
form and whether they will result in a decrease of
the flow. Under these assumptions it is clear that
they can form only if the energy with the vortex
is no greater than that without—generally we might
imagine that with the vortices present some of the
pure hydrodynamic energy will be converted into
heat.

So far, the subject is quite simple, but then we
run into the question of rates and mechanisms of
vortex formation. In common with previous work,
we find this to be difficult and will not be able to
say very much that is useful. A significant ad-
vantage of our method is that the question of de-
fining the proper momentum or impulse is entirely
avoided.

A. Circulations and fluxes

We now concern ourselves with the classical
hydrodynamics of irrotational flow in a multiply
connected region. The multiple connection has
two sources. First, the vessel may be multiply
connected, as in the case of a torus. Second,
the presence of vortex rings requires that regions
about their cores be excluded from the volume in
which the flow is irrotational. Flow in such a case
is discussed by Lamb,'? whose results we now
adapt.

In an n-connected region we can, by definition,
draw n - 1 independent closed circuits equipped
with arrows to indicate the positive direction.
There are, in general, many ways the circuits
can be chosen but we shall adopt the requirement
that for each vortex there is a circuit which goes
just around its core so that it could be shrunk to
vanishing size in the absence of the vortex. The
remaining circuits, which can still be drawn in
more than one way, will be called container cir-

cuits.

Now, to make the region simply-connected, we
insert mathematical barriers or cuts, each of
which is completely bounded by the walls and/or
vortices and intersects exactly one circuit, whose
name it takes. Such a cut has a front and a back,
such that the circuit goes in its positive direction
from the front surface, through the fluid, and re-
turns to the back. The integral

Cc-= f;-d’l 2.1)

over the circuit in this forward direction is called
the circulation and is equal to the velocity-potential
discontinuity (@y,q = @4rone) Which must exist at the
barrier for the given flow pattern. Through each
cut there will be a flux of fluid ® which is positive
if it goes through from back to front. We shall
adopt the convention of labeling container circula-
tions and container fluxes by greek subscripts
(thus C,, ®,, etc.) and vortex circulations and
vortex fluxes by latin subscripts (thus C,, &,,
ete.).

There is one subtlety. For each vortex, there
are two ways of inserting the cut which satisfy
all our conditions. One, usually considered nat-
ural, is a cut whose entire boundary is the vortex.
The other is an annulus bounded by the vortex and
the wall. Physically, it makes no difference. Ei-
ther method is perfectly proper. On the other
hand, for a given flow pattern, the container cir-
cuits must not pass through vortex cuts. Thus at
least one container circuit will have to go inside
the vortex if the cut is outside and outside if the
cut is inside. Its circulation in the two cases will
differ by the circulation of the vortex.

This is still no problem for a given flow. What
we shall do, however, is compare two different
flows, one with a vortex added, the other without.
It will be appropriate to compare these flows for
fixed values of the container circulations when the
circuits go through regions unaffected by the nu-
cleation and growth of the vortex. Thus, if we
envision a vortex ring nucleating in the interior of
the fluid and growing in area, we will want to keep
fixed the circulation over the circuit avoiding the
vortex. Accordingly, the cut would be made with
the vortex as its entire boundary. On the other
hand, if we envision the vortex ring nucleating at
the wall and growing in from the wall, the circula-
tion along a path through the ring should be fixed;
the cut should be made from the ring to the wall.

B. Energy with specified circulations

We now express the energy of the flow pattern in
terms of the circulation. Experimentally the con-
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dition of constant circulation arises, for example,
for superfluid helium rotating in a torus (without
any external forces). The energy is then given by

2E=Y,,C,C,+2Y,,C,Cq+Y,C,C,. (2.2)

LA

The fluxes through the cuts ¢, «, etc., are ob-
tained by

9F

‘I’f:a*cf Y;,C;+Y,Cq, (2.3)

¢a=a_f’c‘_€;=ywc,+ Y4sCs- (2.4)
Therefore, equivalently,

2E=9,C,+2,C,. (2.5)
Also

Y=Yy (mym=i,3..., a,B...). (2.6)

These equations can be deduced from Lamb,

Ref. 12, pp. 54-56, as well as the requirement
that Y be a positive definite matrix.

The reader will not fail to notice a close parallel
with electric circuits, with voltages corresponding
to circulations, currents to fluxes, and Y, to the
admittance matrix, which we shall call it.

C. Energy and enthalpy with some circulations
and some flows specified

Since the ®’s are completely determined by the
C’s we can replace any number of C’s with ®’s
as independent variables. We shall show the form
only for the case where we specify C,’s and ®,’s.
This situation arises, for example, if a piston is
pushed at a constant rate through a tube containing
superfluid helium so that the flux through the con-
tainer cut is kept constant. From Egs. (2.2)-(2.6)
one can obtain

2E=Z7,%,8,+7,,C,C,, (2.7)

Co=Zos®s~ Zos¥5,C,, (2.8)

$;=Y,0Z 4%+ 7ijc.f ’ (2.9)
where ’

751: Y= YaZypYs; (2.10)

and Z is the inverse of the greek-letter block of

Y and plays the role of impedance matrix for irro-
tational flow in the container. We note that there
are no cross terms in the energy between &’s and
C’s. (This is a purely mathematical feature of
quadratic forms and would be true for any set of
C’s and ®’s we chose as independent variables.)
Thus for a given set of ®’s, the energy is a mini-
mum when no vortices are present. This is a very
slightly special case of the generalized Kelvin
theorem (Lamb, Ref. 12, article 55) that the en-

ergy is a minimum for fixed ®’s when the flow is
irrotational.

There is an analogy here with the expression of
the energy of a mechanical system as a center-
of-mass kinetic energy plus the energy in the cen-
ter-of-mass frame. This analogy will be exact in
a special case considered in Sec. II.

While we have seen that E is not a “potential”
for obtaining ®; and C, by differentiation, when
®, and Ci are given (as it is for the case where
all C’s are given), it is easy to obtain such a po-
tential by Legendre transformation.

Consider
2H = Y,.jCiCj+2Y,aC,.Ca
+Y,5C,Ch-29,C, (2.11)

to be evaluated when minimized with respect to
C,. By appropriate addition and subtraction (2.11)
can be rewritten as

2H=Y,C,C;+ Y lCo+2,,(Y,,C, - 2,)]
X [Cg+ Zgg(Y5,C ;= ®)]
= Zog(Y,C;— @ )(Y,,C, - 2,). (2.12)

@jT

Now the second term in (2.12) is a positive definite
quadratic form. Therefore H is minimized with
respect to C, when the second term in (2.12) is
zero. Thus, using (2.10),

2H=7;,C,C;+2Z,,Y,C:®, - Z,,8,8,. (2.13)
Clearly we now have

oH oH
3¢, Com=3g," (2.14)

®

We may by analogy call H the enthalpy of a hydro-
dynamic system.

Now if the flow starts with all C,;=0, and a set
of C,’s, we are interested in whether at a later
time some C,’s may be nonzero. The total energy
T must be unchanged, but this consists of not only
E, attributable to the flow pattern of interest, but
also of energy which may have gone into heat.
This must be at least as great at the later time;
therefore E at the later time must be no greater
than at the earlier.

Now let us relax the condition of fixed C,’s, sup-
posing that the barriers become physical with pos-
sible pressure differences across them. Then the
rate of change of T is

ig_z_ fds.;p, (2.15)
where p is the pressure difference across the bar-
rier, Vv is the velocity field, and we integrate over
the barrier. For the conditions we consider, how-
ever, p is just —p(¢ +3v%), where ¢ is the velocity
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potential. Under some circumstances, it is a good
approximation to neglect differences of pv? across
the barrier and set the discontinuity in ¢ equal to
the constant C;, even when the barriers are physi-
cal rather than mathematical. (This is the case,
for instance, if the barrier represents a piston
far from the ends of a uniform tube.) Then dT/dt
becomes lI>aC'm. When @, is constant, then
T-@,C, is a constant, as T was for constant C,
and differs from H by the heat energy, as T did
from E. Thus for conditions of constant &,, H
plays the same role E did for constant C,.

III. SINGLE VORTEX RING IN A CHANNEL
A. Definitions

Now let us consider a container topologically
equivalent to a torus. Its one container circuit
will be given @ =0. We also add a vortex ring,
with 2=1. We eliminate some subscripts by re-
placing Y, Y,,, Y, by Y, fY, 71,, respectively.
Thus 3Y,C? is the energy of a vortex with &,=0
(not C,=0)—a choice made simply because this
quantity is a bit more directly calculated and has
been calculated for a number of geometries,'® !
Both Y’s and f depended on the geometry of the
tube and the vortex. fis ®,/®, for C,=0. Recall-
ing that there are various ways of making the cut,
we find some relations between the corresponding
f’s.

First, consider a full cut across the channel,
with front and back chosen in the same sense as
for the container cut, which contains the vortex
ring. Now remove the part between the ring and
the wall. The f for the remaining cut will be f,.
This choice then determines the positive direction
for the vortex circuit. If we make the other choice
for the vortex cut, namely, the part we just dis-
carded between the ring and the wall, we must re-
verse back and front if we wish to maintain the
same sense for the vortex circuit. Thus, for this
case, fis f,~ 1. For the other two choices of back
and front we would reverse the signs of the f’s and
of the circulation. Recall also, for the two
choices, C, differs by C,, since the container cir-
cuit goes on different sides of the ring.

B. Criteria for generating vortices with constant circulation

With these preliminaries out of the way, we can
specialize the results of Sec. II as follows:
The energy is givey by

2E=Z82+Y ,C? (3.1a)
=YC2+2fYC,C,+ |V, +f2Y|C2, (3.1b)

while the flux through the container cut and the

vortex cut are given, respectively, by
&, =Y(C,+fC)), (3.2)
®,=Y,C,+f®,. (3.3)

The enthalpy (with flux through the container cut
specified) is given by

2H=Y,C2+28,fC, - Z&2, (3.4)

We note that if C, has the right sign to reduce
[$,! it also reduces E linearly, and conversely.
This is an immediate consequence of (3.2), since
the latter implies that if a vortex is formed with
no increase in energy, ¢, must be reduced. It is
easily checked that while C, and f are individually
different for the two cuts, C,+fC, is the same—®,
is a physical quantity.

The criterion for forming a vortex without an in-
crease in energy can be written

-2fC 8= (Y, +f2Y)C?, (3.5)

when ®3=YC,.
The deceleration produced by the addition of a
vortex is clearly

ad =-fYC,. (3.6)

From (3.6) it is straightforward to derive an equa-
tion for the change in superfluid velocity in a given
geometry. We do this for two simple geometries
in Secs. IV and V.

C. Criteria for generating vortices with constant flux
through the container

If we consider the matter at constant flux &,
instead of constant C,, and assume as suggested
above that the appropriate criterion is that H
should not increase, we find instead

-2fC,$,2Y,C? (3.7

v 1

and the decrease of circulation through the con-
tainer cut by addition of a vortex is

AC,=1C, . (3.8)

The first of these represents an easing of the re-
quirement for vortex production compared to (3.5),
which can be significant, as will be seen below.
The second can be regarded as an impulsive pres-
sure which must be applied to the barrier to main-
tain the flow in a quasi-steady-state. With v vor-
tices being produced per unit time, there would be
an average pressure of UfC, required to maintain
the flow.

D. Comparison with previous work

In the past, people have tried to obtain results
of this type by following the example of Landau’s!®
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work on critical velocities for phonon and roton
creation. This argument makes essential use of
the momentum of an excitation. A vortex, how-
ever, has a long-range velocity field, which is
not absolutely integrable. The total momentum is
therefore undefined in an unbounded region, and
highly sensitive to boundaries in bounded regions.
Kelvin showed long ago that for many purposes one
could use a quantity he called impulse, which is
well defined for a vortex and obeys a conservation
law like that for momentum, in an unbounded in-
compressible fluid. It has therefore seemed natu-
ral to use impulse in the Landau criterion instead
of momentum.,

The objections to this procedure are as follows:

(i) The essential property of momentum used
by Landau is that the Hamiltonia& H of a system
in a frame moving with velocity V is related to
that, H,, in a frame at rest by H=H,- P-V. This
was never established for impulse, as far as we
know.

(ii) Since the use of impulse in lieu of momentum
is based on their shared conservation properties,
there is no indication of what to do in situations
where neither is conserved, as in a channel with
varying cross section.

It could be argued that these objections could be
circumvented at least in some cases. We would
respond that our method removes the point of do-
ing this. The key advantage of the present method
is that within the domain of irrotational hydro-
dynamics, conservation of circulation is much
more powerful and more generally applicable than
conservation of either momentum or impulse.
Moreover, the energy appears in a form which
does not require the use of a moving frame of
reference as in the Landau argument.

The relation between our point of view and those
of previous authors may be seen most clearly by
a further specialization to an ideal torus of cross
section A and length L with A/L2<<1. Then Y
=A/L, f,=A,/A, and f?Y <Y, (No difference
arises in this simple geometry for the case of con-
stant circulation and constant flux through the con-
tainer cut.) Here A, is the area of the projection
of the vortex ring on a cross section of the torus.
Equally well, we can think of a straight tube of
area A and length L, imposing periodic boundary
condition on the velocity. Now, defining v=®J3/A,
(3.5) and (3.7) become, if we make the cut across
the vortex ring,

-20C,A, <7 ,C? (3.9)

and, if the cut is made between the ring and the
wall,

20C,(A-A)=T,C2. (3.10)

The first of these is just what one gets from a
Landau argument, using the impulse A C, as the
momentum. The second form would be obtained
if, instead, Huggins!'? suggestion for a modified
impulse were used.

Referring back to the discussion of cuts, we can
say unambiguously that if the vortex is nucleated
in the interior and grows out, the first form is
appropriate, while the second is correct if it grows
in from the wall. This correspondence was also
made by Huggins® on the basis, we feel, of some-
what less rigorous arguments about impulse.

IV. CALCULATIONS FOR A VORTEX RING
IN A UNIFORM CHANNEL

Consider the case of a uniform channel with a
vortex ring that starts with a radius nearly that
of the channel. The cut due to the vortex, S, (see
Fig. 1), is then the surface between the channel
and the ring. The energy in this situation is given
by (8.1a) or (3.2), where for a uniform channel of
cross section A and length L

Y=8,/C,=A/L , (4.1)

and f is simply the fraction of cross section oc-
cupied by S,, with appropriate sign. If C, is as
shown in Fig. 1, i.e., if the flow due to C, is op-
posed to that of C, on S,, f is negative. In this
case the interaction term 2fYC,C, leads to a re-
duction in energy. The vortex tends to shrink if
it can dissipate the energy.

Now we shall consider the energetics of the sit-
uation in detail for a circular channel of radius R,
and a vortex of radius R. In(3.1b), the additional
term f2YC? coming from writing the vortex energy
in terms of Y, is unimportant if the channel is long
enough. By comparison of (3.5) and (3.7) it follows
that the condition for vortex generation in the pres-
ent geometry is the same for the case of specified
total circulation and specified total flow.

The interaction term in (3.1b) can be written in
terms of the flux ¢, through the channel:

2fYC,C, = (R? - R)/R2®,C, . (4.2)
The term Y,C? in (3.1b) has been calculated in this

FIG. 1. Geometry of circulation due to flow in a tube
and circulation due to a vortex ring.
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geometry by Van Vijfeijken, Walraven, and Staas.
In Fig. 2, we reproduce their results. For R <R,,

E, =3pC3R[In(8R/a) - 2], R<R, 4.3)

(a is the core radius), the customary value for
energy of a vortex far from any surface. For

6=(1-R/R,)<1,

4.4
E,=1pCIn(6/5,) , (4.4)

where 8,=a/2R,. The position of the maximum in
E,, R,, depends weakly on §, and is around 0.9R,.
The decrease in E, from that given by (4.3) is due
to the interference of the flow pattern due to the
vortex in the channel with the flow pattern due to
image vorticity introduced to satisfy the boundary
conditions on the surface of the channel. This
hydrodynamic calculation of the energy cannot be
trusted for /a—~1, but is adequate near R~R..

For vortex generation and deceleration of the
superfluid at 7=0, conditions (3.5) or (3.7) must
be satisfied for all positions (radii) of the vortex
from its creation to its eventual disappearance or,
if it exists, to the position of a local minima of
energy, where it will have a stable radius. The
latter is not found in the present geometry. From
the foregoing discussion of the energetics, a vor-
tex formed at the walls can contribute to the de-
celeration only if the interaction energy (4.2) is
equal to or larger than that plotted in Fig. 2 for
all values of R. In view of the maxima at R ~R_,
® must therefore be larger than the characteristic
value &, at which

C,®,(R2-R2)/R3~E (R,). (4.5)

For & = &, the vortex nucleated at the wall will
ultimately shrink to zero radius. Noting from
Fig. 2 that R,~0.9R, and E (R ) ~3pC?:R, for 0§,

a/Ry =107

a/Ry=10°*

FIG. 2. Normalized energy of a vortex ring of radius
R in a circular tube of radius R, as a function of
= (R, — R)/ R, for zero flow in the tube, after Van
Vijfeijken, Staas, and Walraven, Ref. 10.

=10, we estimate from (4.5) that the velocity to
generate vortices is about 0.2C,/R,.

If we consider vortex nucleation due to thermal
fluctuations at finite temperature, the probability
of nucleation is proportional to exp[-E,(®,)/kT],
where

E,(®,)=E,R,) - C,®,(R>- R%)/R2, (4.6)

where R, the position of the maximum in E_, will
depend weakly on é,.

We reiterate that the barrier reduction in (4.6)
comes about only for vortices of the proper sign
for the circulation, so that the flow pattern of the
vortex opposes that of the channel in S;,. The ve-
locity of the vortex along the channel is given by

. dE
V.= (2rReCy)" o 4.7)

for constant container circulation, and

dH
V.= (@nRoC ) 2 (4.8)

for constant flux through the container. From
(4.7) and (4.8) one can conclude that the vortices
that penetrate the barrier and contribute to the de-
celeration of the superfluid move along the channel
in the same direction as the flow through the chan-
nel. The deceleration of the superfluid due to a
vortex generated at the surface and shrinking to
zero radius is, from (3.6),

A(I>=—YC1=—AC1/L. (4.9)

If v is the rate of generation of vortices per unit
length of the channel, the force communicated to
the fluid is p(A®)vL and the pressure W is
p(A®)vL/A. The superfluid velocity then decreases
according to

dv w
= = — ] -
_idt Vi v(p > Cyv, (4.10)

where . is the chemical potential. Equation (4.9)
was written down on dimensional grounds by
Langer and Reppy.? It was derived, independently,
by Huggins.'® (The present derivation is consider-
ably simpler.)

If we imagine, as has been implicitly assumed in
the literature,® that a small vortex is nucleated
and grows to the radius of the tube, a similar anal-
ysis shows that such a vortex will move along the
channel in a direction opposite to that of the flow
through the channel. For the reasons stated in the
Introduction we consider such a nucleation hard to
envisage and favor nucleation at the walls. An ex-
periment capable of measuring the velocity of a
vortex along the channel could distinguish between
the two possibilities. Our remarks on the direc-
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tion of vortex motion are equivalent to the state-
ment that vortices nucleated at the wall have the
sense of smoke rings, while those nucleated from
vanishing size in the interior have the sense of
vortices in the wake behind a sphere.

V. VORTEX RING IN FRONT OF AN ORIFICE
A. Zero net flux through the orifice

Walraven!! has considered the energy for the ge-
ometry sketched in Fig. 3: an orifice of radius R,
in an infinite plane, with a vortex ring of core
radius @ and radius R situated axially at a distance
z from the orifice. The boundary condition im-
posed is that there is no net flux through the ori-
fice. In our notation, Walraven has calculated the
coefficient ¥, in Eq. (3.1a). Atz =0, the result'!
is

EU = Yv

1
PCiR, 2pR,

R 8R R\* R . |R-R,
‘im[m<7>‘2]+<f3—o> +Em,R+Ro
(5.1)

For R <R, (5.1) reduces to (4.3). For R -R,, the
energy in terms of 6= (R, - R)/R, is

E,/pC?R,=31n|6/8,| for5-0, (5.2)

where 6,=a/4R,. In between the two limits R - R,
and R -0, we have a maximum of the energy,
E_,.. Walraven's'! evaluation of Eq. (5.1) is re-
produced in Fig. 4, where the curves are stopped
at R,- R =a. The maximum arises at R~ 0.9R,,.

Between R =R, and R =R, the vortices move in

C
@ .
Bo ez 8

O

FIG. 3. Geometry of a vortex ring coaxially in front
of an orifice in an infinite plane.

1 1 1 L I It

10" 10 107 1o 103 10 10" |
3=1-R/R,

FIG. 4. Normalized energy of a vortex ring of radius
R coaxially in front of an orifice of radius R, as a func-
tion of 6 = (Ry—R)/R, with flux through the orifice &,=0,
after Walraven, Ref. 11.

the opposite direction for the same sense of circu-
lation to those outside this radius, as can be dis-
cerned by Eq. (4.7).

For completeness, we present Walraven’s result
for E(R,Z) in the Appendix. In Fig. 5 we plot con-
stant-energy contours in the R-Z plane based on
this expression. Three distinct regimes are seen
in Fig. 5. (i) E>E_,.: for these, R>R, for all Z.
(ii) E<E_,,: for these, R <R, for all Z. This is
the region of vortices which can pass through the
orifice. (iii) E<E_,,: for which R>R,. This is
the region in which vortices exist only near the
plane. For a given value of FE there is a maximum
value Z_,,(E) and for each Z<Z_, (F) there are
two values of R. For the upper value, the drift
velocity of the vortex is as given by the orienta-
tion of C, for a vortex in an unbounded fluid; for
the smaller value it is in the opposite direction.
This region may be called the region of trapped
vortices. For every curve in the trapped region,
there is one in the untrapped region (ii) of the
same energy. The two regions meet at R=R_,
Z=0for E=E_,. The other limit of these regions
is E=0, for which R -« in region (iii) and R -0
in region (ii). Note that under the specified con-
dition of constant total current, there is a maxi-
mum radius R, for vortices to go through the ori-
fice.

In the absence of the orifice, all loci have the
shape of those in region (i) displaying the increase
in the radii of vortex rings as they approach a sur-
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FIG. 5. Locus of constant-energy curves for a vortex
ring in front of an orifice with the flux due to superfluid
flow equal to zero. The lines are labeled by the normal-
ized energy E/pk’R .

face due to the interaction with their image. In the
orifice geometry, image effects are negligible for
small enough vortices and they go through the ori-
fice as in region (ii). Region (iii) occurs as inter-
mediate between regions (i) and (ii).

B. Specified net circulation due to superfluid flow
1. Energetics

We now consider the case where the plane con-
taining the orifice is placed in a closed channel of
cross section much larger than the orifice and the
circulation C, around the channel is specified. In
the absence of a vortex, the flux through the orifice
is

®,=2pR,C,, (5.3)

so that Y defined by Eq. (3.2) is 2p/R,. We can
calculate the energy using Eq. (3.2) noting that Y,
has already been given by Walraven.!! The only
new quantity to be calculated is the interaction
function f(R, Z), which is simply the fraction of

the flux not going through the vortex ring. In the
Appendix, we calculate f(R,Z). We note here some
simple limits of f(R,Z). At Z=0,

0 for R>R, (5.4a)
fr,0)= 2 2\1/2
[:_(&,R%I}_)] for R<R,. (5.4b)
o

As Z/R>1, f(R,Z)~1. From (5.4b) we observe
that in the orifice geometry, the term Yf2C? in
Eq. (3.2) is very important for small vortices.
Also, owing to the interaction with superfluid
flow, the energy of smaller vortices is reduced.

In Fig. 6, we have plotted the energy vs the radius
of the vortex for C,=0 (linear scale this time) for
several values of Z. The remarkable difference
between this energy at Z =0 with constant circula-
tion (C,=0) and the energy with constant flow
(#=0), Fig. 4, is at once apparent. Only a weak
maximum occurs now at R/R,~0.4. Between
R/R,~0.4 and 1, V, of the vortex is in the oppo-
site direction to that for other regions. Note that
there is now both a minimum permissible energy
and a maximum permissible energy to go through
the orifice since as R -0, the normalized energy
at Z =0 tends to 27. The difference arises owing
to the term Yf2C? introduced to keep the circula-
tion constant. The singularity at Z=0 near R ~R,
is unaltered from the previous case.

In Fig. 7 we plot the constant-energy contours in
the R-Z plane for C,=0. Again there are three re-
gions to be distinguished: (i) 27pC2R,<E<E_,,:
these have a radius between 0 and R ~0.4R, and
they go through the orifice traveling in the “nor-
mal” direction. (ii) E>E_,,, R>R: these are
strongly affected by the image force, do not go
through the orifice, and also travel normally.

(iii) E<E_,.: this is the region of the trapped vor-
tices and has properties similar to the trapped re-
gion discussed earlier in the case of constant
specified flux.

In Fig. 8 we plot the normalized energy as a
function of R for various Z and for C,=27, and
with the vortex oriented so that the interaction
energy with the flow is attractive. Comparing with
Fig. 6, we note that at Z=0, R, has moved from
0.4 to about 0.9, by changing C, from 0 to 27. Re-
gion (i) has therefore grown and the trapping re-
gion (iii) has shrunk.

a/Rgei0™*

-®
R/Ro

FIG. 6. Normalized energy of a vortex ring in front of
an orifice as a function of its radius for various values
of Z, the distance in front of the orifice. The circulation
C, is specified to be zero.
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2. Condition for vortex generation

Let us consider the condition (3.5) for vortex
generation for a vortex ring close to the orifice
at T=0. Lete=z/R,. A straightforward expan-
sion of Egs. (A10) and (A9) for positive 6 <1 and
€ <1 yields

1y crmncep J(L1_83 o), 0 83 .. B
2Y,C ‘PCLRol(g 198 € 1n60_128€ ln2
1 €?
*3352- <2+O(<26)} ’ (5.5)
fZYC§ = (Zﬂé)pchoa (5.6)
SC,®,=pR,2'/2[(6% +€2)*/ 2+ 6]1/2C C, . (5.7)

It is noteworthy that at € =0, the interaction en-
ergy is proportional to 5'/2 (and €!/2 at §=0),
whereas the interaction energy is proportional to
6 for a vortex in a smooth tube. Thus sharp pro-
tuberances tend to favor generation of vortices
by superfluid flow. This is due to the larger ve-
locity of the fluid near such protuberances.

At € =0, the energy condition (3.5) is satisfied
for

61/2C,=376C, +3C, In(5/5,). (5.8)

Because the interaction energy goes as 6'/2, for
small 6 the flow for vortex creation is very small
indeed. However, if one looks at the trajectories
in Fig. 8, it is at once apparent that for small
flow these vortices are trapped at the walls and
do not contribute to deceleration of the superfluid.

The condition for deceleration of the superfluid
is that the vortices untrap and appear downstream.
The trapping regime is characterized by the z
component of the velocity of a vortex opposite to
that of a vortex of the same sense of circulation
far from any surface. We may put the condition
for appearance downstream of a vortex nucleated
at the orifice with positive circulation and of a
radius nearly equal to that of the orifice as V,>0
for the entire trajectory of the vortex in the R-Z
plane. This means that dE/dR = 0 for all z, for
vortex generation at constant circulation through
the container cut. This statement is equivalent
to the statement that condition (3.5) be satisfied
at all times from the creation of a vortex to its
eventual annihilation.

From the foregoing discussion of the energetics,
one can easily conclude that the characteristic val-
ue of flux at which this condition is satisfied is

E((R,,0),8)<0. (5.9)
Equation (5.9) yields
(1-R2/R2)*/?%pC,® 2 E (R,)+ (1 - R2/R2)pR,C?
(5.10)

for vortex generation.

At a finite temperature, the thermal activation
energy E_ to generate vortices is reduced, owing
to the flow, and is approximately given by

E,(®)~E,(R,)+ (1 - R%/R2)pR,C?

- (1-R%/R})?%C,®. (5.11)

For the rate of change of superfluid velocity in the
present geometry one can again obtain Eq. (4.9).
Comparing Eq. (5.10) and Eq. (4.5), and noting
that R,/R,~R_ /R,~0.9 and that E (R,) is about the
same for the case of a smooth channel (see Fig. 2)
and for the case of an orifice (see Fig. 4) (with
R,=R,), we can conclude that the flux required to
generate vortices that contribute to superfluid de-
celeration in the orifice geometry is about half
that in the smooth-channel geometry.

C. Specified net flux

As discussed in Secs. II and III, we must con-
sider H instead of E in this case. We have not
plotted diagrams analogous to Fig. 5 to Fig. 8 in
this case, but we know that the diagrams will be
analogous to the case of zero total flux, Fig. 5,
rather than Fig. 6. This is because of the absence
of the term f2YC? in Eq. (3.4). The region of
trapped vortices will, of course, be reduced,
owing to flow, compared to Fig. 5, and now there
is only a minimum radius to go through the ori-
fice. From (4.8) and the discussion above, the

0 .1 2 3 4 5 3 7
Z/R,

FIG. 7. Locus of constant-energy curves for a vortex
ring in front of an orifice with Cy=0. The lines are
labeled by the normalized energy E/pk’R,.
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FIG. 8. Normalized energy of a vortex ring in front of
an orifice as a function of its radius for various values
of Z, the distance in front of the orifice. The circulation
due to superfluid flow is kept constant, equal to &/m.

The (constant) energy due to the flow alone is not in-
cluded.

characteristic condition for appearance down-
stream of a vortex nucleated at 7=0 at the orifice
and of a radius nearly equal to the orifice is that

H((R,,0),®)=<0. (5.12)
This means that
(1-R%/R3)?C®ZE,(R,). (5.13)

At finite temperatures thermal activation en-
ergy E_ to generate vortices is reduced owing to
the flow,

E (&)=~ E,R,) - (1 -R%/R2)/2pC & . (5.14)

Characteristically (see Fig. 4), R, =~ 0.9R, and
E,~3pR2C? for 56~10"%. Comparing Egs. (5.10)
and (5.12), one finds that the flux required to gen-
erate vortices at constant circulation that cause
superfluid deceleration is about 7% smaller for
the case of constant total flux than for the case of
constant circulation for this value of 6. Thus only
a quite sensitive experiment can test this predic-
tion.

VI. CONCLUDING REMARKS

The development in Secs. II and III is completely
general, so that one can in principle study the
process of vortex generation in more complicated
geometries than those treated in Secs. IV and V.
Here we only make some qualitative remarks for
other geometries.

A straightforward question to ask is whether a
steady generation of vortices aids or impedes the

generation of the next vortex in, say, the channel
geometry or the orifice geometry. For vortices
nucleated near the walls, the velocity field of
vortices downstream is in the same direction at
the vortex cut as the vortex being generated. Thus
the interaction energy of vortices of the same
sense of circulation is repulsive and vortex pro-
duction is impeded.

A stationary disk in a superfluid is the dual of
the orifice geometry we have considered in Sec.
V. The results for the critical velocity will be
the same as obtained there, but the vortex will
have a circulation opposite to that in the orifice
geometry; it will grow in radius and travel in the
direction opposite to superfluid flow. Qualitatively
similar results will hold for a stationary sphere
in a moving superfluid, but the interaction energy
for a vortex nearly touching the sphere will be
smaller than the disk geometry because the protu-
berance is not so sharp.

The case of a sphere of finite mass traveling in
a stationary superfluid and decelerating due to
vortex generation is interesting because it is
realized experimentally in the motion of ions
through helium. If the sphere is far away from
any other surface, it is perfectly alright to use
consideration of total impulse conservation of the
sphere and the velocity field of the fluid. How-
ever, if the velocity of the sphere is specified
(or, equivalently, the flux of superfluid), we must
consider conservation of H, not E, to obtain
another condition for vortex generation, as ex-
plained in Sec. II. This will modify somewhat
the results of Schwarz and Jang,'® who have looked
at this problem from the point of view of energy
and impulse conservation.

Finally let us consider the situation illustrated
in Fig. 9(a), which shows the cross section of a
channel at which there are two protuberances
which are spanned by a vortex line with the direc-
tion of circulation shown and the circulation due to
flux in the channel, C,, pointed inwards. From
the discussion in Sec. III the interaction energy is

(a)

FIG. 9. A vortex line of shown circulation pinned to
two points on the walls of the channel grows because of
circulation due to superfluid flow C, pointed into the
paper.
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attractive and proportional to the hatched area.
The vortex would therefore tend to grow as in Fig.
9(b) and ultimately annihilate at the walls. This
process will contribute to the deceleration of the
superfluid.

APPENDIX: INTERACTION ENERGY IN THE
ORIFICE GEOMETRY

The interaction energy for the orifice geometry
is from Eq. (3.2) for a vortex oriented as in Fig.
3, given by

E=-2pCC,R,f(R,2), (A1)
where f(R, Z) is the fraction of the superfluid flux

not going through the orifice. The superfluid
velocity is given by

v.V=0
or, introducing V=V,
v2y=0 . (A2)

The solution of the Laplace equation (A2) in the
orifice geometry is usually given (see, for exam-
ple, Ref. 8) in terms of oblate spheroidal co-
ordinates (v, u, 6). The velocity is in the « direc-
tion and given by

V = (kCo/R,)[ coshu(sinh®u + cos®)' /2] ; (A3a)

u, v, are defined in terms of cylindrical co-
ordinates 7, z through the axis of the orifice
by

r= R, coshu sinv, z=R,sinhucosv. (A3Db)

f(R, Z) is given by

f(R,Z)=27 f; ar rv(v, z). (A4)
To express v in terms of 7 and z note that

: } =3[ sinh~ (2 +i¥) + sinh™}(z — i7)] . (A5)
Using

sinh™Y(z+7) = (- 1)"cosh™ '3 (s + 1)
+i(=1)"sin"[2y/(s+18)] , (A6)
where » is zero or an integer and
s+[(+7@+22]12, t=[(1 -r)2+22]r12,
we get
u=(-1)"cosh '3(s+1) , (A7)
v=(=1)"sin"[2y/(s+1)] +inm . (A8)

Using (A7) and (A8) in (A3) the integration in (A4)
can be performed to yield

R,z =) {[(Z*+R"? -1y +42"]'/
+(Z?+R® -1}, (A9)

where R'=R/R, and Z'=Z/Z,, and the upper sign
is to be chosen for R’ > 1 and the lower for R'< 1.
The choice of sign is determined by requiring that
at z=0, f(R,0)=0 for R’>1, and f(0,0)=1.

The total energy of the vortex with zero flux
through the orifice is equal to 3 ¥,C?, [ Eq. (3.1)].
Walraven’s result!! is reproduced here for com-
pleteness:

_E__ B [1,1(_85) _21
pk°R, 2R, a

" %tan2<%> [1-@ -g¢*sin®y)'/?]

1 ¥ 1 —gsiny
e qtan<2> 1“‘ T+qsind

+3 tan(%) [E@,q)- 1 -2¢)FW,q)] ,

(A10)

where
¢ =R*/(R*+2?), (a11)
cot¥ =R/(R%+ Z2)* /2 | (A12)

and F(y, q) and E(), q) are the incomplete elliptic
integrals of the first and second kind, respective-
ly.
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