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Ab initio calculation of the energy bands of (001) iron thin films*
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Constructing a warped-muffin-tin potential from a superposition of 3d'4s' atomic charge densities and the
Slater exchange approximation, we have calculated the energy bands of a 13-layer (001) paramagnetic iron

thin film using the supplemented orthogonalized-plane-wave method. The bands are compared with a previous

parametrized linear combination of atomic orbitals calculation. Hybridized and unhybridized surface states are
discussed and plots of wave functions of each kind are displayed. The planar average of the calculated charge
is displayed and the possibility of a large d-electron contribution to the surface Friedel oscillation is discussed.

I. INTRODUCTION

Transition metals are generally less well under-
stood and more difficult to perform calculations
upon than simple metals and semiconductors. The
d electrons are more localized about atomic sites
than s and p electrons but atomic d orbitals do
overlap and d bands do conduct. They can neither'
be treated as rigid core levels nor expanded in a
few plane waves. Thus the methods used to study
the electronic states at the surfaces of Li, ' Na, '
Al, ' and Si,"' are not applicable to the transition
metals.

We have recently completed parametrized lin-
ear-combination-of-atomic-orbitals (LCAO) cal-
culations of the energy bands of (100), (110), and

(111) ferromagnetic iron' and copper' thin films.
The parameters were determined from fits to bulk
energy-band calculations and thus were quite ad-
equate for the interior of the film. The parame-
ters for surface atoms were varied, either to
make the surface charge neutral or simply to ob-
serve the effect of such variation on the surface
states. This method is useful as an initial study
and if the surface parameters could be obtained by
fitting a self-consistent ab initio thin-film calcula-
tion, it would be very useful in obtaining an ac-
curate picture of the energy bands in films thicker
than those amenable to ab initio calculations. This
is desirable because some of the surface states
found in iron' had decay lengths as large as 25
interplanar spacings. However, atomic orbitals
are not capable of describing wave functions at
and outside of the crystal surface. Thus the meth-
od is of no use in answering questions about the
d-electron contribution to the surface Friedel
oscillation or in making self-consistent calcula-
tions.

The method used by the Cambridge school"
involves matching complex Bloch functions cal-
culated in the bulk crystal potential with wave func-
tions calculated in the external potential. The ex-

ternal potential is either taken to be a constant or
to vary in the normal direction only. Thus there
is an artificial discontinuity in the potential at the
surface between the bulk and external regions.
This method has never been used to calculate bulk
states in the surface region. It has only been used
to find surface states and since one must try to
match bulk to vacuum wave functions separately
for each P and E investigated, it is not unusual for
some surface states to be overlooked. In the most
extensive transition-metal calculations using this
method, "'" surface states were found only in a
narrow range of energies. Apparently only the
s-d hybrid gap was investigated since a larger
number of unhybridized and d-d hybridized sur-
face states were not found. "

There have recently been attempts to derive
criteria for the existence of surface states. ""
We have shown however that no such criteria
exist." This fact is in agreement with our LCAO
studies, "where we found that some surface states
are not very sensitive to the exact surface poten-
tial (these are generally hybridized surface states)
but that the existence of other surface states de-
pends critically on the surface potential and that
the number of surface states in a gap can vary
over a large range (we found between zero and
four). Thus to obtain an a.ccurate description of
the surface states one needs the correct, i.e., self-
consistent potential. Self —consistent calculations
are also needed to determine the d-electron con-
tribution to the surface Friedel oscillation. The
simple metals' ' show a charge oscillation which
is a nonlinear sum of the jellium Friedel oscilla-
tion" and the bulk crystal oscillations. Because
the jellium calculation shows the Friedel oscilla-
tions to be suppressed in a high-density electron
gas, one might suspect that they will be weak in
iron. However there is no a Priori reason to be-
lieve that the jellium results will be applicable to
transition metals.

Ab initio transition-metal thin film calculations
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have been performed by Kasowski" using the muf-
fin-tin-orbital method. It appears that this method
might lend itself to self-consistent calculations but
the only published results are not self-consistent
and have, in fact, been limited to a single point
in the two-dimensional Brillouin zone (2D BZ).
Our recently reported calculation on 13-layer
(001) paramagnetic iron" is the only other ah initio
calculation of which we are aware. In this paper
we extend that calculation to the same set of points
in the 2D BZ that we used in our Al (Ref. 3a) and
self-consistent Li (Ref. 1) calculations. In Sec. II
we briefly describe the supplemented-OPW (ortho-
gonalized plane wave) method" used in the calcula-
tion and describe in some detail the construction of
the thin-film crystal potential. In Sec. III we dis-
play the energy bands in the 2D BZ and compare
them with the LCAO bands. Many features are
so insensitive to the potential that they are common
to all three sets of bands (LCAO ferromagnetic
majority- and minority- spin bands and supplement-
ed-OPW paramagnetic bands) whereas others are
not. Those features common to all three sets of
bands undoubtably do exist in both paramagnetic
and ferromagnetic iron (001) surfaces. We discuss
the various surface states and plot the wave func-
tions of typical unhybridized, slightly hybridized.
and fully hybridized surface states. The density
of states and the charge density are calculated.
The planar average of the charge density is plot-
ted and a huge Friedel peak obtained. Although
the effect of self-consistency will be to suppress
this peak, this calculation shows that the d elec-
trons react even more strongly to the presence of
the surface than do nearly free electrons. Thus in
this paper we perform the first ab initio transition-
metal thin-film energy-band calculation through-
out the 2D BZ, we describe several specific fea-
tures of the (001) iron surface electronic struc-
ture, and we obtain insight into the general char-
acteristics of transition-metal surfaces. In addi-
tion we lay the groundwork for future self-consis-
tent calculations.

II. METHOD

As for the simple metals' ~ ' we take our (001)
iron film to be 13 layers thick and add an empty
selvage region three layers thick on both sides
over which the wave functions are assumed to de-
cay to zero. We take as basis functions

y;., =2-'&'(~u+C, . +k„&~ ~V+C,. - k„.)),
where 5 is a wave vector lying within the 2D BZ,
the C& are two-dimensional (2D) reciprocal-lattice
vectors, and k, is a wave vector in the [001]direc-
tion. The ~k+6+k, ~} are plane waves

0 ' 'expi[(K+V;) i+k„s], which have been ortho-
gonalized to the five core functions (1s, 2s, 2p, 3s,
3p) on each ion calculated in the spherically aver-
aged thin film potential. (This spherically aver-
aged potential is different for surface ions and for
interior ions. ) The normalization factor Q = (—",a)
& axa. The k„.are chosen so that the Q',.

&
are zero

at the end of the selvage region, i.e., at z =+'4'a.
Thus

k„=2jw/19a,

with j an odd integer for P;, and an even integer
for (t)",&. As noted above the d electrons are too
localized about atomic sites to be expanded in a
few plane waves. (There being no d core levels,
the OPW's reduce to plane waves for states with
d symmetry. ) Therefore we supplement the OPW's
with a set of d planar Bloch functions

y„', =2 '~'Q [E„(r—R,. —F„—Z„)

~E (r —R, —7'„+Z„)]e'"s~,

where R, is a 2D lattice vector, 7'„=0 for n even
(A, plane) and r„=(-,'a, —,'a) for n odd (8 plane), Z„
is a vector of length &na to the nth plane, and

E„,(r) =f„(r)K (8$). Here f„(r) is a radial function
which vanishes with vanishing slope at the inscribed
sphere radius and K is an l =2 cubic harmonic
with n being xy, yz, zx, x' —y', or 3z' —y . The
superscript o represents the reflection parity of

and is the same as the sign between the two

E„,'s in Eg. (3) if n is even under change of sign
of z, 1 e~ lf Q =xp, x -p ~ ol 3z —9. If Q =gz
or zx, the sign of 0 is reversed. On the central
(n =0) plane we have

y;, =Q E„(r—IT,)e"s~, . (4)
t

where the parity of P, is that of n. Thus we add
33 even a,nd 32 odd basis functions" to our even
and odd combinations of OPW's in Eq. (1). The
radial functions f„are ca.lculated in the spherically
averaged crystal potentia. l (and hence are slightly
different for different n) according to a prescription
we have developed" which gives improved conver-
gence, i.e., minimizes the number of QPW's
needed in the expansion.

In this calculation we have used 23 k»'s for each
parity and all %+ G; such that

~

K+ C,
~

~ 5m/a at
each P. Planar symmetrized combinations of the
OPW''s are used to reduce the size of the secular
equation and the symmetry can be used to reduce
the number of d-basis functions as well. (See
Table II of Ref. 6a for the d functions occurring
in each irreducible representation at each sym-
metry point of the 2D BZ.) The largest matrix
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diagonalized was a 319 ~ 319 &', . It required 13
planar symmetrized combinations of the OP%'s
as well as x'-y', 3z' —6 and xz d functions for
a total of 13 & 23+7+7+6=319 basis functions.
An estimate of the convergence in k, is obtained
by noting that increasing the number of k, from 23
to 33 at 1 caused a drop of 0.006 By in one of the
I', levels. Nearby I', levels dropped somewhat
less and all other F levels dropped considerably
less.

Our potential is constructed from a superposition
of 3d'4s' atomic charge densities obtained from a
Herman-Skillman'9 calculation using the Slater~o

exchange approximation

V'*(r) = —3[3p(r)/v]' ~'. (5)

p, (r) = p(r) + p,„„(r)

=Q p,„. (r —R,.)

—Q p'. (r-R, )+P p",(r-R, ), (8)
j J

where pJT(r —R,.) is equal to p„'r(r, ) when ~r —R,. ~«

ro and zero otherwise. Now p, (r), being a sum of
spherical charge densities, is easily Fourier
transformed to obtain p, (C, k, ) and this is inverse
Fourier transformed to obtain p, (C, z). Because p, (r)
is continuous and has no large peaks, p, (C = 0, z)
is much larger than p, (G wo, z) and we can use a
Taylor series expansion to find the cube root of
Ps:

p. (V, z) = P p.(&,z)e"',

[p,(r, )]'~z'=+A(C, z)e' '", (8)

To calculate this exchange in the thin film we
divided the charge into two parts. The first con-
sists of spherically averaged overlapped charged
inside muffin-tin (MT) spheres of radius" r, =

2.313 a.u. This charge is generated by the L5wdin
c.-expansion method. " We calculate pM'~~'(r) and

VMr(r) at 250 Herman-Skillman" radial mesh
points, ~' x~x, . In principle, we should, and in
practice we could, with considerably more effort,
generate the exact p„r(r) and p'~T'(r) in an expansion
of spherical harmonics. The VMT(r) are Fourier
transformed, multiplied by expi(G 7'„+k,Z„), and
added to obtain the thin film VMT(G, k, }. The re-
maining part of the charge is simply"

p.„,(r) =g p„. (r —R,.) —p pM, (r —R,.).
J' j

However, because of it discontinuity at the M'7

spheres, the Fourier expansion of p,„,(r) conver-
ges too slowly. Therefore, we define

V;*(7, ) =g [-8(3/8r)'~'A(C, )] ' ',
where the A(G, g) in (8) and (9) are given by

"(~=~ ') ln =(& 0 =)I*"('&- Z fi (& *)1

(9)

and

V'"(C, k, ) = V„'"T{G,k,)+ V;"(G,k, ) —V'*(G, k,).
(12)

The second-order terms in Eqs. (10) and (11) in-
creased V'"(6, k, ) from zero (large C, k, ) to
0.0015 Ry (C, k, =0) in this calculation so that the
largest errors in the expansion undoubtably arise
from the replacement of p„T(r) by its spherical
average. For smooth pseudocharge densities in
simple metals it may be possible to calculate
p'~'(r) on a fairly gross mesh of points in the

(—',~a) & a x a unit cell but such a procedure is not
possible in a transition metal with its sharply
peaked d functions. %e have gone to so much
trouble to develop and use this very accurate tech-
nique because it is directly applicable to self-con-
sistent calculations, both thin film and bulk.

The V '"'(C=o, k, -0) are very sensitive to the
large x tail of the atomic 4s charge density.
There is no reason to expect this tail to be un-
changed when the atoms are superposed to form
the crystal. Therefore, we vary the large x part
of V„(r), the potential due to the 4s electron plus
one proton, in the following way. %e first calcu-
late the Fourier transform V,'o'(K), change it
smoothly for K small (compared to the smallest
G) so a.s to shift V~, (K=O) by an estimate of the
amount of necessary to obtain the correct work
function" (in this case from -0.823 to -0.548 Ry)
based on I' energy levels calculated previously"
in the unmodified potential. %e then multiply
V,",'(K) by the structure factor to obtain the thin

where P(C, z) = p(G, z)/p{G = 0, z) and the prime on
the last sum indicates neither G' nor C —G' =0.
Then V;*„,(G, k, ) = V;"(G, k, ) —7'*(G, k, }where V;*(G,

k, ) is obtained from Fourier transforming Eg. (9}and
V'"(G, k, ) is easily obtained from p(r), a sum of
spherical constant nonoverlapping charges. Note
that, in general, one cannot add Slater exchange
potentials because (p„+ps)'~' & p'~'+ ps~' however
neither p nor p„overlap p,„, so p', ~' =(p+ p,„,)'~' =
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culation" which used only 64% of the Slater ex-
change. But the differences between our results
and the LCAO results are generally less than the
differences between the LCAQ majority and LCAQ

minority spin bands. Unless otherwise specified
in the descriptions which follow, our gaps are the
same as the larger LCAO gaps and corresponding

gaps contain much the same surfa, ce states, or
are empty, in the two ca,ses.

The bottom of the highest gap sweeps upward
from -0.26 Ry at X up to positive energies in the
~ and 7 directions. It contains R +g
surface state with a minimum of -0.09 Ry at X.
This is a nearly-free-electron surface state which
also occurs in lithium. ' lt arises from a gap in
the three-dimensional (3D) bands between a pure-P
N, , state lying just below the top of the d bands and
an N, state lying in the vacuum which is nearly
pure s with a very slight d admixture. The second
~, gap at -0.33 Ry is widest at X where it becomes
the X, , gap. Like the corresponding majority spin
LCAQ gap, it contains no surface state. The min-
ority-spin LCAO gap contains two surfa. ce states
but in a narrow tail of the gap which cannot be dis-
tinguished in the 13-layer film. The third ~, gap
is an s-d hybridizing gap and contains a surface
state at an energy of about -0.45 By. This gap
pinches off at I' and about —,

' of the way to X. Be-
cause it lies in a continuum of ~, states, the ~,
surface state must become a resonance an infin-
itesimally smalldistance off the & symmetry line.
The fourth ~, gap is also an s-d hybridizing gap.
It runs from about —, of the way between I' and X
to X and then continues along the entire length of
the 7 line, pinching off at M. It contains a &, —
X, —7, surface state (at about -0.59 Ry at X),
well centered in the gap which becomes less local-
ized as the gap narrows and becomes completely
bulklike at M. There is a simila. r 7 gap in the
LCAO minority-spin bands but it is only half as
wide and a 7, surfa, ce state appears only briefly
near the top of the gap. In the majority spin bands
there is no 7 gap near X and only a small gap ap-
pears in the rniddle of the 7 line as a remnant of
this gap; it contains a F sux'face state. Along ~,
both LCAQ spins have a gap similar to the one
here. The single ~, gap lies right in the middle of
the d bands and a,rises from nonhybridizing bands
in three dimensions. It is widest at X and pinches
off 8 of the way to l", There is a,n X4 surfa. ce state
at the top of the gap and an X, at the bottom. They
are not observed —,

' of the wa.y to I' and presumably
have run into the continua of the top and bottom of
the gap before that point. An X, surface state
with exactly the same behavior was observed for
both spins in the LCAO calculation. The X, sur-
face state which initially existed in that calculation

was pulled into the continuum by the shift in the
atomic surface parameters needed to make the
surface charge neutral.

Along 7, the 7, and 7, bands are, except for
surface states, very nea. rly identicRl and would
become more so were the film thicker. " There
are five 7, , gaps, the highest and lowest of which
have already been discussed. The second highest
gap runs from M (where it extends from the
top of the 3~5, 4 and M2, continua to the bottom
of the second lP, continuum) to some ill defined point
on the 7 line. Because of the lax ge spacing between
the states at the top of the gap, the gap is considerably
wider than it would be in athiekex film. A pair ofM,
surface states whose degeneracy is split by over
0.03 Hy extends along 7 with both 7, and 7, sym-
metry (all M, levels are two-fold degenerate" and
connect to both 7, and 7, states). The 6, surface
state decay length was determined to be 25 inter-
plana, r spacings in a 321-layer LCAO calculation"
and is even larger along 7. In the 13-layer film
these 7 surface states cannot be recognized as
surfRee stRtes Rnd the11 splitting ls even greRtel
than at Q. We assume that in a thi, cker film where
the splitting of the surface state would not obscure
things, that the gap would extend all the way to X
before pinching off. The gap continues along Z
as both a E, and Z~ gap. The 2, gap pinches off
about —,

' of the way to I' and contains a surface state
which is less split and has a shorter decay length"
than at M. The 2, gap appears to open up very
rapidly but a 321-layer LCAQ calculation" as
well as a projection of Wood's bulk bands" shows
that it pinches off about 8 of the way to T' and then
reopens, becoming very wide at I'. The Z, surface
state connecting to the M, surface state is, of
course, almost immediately obscured upon leaving
i'll in the 13-layer film. These 7 and 7 surface
states exist for the minority spins but not the ma-
jority in the LCAO calculation. The third 7 gap
has its maximum width in the middle of 7 and is
narrower but still a gap at Q. This gap contains
a 7, surface state which runs the length of the gap
to 1W (at -0.37 Ry) where it has M, symmetry. It
continues in the second Z, gap as a surface state
more than —,

'
way to T'. A second 7, surface state

exists right at the top of the gap about 257' of the
wRy froIQ + to X Rnd lmmedlately dlsRppeRl 8 into
the bulk bands on both sides of this point. A single
7, surface state exists at the bottom of the gap in
the middle of the 7 line and goes into the bulk
bands on both sides of this point. In the LCAO
calculations this pinches off before reaching M
and contains no 7, surface state although it does
connect to the same 2, a.nd 2, gaps through the
interior of the 2D BZ. The fourth 7 gap actually
cannot be seen as such for the 13-layer film; how-
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ever, a 7, and a 7, surface state are observed —,
'

of the way from.Q to X at about -0.52 By. Exami-
nation of projected paramagnetic bulk bands" shows
that this is an extremely narrow gap which pinches
off at% because, in 3D, three bands become de-
generate at I', . It also pinches off about 30'7O of
the way to X when a 3D indirect gap vanishes. In
the ferromagnetic bands" of both spins, this gap
is much wider and extends 7570 of the way to X.

An A7, surface state at -0.53 By lies in the Q
continuum and, therefore, is completely isolated
from any 7 or Z gaps. This surface state must
become a resonance upon moving away from the
M point in any direction in the 2D BZ. An!Q~ sur-
face state lies only 0.0001 By above the top of the

3 continuum which itse lf is only 0 .002 5 By wide
Since the top of the Q, , continuum appears to be
degenerate with the top of the!P, , continuum"
thisW2 surface state is in an absolute gap and
must connect to 7, and Z, surface states. These
run into the bottom of the 7 and Z~ gaps and are
not obsel ved 4 of the way to X and I . An Q3 sur-
face state whose degeneracy is split by only
0.00001 Ry lies 0.0029 By below the N, , continuum.
Neither the~@, nor the M, surface state existed in
the original LCAO calculation but when the atomic
surface parameters were made more negative the

M, surface state was pulled out of the continuum.
This Q, surface state is the end point of a Z, sur-
face state which runs almost to F where the very
wide Z, gap pinches off. Over the middle of the
7, gap this is a highly hybridized surface state
although it is not the usual s-d, but rather d-d
hybridization. In the 3D bands one finds I'». lying
below I'» but in the (001) corner of the BZ, H„,
lies well above H». Thus as soon as one gets a-
way from the & line connecting I' and H where
symmetry prevents the bands from hybridizing,
one obtains a very strong t,~-e~ hybridization.
The lowest Z, gap has its maximum width at ~
and contains a Z, —F, surface state a little above
the bottom of the gap at about -0.59 By. Even at
I' this surface state has a moderately long attenua-
tion length and it disappears as the gap pinches off
about 457() of the way to AI. This is a classical s-d
hybridization gap which gets narrower in going
away from 1 . It probably pinches off as the 3D gap
becomes indirect and bands of the same symmetry
overlap. In our projection, "however, the 3D gap
remained direct and the 2D gap only pinched off
at M as the 3D bands became degenerate at I', .
Because the I', gap is completely overlapped by
I', bands, neither the Z, gap or its surface states
exist off the Z direction. Finally, there is a well-
localized I', surface state at -0.41 Ry. Because
it is overlapped by both I', and 1", , continua, it
cannot exist as a surface state except right at I".

It appears to connect with a Z, state which becomes
a surface state halfway to M but at a point —,

' of the
way to M that E, state is completely bulklike. This
higher F, surface state occurred in the LCAO mi-
nority-spin bands only, and then only after the
surface atomic parameters were made more neg-
ative.

To illustrate the differences between hybridized
and unhybridized surface states, in Figs. 4-6 we
display the M,', .U; and X, surface-state wave func-
tions as a function of z for various values of F.
The values of 7 chosen were dictated in part by
nodal and symmetry considerations. " Orthogonal-
ization contributions to the wave functions which
would obscure the sharp 3d structure have inten-
tionally been omitted. In an LCAO expansion in
4s, 4p, and 3d orbitals the,Q, states consist of

d@~ orbitals on the A planes and nothing on the J3

planes. The supplemented QPW surface-state wave
function in Fig. 4 is completely consistent with
this. Not only is there a nodal point at 7 = (-,', ~)~,
the wave function is too small to plot everywhere
in that neighborhood. The 'P, states consist of s,
p„and d, g p orbitals on A planes and d„, on 8
planes. Thus, unlike the Q, states, hybridization
is not symmetry forbidden for the Q, . However,

r =(0,.05)

t =(0, .45}

r =(.25, .45)

= (.20, .25)

I

a A 8 A 8 A 0 O O

FIG. 4. Plot of the Mz+ surface state as a function of
~ for various values of F. The tick marks on the ordin-
ate are separated by 0.1 bohr +2.
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12

10

J . ~ J ~ I j~~
A B A B A B A 0 0 0
FIG. 7. Planar average of the charge density

p(G =0, ~). The plane wave contribution is indicated by
short dashes, the inscribed sphere contribution by longer
dashes, and the total p(G =0, z) by the solid curve.

A„where nA/A, has previously been defined and

n is an estimate of the fraction of the band, within
the proximity area, that lies below the Fermi

a =1 or 0 except for states close toenergy, i.e., a =

E . Our wave functions consist of plane waves
plus d functions plus core functions to w

F'
hich the

d. So thatplane waves have been orthogonalize .
upon squaring to obtain the charge density, plane-
wave-plane-wave, plane-wave- core, core- core,
plane-wave-, an-d and d-d terms are obtained. The

s to G=O z)plane-wave-plane-wave contributions to p(G =0, z
are indicated by the short-dashed curve which av-
erages to about 3 electrons/atom (Remem. ber the
plane waves have a large d component because
they must make up for the fact that the d-basis
functions vanish at the inscribed sphere radius ).
The contributions of the spherical average of the
remaining terms are indicated by longer dashes.
This radial part of the charge density has a very
large peak in the surface plane and, even though
the plane-wave-plane-wave contribution is reduced
there, leads to a very large surface plane FrieFriedel
peak in the total planar charge density. This peak
is much too large and draws charge from the in-
terior of the film. In the inner layers the charge

averages only 7.7 electrons/layer, 0.3 electrons
less than needed for charge neutrality. This shows
that the potential with which we started was not
strong enough in the center, relative to the last
occupied layer and the selvage region. This is a
surprising result. Our potential is based on over-
l C lomb potentials and charge densitieslapping ou om
and is therefore already weaker in the last layer
th ' the interior layers. " Note that an ad A;oc

thepseudopotential for Al constructed" in much e
same way as the potential here led to an essential y
self-consistent charge distribution. In our ferro-
magnetic LCAO calculation before shifting the
surface parameters we had a deficit of 0.52 elec-
trons on the surface layer whereas the paramag-
netic LCAO calculation of Desjonqueres and Cyrot-
Lackmann" obtained a surplus of similar magni-
tude. Here we have a surplus of about 1.5 elec-
trons in the surface layer and selvage region. We
believe that all LCAO calculations yield too few

rface electrons simply because the LCAO basissu a
cannot account for the electronic charge in e
selvage region. The difference between the fer-
romagnetic and paramagnetic calculations can be
understood as follows. The density of states of
iron is the double peaked structure" of Fig. 3.
The surface planar density of states" differs in
that the two peaks are squeezed together and that
some density has been transferred out of both
eaks into the region in between due to the forma-

tion of surface states. Thus the higher peak occurs
a owt l er energy and more states lie below EF in

in thethe surface planar density of states than in e
total density of states. This accounts for the
large surface excess of electrons in the paramag-
netic case. In the ferromagnetic case the minor-
ity-spin density of states is shifted so that EF lies
in the dip between the peaks and the majority-

density of states is shifted so that EF lies
on the high-energy tail of the high-energy peak.
Thus very few additional states lie below EF in
the surface planar density of states. One would,
b this argument, expect a small surface surplusy is

eof electrons in the ferromagnetic case and on
would assume our failure to obtain this small
surplus in our LCAO calculation is due to the re-
stricted nature of the LCAO basis. Of course when
self-consistency is achieved, the interior of the
film will be electrically neutral. Whether or noot
any remnant of the Friedel peak will be left re-
mains to be seen. What we have shown here is tha
the response of the d electrons to the crystal sur-
face is much stronger than that of nearly free
electrons.
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