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Superconducting transition temperature and pressure effect in bcc transition metals
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A previous calculation of the superconducting transition temperature T, in a strong-coupling localized
formulation that was performed on V, Nb, and Ta is extended to bcc transition-metal alloys in the 3d, 4d, 5d
rows of the periodic table, giving a nice quantitative agreement with experiment. The pressure dependence of
T, for some elements and for Zr-Nb-Mo alloys is calculated and compared with experiment.

I. INTRODUCTION

N(0)Z' dvE(v) v+ &u,

M v2 v+ T,/1. 134 ' (3)

where u, is the maximum frequency of the phonon
spectrum E(v). N(0) is the density of states per
spin at the Fermi surface, M is the atomic mass,
and J is a given combination of the matrix ele-
ments of the ionic potential gradient between elec-
tronic wave functions centered on the neighboring
ions. (There is no need for the usual averaging
over the Fermi surface. )

Equations (1)-(3) are the localized analog to the
form suggested by Leavens' to McMillan's' for-
mula in order to account better for the details of
the phonon spectrum and which is closely related'
to the logarithmic phonon average proposed by
Allen and Dynes. The accuracy of these equations

In two previous papers" (hereafter referred to
as I and II) we developed a model for the calcula-
tion of the superconducting transition temperature
T, for transition metals. The theory was based on
a transformation of the electron-phonon interaction
from the usual Bloch formulation to the Wannier
representation' in order to take advantage of the
localized nature of the d functions that are respon-
sible for superconductivity in these elements. We
refer the interested reader to these papers for a
detailed description of the calculations and as-
sumptions involved. The main result concerning
the present paper is the solution of the Eliashberg'
equations with a modified kernel appropriate to the
localized description. It was shown that T, for
various electron-phonon coupling constants A. , Cou-
lomb pseudopotentials p. *, and three different pho-
non spectra is well described by the function

1.13[1+A. + A.(T,)]
A. —1 3p. *

N(0)Z' dv E(v) N(0)Z'
M

is illustrated in Fig. 2 of II.
The proposed model for calculating A. using fun-

damental properties of a metal such as its phonon
spectrum, band structure, and specific-heat con-
stant gave without the use of any adjustable param-
eter values for A. of V, Nb, Ta that were 1.5 times
bigger than those obtained from the inversion of
Eq. (1) with the experimental T, of these elements.

We note here that the importance of the localized
atomic properties in determining A, in transition
metals was first pointed out by Hopfield' and fur-
ther developed in a series of papers by Evans et
al. ' Their formalism looks different because they
expand the mave functions in spherical harmonics
around the origin and express N(0)J' by the various
phase shifts, densities of states, and the Fermi
energy. The equivalence of resonance and tight-
binding descriptions of the d bands in transition
metals was recently discussed by Moriarty. " Such
an equivalence also exists in the calculation of the
electron-phonon coupling constant and we shall
show in the near future" that for a suitable choice
of the asymptotic form of the atomic wave function,
one obtains in a tight-binding calculation the same
functional form for N(0)J' as that given by Evans
et a/. from their phase-shift formalism. The mod-
ifications that would appear in this expression if
one calculates X in the rigid-ion approximation
proposed by Frohlich and Mitra" and Barisjc's
and adopted in II will also be discussed there.

An important advantage of the model described
in II, is that it enables to obtain 4' directly from
the band structure (by algebraic operations) with-
out explicitly calculating the transfer integrals.
This procedure is particularly suitable for the dis-
cussion of the variation of T, along the rows of the
Periodic Table —the so-called Matthias'~ rule—
which is the purpose of the present paper. As the
calculations in I and II are based on bcc lattices,
our discussion here will be restricted to such al-
loys only, which means that the number of elec-
trons per atom, Z, varies in the interval 4.5~Z
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5 ( K ) coo/8 0 /(1/(v ))

V
Nb

Ta
Average

1.27
1.37
1.18
1.27

0.0057
0.0095
0.0083

1.03
1.11
0.95
1.03

1.88
1~ 77
1 ~ 78
1.81

TABLE I. Several phonon averages used in obtaining
Eq. (4) as described in the text.

The relations between e~ and cu, and (v ')
are also given in Table 1. The fact that eD/
(1/(v '))'~' is nearly equal for the three ele-
ments suggests that we use the average value,
which is close to v 3, as predicted by the Debye
model, to approximate

N(0)Z2 ' dvF(v) 1.81 'N(0) J2
M v' 0 M

6.5. In spite of this, much insight may be gained
from this partial group, as the experimental T„
in the 4d row, say, varies in this neighborhood
from 10.8'K (Z=4. 75) to 0.016'K (Z= 5.7) and ba, ck
to 12.6 'K (Z = 6.5).

The ideal situation would be if we had band struc-
tures, phonon spectra and specific-heat measure-
ments for different values of Z. However, as the
experimental situation is far from that ideal, one
has to deduce approximate information from more
measurable properties such as the Debye temper-
ature OD, lattice spacing, etc. In Sec. II we con-
struct a model for calculating the variation of T,
in a given row where the variation of J' is deduced
from lattice spacing and the variation of (v') from
eD. The basic approach is to use a minimal num-
ber of adjustable parameters. This line is followed
also in Secs. III and IV where we present attempts
to account for the interesting pressure dependence
of T, in transition-metal elements and alloys. As
the influence of pressure on T, is very compli-
cated, "the a Priori chance to get a reasonable fit
to experiment in a simple model seems small.
From this point of view the agreement with experi-
ment obtained in these sections is encouraging.
Section V is devoted to a discussion.

(especially if we remember that V and Ta have
significantly different phonon spectra and Debye
temperatures).

By performing a similar scaling for cu, we ob-
tain the approximate formula for T,

—1.13(1+2.25K)
T,=1.830D exp

X 1 3
(4)

C, =A(2+ gx'),

C~ =A(- 10—2x+ x + ~x ),
A= '&3(B/p')e "; x=gp

(6)

with A. defined above.
N(0) is determined self-consistently with the

final value of A. from the specific-heat coefficient
I' as described in II, i.e. ,

(5)

where c is a constant.
A model for extracting J' from the band struc-

ture was presented in II. Gathering the formulas
given there we obtain from nearest neighbors in a
bcc lattice

J' = '6(5C', + 2C', + 2C', ),3

C, =A(14+ 8x+ 2x'+ —', x ~),

II. TRANSITION TEMPERATURE IN bcc ALLOYS

We want to bring Eqs. (1)-(3) to an approximate
form which will enable us to calculate T, for a
continuum of alloys without needing all the details
of the phonon spectrum and band structure of each
alloy.

We expand X(T,) defined in Eq. (3) in T,/v (for
not too soft phonons) and get

The ratio X(T,)/A. may be computed directly for
a given phonon spectrum and indeed we find it to
decrease linearly with T„where the constants
a, b for V, Nb, Ta are given in Table I. As b is
small we have for T, ~ 10 K

1+ A. + Z(T,) = 1+1(1+a bT, )

~ 1 + X(1+a) = 1+2.25K.

where p is the distance to the nearest neighbor,
B is a certain atomic integral, and Q describes
the exponential decay of the atomic wave function
at large distance. In II B and Q were chosen to
fit augmented-plane-wave band-structure calcu-
lations at high-symmetry points. As B and Q are
atomic properties we assume that they do not
change too much in this part of the periodic table
where the crystal structure is bcc and use for the
3d, 4d, 5d rows the values we had in II for V, Nb,
Ta, respectively. With this assumption we obtainJ' for each alloy in the rom from its lattice con-
stant.

Thus we have a method to calculate A. and T,
for each alloy in a certain region of the Periodic
Table using its lattice constant, specific-heat
coefficient, atomic weight, and Debye
temperature. We assume it to be a reasonable
model for describing superconductivity in transi-
tion-metal alloys. As we had not used any adjust-
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TABLE II. Quantities used in calculating ~ and T, in the 4d row of the Periodic Table.

Alloy
Lattice

const (A)

r
Oz('K) (m J/mole ' K )

]0 2 J2
(a.u.)

g exp
C

T, ( K) (.K)

Zrp 5Nbp 5

Zrp. 2P p. vs

Nb

Nbp 85Mop

Nbp. epM p.4p

N p.4pMop. ep

Nbp 3pMop yp

Nbp. 2pMop. sp

Nbp
~ fpMop

Mo
Mop 5Tcp 5

3.447
3.375
3.306
3.279
3.232
3.203
3.190
3.173
3.160
3.146
3.109

238
246
277
312
371
429
442
461
487
460
300

8.3
8.9
7.8
6.3
2.87
1.62
1.46
1.49
1.67
1.83
4.6

0.635
0.826
1~ 067
1.181
1.409
1.573
1.653
1.763
1.853
1.955
2.255

1.186
1.403
1.302
1.031
0.522
0.288
0.261
0,260
0.270
0.332
1,308

6.036
8.727
(9.22)
7.043
1.797
0.140
0.080
0.076
0.081
0.352

13.146

9.3
10.8
9.22
5.85
0.60
0.05
0.016
0.095
0.30
0.92

12.6

able parameter we got in II values of A, which
were somewhat too big, and we correct this sys-
tematic deviation by multiplying J' by a constant
factor such that we get the experimental T, for
the Z= 5 element. Now, there exists a variety of
empirical data for 6D and 1 and it is possible to
improve the agreement with experiment by using
data from different sources. In order to be con-
sistent we always used the data used by McMillan. '
(We changed only the eD = 265'K of Nh, „Mo, »
which looks like a local minimum in McMillan's
table. As it is clear" that O~ is monotonic in this
region we choose en = 312 'K following Hopfield. ')
The lattice constants were taken from Ref. 17,
the atomic mass and the number of electrons per
atom were taken as the weighted averages of the
elements constituting the alloy. The different
quantities used in our calculation for the 4d row
are given in Table II together with the calculated

In Tc

values of A..
For elements with small values of A, the calcu-

lated T, is governed by the model used to describe
the Coulomb pseudopotential p*. If, following
McMillan, ' we assume a constant p. * we get for
Z= 5.V, T, of about 10 ' K Following Jensen, "
we write p, *=N(0)U, , where U, is approximately
constant along the row, and is chosen so that we
get p. *=0.149 for Nb as in Ref. 6, i.e. , for a 4d
alloy with certain A. and F,

The results thus obtained for T, are given in
Table II and plotted in Fig. 1 versus Z on a semi-
logarithmic scale which emphasizes the agree-
ment with experiment also for low values of T, .

The agreement between the calculated and ex-
perimental values is astonishing if we remember
that we used a very simple model and a single
parameter that adjusted the T, value of Nb. Simi-
lar quantitative agreement is obtained for the 3d
and 5d rows as may be seen from Figs. 2 and 3,
though the curves are less representative there,

0 —'

-2—

In Tc—

0—

4
Zr

I

5
Nb

I

6
Mo

7
Tc

FIG. 1. Experimental (dots) and calculated (squares)
values of In'~ vs the number of electrons per atom, Z,
in the 4d row of the Periodic Table. The points with
4.07 —Z ~4.26 represent data of Zr-Mo alloys (Ref. 35).

4
Hf

5
Ta

6
W

FIG. 2. Same as Fig. 1, for 5d alloys.
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In Tc

2—
~

~...~ 4~0

0—

4
Ti

5
V

I

6
Cr

('1)

(8)K= (X —1.3p, *}/1 13(1.+ 2.25K),

and differentiate (7) with respect to volume,

effect on many quantities, none of which is fully
understood in these materials. In the model we
introduced in I, II, and the previous Sec. I and II,
there is a decoupling between the phonon and elec-
tronic contributions to ~, and it enables us to
distinguish between changes in T, caused by elec-
tronic or phonon properties. In this section we
illustrate this point by using the changes observed
experimentally in T, and lattice properties under
pressure, to deduce the changes in the electronic
behavior represented by N(0) J' =q, and comparing
to the predictions of our model.

We write Eq. (4) as

T; =1.838,e-',

FIG. 3. Same as Fig. 1, for 3d alloys. dlnK & 1 838D
'

1 dT,
dlnV T, XT, dP (9)

because of the small number of experimental
points, especially for 3d alloys that become mag-
netic for Z~ 5.5.

From Table II it becomes clear why T, in the
"central transition metals" follows qualitatively
the specific-heat coefficient I'. By passing from
Z= 4. 5 to Z= 6, J' increases by a factor of -3,
while e~ increases by a factor of -4, thus the
ratio J'/6~ appearing in X is essentially constant
and X is mainly determined by N(0), i.e. , I' via
Eq. (5). However, the other quantities are still
important. For example, the last point, namely
Mo, , Tcp 5 has a higher value of T, than Nb,

say, which has higher F, and this is a consequence
of its having a much larger value for J' than Nb.
Compared to Mp, which has a similar value of J',
this alloy has a much higher T, , both because of
its larger 1" and because of its relatively low OD,
which is connected with the instability associated
with the change of lattice symmetry in this vicin-
ity.

We note here that the last statement does not
contradict the conclusion of Evans et al. ' about
the approximate constancy of N(0) J' because of
the inverse correlation between N(0) and 6D."
'Thus we may equally well say that T, in transition
metals is determined by the phonon properties [a
constant N(0) J'], or by the electronic density of
states (a constant J'/6~)

III. PRESSURE EFFECT OF ELEMENTS

As is well known the pressure effect of transi-
tion metals differs from that of nontransition
metals in that it may be a small negative effect
or even a positive one. The difficulty in under-
standing the influence of pressure lies in the
fact that one has to account for its simultaneous

where g is the isothermal compressibility and

$ = -dln6n/din V is the lattice GrQneisen param-
eter. " Differentiating (8), neglecting the depend-
ence of p, * on pressure, we have

dlnK din A.

dlnV ' dlnV '

Z(1+ 2. 25 x1.3p*)
(X —1.3g*)(1+2.25k)

(10}

where from((2)

dink. din J' dlnN(0) din( v ')
din V din V din V din V

+ 2y(-2),ding
din V

where"

1 din(v")
n din V

From (9)-(11)we get

X T, ln A.

—2y(-2) . (12)

One finds in the literature a variety of values
for the GrCneisen constants. Many measurements
were performed at temperatures that are not low
enough, and the distinction between lattice and
electronic contributions is impossible. In such
measurements one gets a total GrQneisen constant
from the ratio of the total thermal-expansion co-
efficient to the total heat capacity. In other mea-
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TABLE III. Comparison between the empirical (emp), calculated by the model (calc), and the directly calculated
(dir) ding/t'dlnV, for several transition-metal elements.

Element
d lng emp

(Ref. 19) d 1nV
~el

(Ref. 19)
din J2 ding c&c din~(0) din J " din

V
Nb

Ta
Mo

0.860
1.302
0.953
0.385

1.2
1.6
1.7
1.7

-2.67
-2.06
-2.32
-2.29

1.65
1.5
1.3
1.5

-3.60
j4

-4.29
-4.05

-1.95
-2.64
-2.99
-2.55

1.41 {Ref. 23)
1.27 (Ref. 24)

-3.45
-3.94

-2.04
-2.66

surements" only the heat capacity was separated
into its constituents. As we are explicitly inter-
ested in the distinction between din( v ')/din V

and d lnN(0)/d ln V we will use the data of Collins and
White" that separated the phonon and electron
contributions both in the thermal expansion and
the specific heat.

The value of y(-2) is not found in the literature
for transition metals, but it seems reasonable
that

y =- y(0) -y(-2) - y(-3) =- y. ,

where yo and" y„are the lattice GrQneisen param-
eters at low and high temperatures, respectively.
[From the work of Barron et aL" one finds that
y(n) is monotonic in n, at least for ionic crystals,
and that the difference y„-y, is not large. ] Since,
however, we expressed in Secs. I and II ( v ') by
eD we approximate y(-2) = y(0) —= $.

The various quantities we used in the calculation
of the empirical ding/din V from (12) are given
in Table III. T, and d T, /dP are taken from Ref.
22, OD from Hef. 6 and y from Hef. 21. The val-
ues of A are given from the inversion of Eq. (4)
with p. * as described in Sec. II.

We turn now to a theoretic calculation of ding/
din V. Neglecting the renormalization of I' by the
electron-phonon interaction (which is again a sort
of coupling) we write

din N(0) din I'
din V din V

and take its value from Hef. 19. In calculating
d LnZ'/din V we use the model developed in Sec.
II assuming that the atomic quantities B and Q are
not changing too much under pressure (this as-
sumption will be discussed below). By differentia-
ting (8) we get

—= ——(4+ x) +
&

—
2 (5C, d, + 2C, d, + 2C, d, ),dlnJ' 2 32 x

(13)

where

d, =A(8+4x+x');

d =Ax';

d, = A (-2+ 2x+ x '),

and the other quantities are defined in Eq. (8).
The resulting values of ding/din V are also

listed in Table III and we see that they differ from
(dln7I/din V)' ~ by less than 30%%uo.

In order to check the assumption of constant
values of 8 and Q that was made in getting Eq.
(13), we calculated J' explicitly using a self-
consistent augmented-plane-wave band-structure
calculation, with reduced and normal lattice
spacings for "V and "Nb. y„was calculated
directly from the density-of-states curves for
the different lattice spacings. These results
together with the total directly calculated dlnrI/
din V are also listed in Table III (indicated by
Icd ir l1}

Despite the fact that the details of the calcula-
tion show some changes in B and Q with volume,
the over-all values for (ding/4 Ln VP' are very
similar to those of the model calculation.

We point out that this consistency between the
two calculations and the agreement with experi-
ment were achieved without any adjustable param-
eter.

Analyzing the results we conclude that the
anomalous large negative values of ding/din V
in transition metals are a consequence of the
large negative value of dL@Z2/din V, i.e. , broad-
ening of the band by reducing the volume. This
strong effect is partially cancelled by the result-
ing decrease in the density of states (y„& 0}. This
result is in accord with the conclusions of Hatti
et al."that the large value of (ding/din V~ is
governed by the broadening of the resonances
under pressure. However, their over-all value
of ~ding/din V( is somewhat larger, as they su-
press changes arising from the density of states
by using the single-scatterer approximation.

IV. PRESSURE EFFECT IN ALLOYS

The only system on which continuous measure-
ments of the pressure induced changes in T, were
performed, is the Zr-Nb-Mo family. " This sys-
tem is particularly interesting as d 7, /dP changes
sign within the rom. The ideal situation wouM be
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4

FIG. 4. Experimental (triangles) and calculated
(squares) values of dT,/dP vs the number of electrons
per atom in the Zr-Nb-Mo system. The two calculated
curves represent different choices of the lattice Grun-
eisen parameter for Zr. The arrows indicate the cor-
responding values for Zr and Mo.

if we had a continuum of values of y„and (, so
that the prescription of Sec. III might be used. As
this data is lacking we proceed as follows: we
interpolate linearly the values of OD and I" between
those given in Table II. din J'/din V is calculated
in the same manner of Sec. III. As the GrCneisen
parameter of Zr is not given by Collins and White"
we assume that the ratio fz, /f~ remains the
same as that given by Gschneidner" and thus get

gz 0 7 5 The values of ( are then linearly in-
terpolated. The difference between the empirical
and calculated values of ding/din V for Nb,
brings about a shift in the d T, /dP curve, which
is corrected by adding a constant to the calculated
ding/din V. There remains the problem of yz
which is a complicated quantity that contains an
admixture of contributions from band shifting,
stretching, and twisting. " The effect of band
structure on y,&

was discussed by charley.
" The

complications involved may be illustrated by the
fact that Mo and Nb have the same value of y„,"
in spite of the fact that their location on the rigid-
band model density-of-states curve differs both
in the magnitude of IV(0) and in the sign of the
slope of the curve. Indeed, one can qualitatively
show, using Parley's formula, that there is a
trend of cancellation of the different changes in
the quantities determining y„, keeping it roughly
constant between Nb and Mo. Having no better
information we thus choose y„= 1.5 in the whole
Zr-Nb-Mo system.

We have calculated d T, /dP along these lines
by inverting Eq. (12). The values of X were ob-

tained by inverting Eq (.4) using the experimental
values of T, given by Smith" with the convention
described in Sec. II for p. *. The results are shown
in Fig. 4 (line a). The change of sign of dT, /dP
occurs in the vicinity of Nb as for the experi-
mental points. However, the slope of the curve
in its positive region is too small. From the cal-
culation one sees that the dominant quantity in
determining d T, /dP is the lattice Grttneisen
parameter $. The shape of our curve in the pos-
itive region depends on our value of $z, and the
linear interpolation performed. Indeed, extra-
polating up to (the hcp) Zr yields quite accurately
the experimental value for d T, /dP (indicated by
an arrow). In order to get better agreement with
experiment one has to decrease the values of $
in that region. It seems that there is an excess
reduction in ( for 4.2 &Z & 5 (relative to the inter-
polation between Nb and hcp Zr) as we approach
the instability" connected with the change of struc-
ture near Z=4. 2. Such an increase in d T, /dP
was recently observed"'" in P, Si samples near
the martensitic transformation, and indeed in
some of the samples Smith et al."even measured
a big negative GrQneisen parameter. If for ex-
ample we use for Zr, ,Nb. .. (=0.43 and inter-
polate ( linearly up to Nb, we get the curve b in
Fig. 4. The "excess" d T, /dP observed by Smith
may be a consequence of the (reasonable) non-
linear dependence of g on Z, or from electronic
effects like important changes in yz that might
occur near the structure instability.

In the region Z~ 5, ( is almost constant and
the curve is determined by the other quantities
appearing in Eq. (12). Here the agreement with
experiment is reasonable, including the value for
Mo (indicated by an arrow).

V. DISCUSSION

In this paper we dealt with two aspects of super-
conductivity in transition metals. In the first
part we discussed the systematic variation of T,
along the rows of the Periodic Table. We built
a model that predicts T, from a knowledte of the
Debye temperature OD, the lattice spacing, and
the specific-heat coefficient F. It is clear that
these quantities are not independent as a large
electron density near the Fermi energy enhances
screening, thus decreasing the interionic forces.
This general idea had been used by Allen and
Dynes, "who expressed the electronic factors
appearing in A. by phonon properties. However,
as they need a detailed knowledge of the bare
phonon frequencies, their calculation is limited
at present to "pseudopotential" metals. Using the
same ideas Gomersall and Gyorffy" followed the
opposite procedure and expressed ~ only by elec-
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tronic properties getting a nice qualitative agree-
ment with Matthias's rules. " As a model calcu-
lation for I'(Z) was developed by Miedema" it
seems that we are able to get continuous lines of
T, (Z) without the use of experimental data at
discrete points. Work in this direction is now
performed.

Returning to the present work we conclude that
the agreement of the experimental with the calcu-
lated T, (Z) curves is satisfactory. The results
depend explicitly on our choice for p, ~, assuming
it to be proportional to N(0). The conventional
way to estimate p. * is by using the isotope effect
c. = -din T, /dlnM, and in our case one gets

g*= 2.925b+ i(2.925b)'+ 2b)'i',

where

(1 —2n)K l.83en
Gy43 &~y 2 543 y E ln

Unfortunately, in our materials only Mo was
measured and using @=0.3V we get p*„=0.10,
which is similar to the value obtained by MeMil-
lan. ' If we assume a constant p, ~ with this rela, -
tively small value, the calculated line in Fig. 1
would still be fax below the limits of the figure
near Z= 5.7, destroying the agreement with ex-
periment. In the model we used for p, * this value
for Mo gives rise to p. »=0.239. Though the use
of this number would maintain the general shape
of the T, (Z) curve we choose the more common-
ly used value ~=0.149. In any case, our re-
sults prefer p*=N(0) U, over a constant p*.

The extension of this theory to hep and fec
lattice structures is now in progress and we hope
to be able to explain the behavior of the super-
conducting transition temperature along the whole
rows of the Periodic Table. Also, it would be
desirable to develop a similar model for other
structures such as the P-W's that are more in-
teresting because of their high T, and the pecul-
iarities in their band structure. "

In the second part of this paper we considered
the pressure effect. %'e developed a model fox'

calculating ding/din V-the dependence of the
electronic pax't of X on volume, the agreement
with experiment being of about 30%%uo. A calculation

of this quantity directly, using band structures
of normal and reduced lattice spacings agrees with
that of the model. %'e wa, nt to note that the re-
duced lattice used, had a lattice constant of 95
at. % of the normal one, a fact i;hat corresponds
to a very high pressure (240 kbar for "V), and it
is not clear at all that the behavior is linear on
such a broad range.

In attempting to explain the d T, /dP(Z) curve
obtained by Smith" fox Zr-Nb-Mo aQoys we used
several assuxnptions because of the lack of ex-
perimental data. We want to point out, that the
agreement obtained with experiment, cannot jus-
tify (in this case) our model for ding/din V be-
cause of the fact that the calculated line in the
range Z& 5 depends mainly on the choice of the
GrOneisen parameter E. This is a consequence
of the assumptions made in this section, especial-
ly that of a constant y,&, and of the fact that the
transition temperature in this range is roughly
constant, leading to an approximately constant
value for the factor f(X, p, *)ln(1. 83 8~/T, ) appear-
ing in Eq. (12). A deviation from the linear curve
in the region where $ is still (assumed to be)
linear, appears only close to Nb, where the de-
crease in T, changes this factor. Thus, the con-
clusion of this section has to be that d T„/dP
in this family can be explained using changes in
( only, though it is not the only possible explana-
tion.

A short glance on Smith's line reveals the cor-
relation between the change of sign in d T, /d P(Z)
and the change of sign of the slope in the T, (Z)
curve, that is connected with the I'(Z) curve as
was shown in See. II. This suggests that another
explanation for this line may be found by corre-
lating the applied pressure with shifts of the Fermi
level that will bring about changes in T, as a
result of the changes in N(0)." As was mentioned
in See. IV the translation of this idea to a numeric
form may be complica, ted. This wiQ be discussed
elsewhere.
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