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The Ginzburg-Landau equations are used to analyze the equilibrium configuration of 'He-A in a slab, subject
to either a bulk hydrodynamic flow or a uniform tipped magnetic field. Both perturbations can induce an
orientational transition from an essentially uniform texture to one with large deformations. The associated
phase boundaries are determined both variationally and exactly.

I. INTRODUCTION II. GINZBURG-LANDAU FREE ENERGY

The predicted anisotropy of superfluid 'He-A
has stimulated both theorists' and experimental-
ists. ' The simplest example is bulk homogeneous
fluid, ' ' where the orientation arises from a uni-
form hydrodynamic flow or a uniform static mag-
netic field. In a bounded domain, however, the
equilibrium state generally becomes inhomogeneous,
and only certain special cases have been analyzed
in detail. ' " The simplest configuration is a semi-
infinite geometry, and Ambegaokar, de Qennes,
and Rainer studied the static equilibrium configu-
ration for zero flow and field with both specular
and diffuse boundary conditions. de Qennes and
Rainer' then extended the treatment to include a
uniform hydrodynamic flow in a slab, restricting
themselves to the simpler case of specular bound-
ary conditions. The rather different effect of a
perpendicular magnetic field in a slab was exam-
ined by Ambegaokar and Rainer, ' who moreover in-
corporated the nuclear dipole-dipole energy. In both
these latter two investigations, the superfluid
state undergoes an orientational transition from a
uniform state to a nonuniform one at a definite
value of the flow or field that depends on the width
of the channel. Such phase transitions should be
detectable experimentally by NMR techniques, "
and it therefore becomes interesting to undertake
a more general analysis that includes boih the di-
pole energy and an arbitrary orientation of the
magnetic field. As in the more familiar case of
superconductors, spatially inhomogeneous states
are most tractable near the transition tempera-
ture, where a Qinzburg-Landau theory allows an
essentially complete description. Section II sum-
marizes the approximate Qinzburg-Landau free
energy that serves as the basis for subsequent cal-
culations. The orientational transitions induced
by hydrodynamic flow and a static magnetic field
are analyzed in Secs. III and IV, respectively, and
the combined effects are considered in Sec. V.

+Z,a,.A,*,a,A„,, (2}

where repeated indices are summed from 1 to 3.
Here, K„K»and K, are phenomenological con-
stants of order —,N(0)$', , with N(0)=m*k~/2v'S',

The order parameter for a spin-triplet p-wave
superfluid may be expressed as a tensor A„,,
where the first and second indices refer to the
spin and orbital vectors, respectively. (This con-
vention follows that of Mermin and Stare, ' but re-
verses those of Leggett, ' and of Anderson and
Brinkman. ") In the Ginzburg- Landau regime
(T, —T«T,), the additional part of the free-en-
ergy density that appears on entering the super-
fluid phase has an expansion in even powers of
A„,, with three distinct contributions. The bulk
terms E, are invariant under separate rotations of
the spin and orbital coordinates. This very gener-
al rotational symmetry is broken by the dipole en-
ergy I'~ that couples the spin and orbital variables,
leaving E,+ I'~ invariant only under the simultan-
eous rotation of the two vectors. Even this last
symmetry is broken by the various external per-
turbations (flow, field, walls) that orient the spin
or orbital vectors. If only E, is considered, then
the order parameter in the A phase has the special
form

&„=&4(n, +in, },, (1)

where d, n» and n, are arbitrary real unit vectors
subject to the single restriction n, 'n, =0. The
parameters contained in E, fix the magnitude of 4,
and all states of the form (1) have the same free
energy.

The additional contributions contain several
distinct terms. First, the presence of spatial in-
homogeneities leads to a kinetic energy density of
the form"
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the observed density-of-states of one spin projec-
tion at the Fermi surface, and $, = [7/(3)/48zz']'~'
x (fzvz/fzzT, ). Although weak- coupling theory" pre-
dicts that Ey K2 E3 other cases can yield diff er-
ent values, and we follow Leggett' in retaining the
more general notation. Indeed, the present analy-
sis suggests that a direct determination of the ra-
tio (Kz+Hz)/Kz may be feasible. Equation (2) has
the immediate consequence that the fluid trans-
ports particles with current density" '4

(4)

The remaining terms in the free energy are more
straightforward to analyze. ' In the presence of a
magnetic field, the free-energy density acquires
an additional contribution

(5)

where g~ is a coupling constant of order
[ f 0(&)/24v']1„(fzzzT,) '(1+ —,

' 8,) ', with lf„the nor-
mal-state static susceptibility, and (1+ —,Z,) '= 4,
the Fermi-liquid enhancement factor. The walls
(here taken as surfaces of constant z} may be in-
corporated through the boundary conditions'

A„,=O,

(6b)

where only the simplest choice (speeular reflec-
tion) is considered. Finally, the nuclear dipole
energy couples the spin and orbital vectors, lead-
ing to a contribution

where g~ is another coupling constant of order
(—,', zz)[fi(0) yh ln(1. 18a~,/a T,)]', with

I r I
= 2.04 x 1O'

(6 sec) ', and h&u, /kz a cutoff temperature of order
O. V K. The combined volume perturbation terms

E, =E~+E +E~, (8)

and the boundary conditions automatically generate
the surface energy. To estimate the relative im-

and transports spin component A. with current den-
sity'"

8;;=—2&~„Re(KzA„*;S,A„,

portance of these various terms, note' that the
ratio (gv/gz)z~' represents a characteristic mag-
netic field H* of order 25 Oe, and that (K,./gv)z~'
represents a characteristic length I,* of order
6 x 10 4 cm. Evidently, the magnetic field domi-
nates the dipole energy if II» H*, and the surface
energy dominates the dipole energy for narrow
channels of width 8'«I.~.

To make further progress, assume that the or-
der parameter in the A phase retains its form (1)
with an additional phase factor to incorporate the
possibility of hydrodynamic flow. In particular,

is taken as unaffected by the presence of walls,
but the direction of the unit vectors d, Ry and n,
can vary throughout the fluid. Although such an
approximate description cannot hold arbitrarily
close to T„it should be valid whenever the tem-
perature-dependent coherence length $,(1 —T/T, ) ' ~ '
is small compared to the channel width W. This
model corresponds to the London limit of Ambega-
okar, de Qennes, and Rainer. '

Let the fluid fill the domain
I
z

I

& —, W, with either
a bulk flow along the y direction or a uniform mag-
netic field 8 =H(y sin|li+ z cosg) in the yz plane at
an angle P from the surface normal z. The hydro-
dynamic flow may be incorporated into the order
parameter with the assumed form

A„.( r ) = & exp[igy+ iS(z)][d(z)],[n, (z)+ in, (z)],

(9)

The first boundary condition (6a) holds if f =—n, && n,
becomes normal to the wall at z=+ & lV, and the
remaining ones (6b) require that both dd/dz and
dS/dz vanish at the walls. By symmetry, f and d
both lie in the yz plane, and we write

f (z}=ysin8(z)+z cos8(z),

d(z) = y sing(z)+ z cos@(z),

where 8 and P obey the boundary conditions 6] =0
and dg/dz = 0 at z =+-,'W. These conditions differ
from those of Barton and Moore, "who mainly
studied the behavior for A,. =0 at all surfaces (a.
model for diffuse reflection). That choice is most
appropriate very near T„but it is incompatible
with our physically motivated representation of the
order parameter (9) with constant I& I.

It is not difficult to evaluate the perturbation
energy (8) for an order parameter of the form (9).
Measuring lengths in units of the channel width 5',
we find

F= Eo+ Ez = const+ gvb'(zv '[2q'+ 2(S')'+ 2y(q cos8 —S' sin8)'+ (8')'(1+ 2y cos'8) + 2(@')'(1+y sin 8)]

+ 2fz' cos'(q P}—2 cos'(8 —P)],
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where q—= QW, w= W/L~, k=H/H*, and a prime
denotes differentiation with respect to the dimen-
sionless variable z. In addition, we have used the
abbreviation

tion of the spin current is similar, involving con-
tributions of the form (d' && d)» which vanishes ex-
cept for A =x. In this way we obtain the ith com-
ponent of the current for the x component of spin

y=(2K, ) '(K, +K,), (12) J'„,= (4K,&'/W) P'[(1+ y'sin'8)z —y sin8 cos8y], ,

Z/2

(&)=f & &(*),
-Z/2

(13a)

with respect to 8, P, S, subject to the homogeneous
boundary conditions

8(+ z) = 0'(+ z) = S'(+ z) = o (13b)

Note first that Eq. (11) contains the function S(z)
only as the derivative S'(z), and the corresponding
Euler-Lagrange equation is easily solved to give'

S'(z) = yq sin8 cos8(1+ r sin'8) ', (14)

which automatically satisfies the boundary condi-
tions. The stationary nature of (F) then permits
direct substitution of (14) into (11), yielding the
simpler free-energy density

I' = const+ go~'f,
where8'9

(15a)

f= ni '[2q'(1+ y)(1+ y sin'8) '+ (8')'(1+ 2y cos'8)

which reduces to 1 in the weak-coupling limit. The
problem now consists in minimizing the total free
energy

which arises from the bending of d. As expected,
J'„,vanishes at the walls because of the boundary
condition on P'.

III. HYDRODYNAMIC FLOW

The previous general analysis will now be spec-
ialized to pure hydrodynamic flow with no magnetic
field. Even in this case, however, the nonlinear
coupled Euler-Lagrange equations for 8 and P are
intractable, and we therefore make the additional
approximation of small bending (I 8

I~ I
y I

1). ff
q=0 (no flow), then Eq. (15) for h=0 attains its
minimum for 6= /=0, with d~~l owing to the dipole
coupling. As q increases from zero, we expect
the approximation of small deformations to re-
main valid; it will permit us to locate the boundary
of instability in the WQ plane, separating a uniform
configuration (8 = $ = 0) from one with l and d both
tipped toward the flow direction. An expansion of
Eq. (15) with h=0 to second order in 8, /yields

f= u '[2q'(1+ y) —2q'y(1+ y) 8'+ (8')'(1+ 2 y)

+ 2(P')'(1+ y sin'8)] + 2(P')'] —2+ 2(8 —P)', (18)

+ 2h' cos'(P P) —2 cos'(8 —P) (15b)

is dimensionless. Here, the three terms represent
the kinetic energy, the magnetic energy, and the
dipole energy, respectively.

The physical current densities are readily eval-
uated with the a.ssumed order pa. rameter (9). Use
of Eq. (14) reduces the particle current to

4b, ' 1+ y - K,J(z}= 2K,Q . , y ——' cos88'x
1+ y sin'8

(15)

where z is again dimensionless. This expression
shows that the current flows predominantly along

y, but with an extra, component (first noted by
de Gennes and Rainer'} along x, associated with

the bending of l. This last term averages to zero
across the channel, because of the boundary con-
dition on 8. Thus, the transverse flow does not
affect the net transport of particles; nevertheless,
an experimental search for such a contribution
would be most interesting because it depends only
on K, instead of the combination K, +K,. Such be-
havior seems to provide a counterexample to the
assumed equivalence of free-energy densities dif-
fering only by partial integrations. ' The calcula-

which constitutes a quadratic form in the variables
8, y.

8(z) = P A„cos[(2n+1)zz], (19)

where the sum on n starts at zero. In principle,
Q(z) could be expanded in a similar series, but it
is preferable to follow Chandrasekhar, "and ex-

A. Variational approximation

Although this particular problem has an exact
solution, we ultimately are interested in other
geometrical configurations (for example, a cylin-
drical pore) that will require approximations.
Consequently, it is valuable to analyze even the
slab with such techniques, for comparison with
the exact results can then indicate the accuracy
of the approximations. In the present case, we

shall use a variational method. The symmetry of
the system suggests that 8, P in the lowest de-
formed state will be even functions of z; other-
wise, the node at the center would imply additional
kinetic energy of bending. It is convenient to ex-
pand 8(z) in a complete set of even functions that
satisfy the boundary conditions (13b),
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plicitly solve the Euler-Lagrange equation

—m'(t) = —av'8 . (20)

0(z) = g &.4.(z), (21)

where f„satisfies the equation

P„"—m'P„=—u' cos[(2n+ 1)vz], (22)

Here, the right-hand side is interpreted as an
inhomogeneous term, and the linearity permits an
expansion in the form

is symmetric under interchange of its indices.
Note that (f) contains a quadratic form in (A„].
If this contribution is positive definite, then the
equilibrium configuration is uniform; conversely,
the uniform state becomes unstable with respect
to a deformed one whenever fc „]ceases to be
positive definite.

Equation (24) provides a variational principle
for the equilibrium configuration, and the tr ial
function can be systematically improved by in-
creasing the number of coefficients. The simplest
approximation retains only A„in which case

and the boundary conditions Q„'(+—,) = 0. These
functions are readily determined to be (f)= 2q'~e '(1+ y) —2+ c„A',. (26)

y„(z)= zv'+ v'{2n+ 1)'

(- 1)"v(2n+ 1) cosh(wz )
~I ~ ~ ~ cos ~~~ ~ i ~~ tw sinh[(1/2) w]

which, in effect, already incorporates half the
solution. As a result, the subsequent analysis in-
volves only the single set of coefficients [A„].

The remaining problem is the evaluation of the
total free energy (f) for the functions (19) and (21).
A straightforward calculation eventually gives

(f) =2q'w '(1+ y) —2++ c „AA„,

vr'(2n+ 1)'
mn mn ~2+ 2(2n+ 1)2

1+21' .. . q'y(1+y))+, v t2n+I

4~ coth[(I/2)n](- 1) '"v'(2m+ l)(2n+ 1)
[w'+ v'(2m+ I)'][u'+ v'(2n+ 1)']

(25)

4n" v' coth[(I/2)w]
y(l + y)(sv'+ z')' (27)

With increasing flow in a fixed channel of width
TV= a~I.*, the uniform state remains stable up to
a. critical value Q, =q, /W, at which point I tilts
away from its original z direction through a small
angle e(z) =A, cos(vz/W); in addition, the dipole
energy couples the directions of L and d, tilting d
through the angle A, g,(z). The present approxi-
mation fixes only the form of these functions; a
determination of A, would require higher correc-
tions to Eq. (18).

The critical flow rate in (27) has a simple form
for small and large channels:

Evidently, the equilibrium value of A, vanishes
whenever c„&0;if c„becomes negative, how-
ever, then {f) is unbounded from below, and I+0 I

increases indefinitely. This last situation repre-
sents the failure of our expansion to second order
in 8 and ft), since nonlinearities become significant.
In the present approximation, we see that the con-
dition c =0 characterizes the onset of instability.
Sett111g n1 = n = 0 ln (25) yields the condition

7 (1+ 2'Y)

2y(l+ y) y(l+ y)(~'+ v')

iv'(I+ 2y) W'

2y (I + y) y(1 + y)L *'

v'(3+ 2y) Bf,*

i 2y{1+y) W(3+ 2y)
(28b)

Note the relative constancy of Q,R', implying that
the critical velocity v, =Kg, /2m, varies essentially
inversely with the channel width W, keeping the
product v, W of order 8/m, . In the limit of small
u, Eq. (28a) reproduces the expression found by
de Gennes and Rainer, ' who neglected the dipole
energy and (in effect) took /=0. This correspon-
dence reflects the dominance of the kinetic energy

for narrow channels. In the opposite limit of wide
channels, however, the dipole energy is important
nearly everywhere, producing extra curvature en-
ergy associated with the bending of d. The inter-
mediate regime 8'= I ~ is experimentally accessi-
ble, and measurements of v, in channels with
widths spanning this value might determine y in

Eq. (12).
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B. Exact solution

Q(z) = A cosh pz +8 cosvz . (31)

Application of the boundary conditions then gives
the desired eigenvalue equation

p, '(p, ' —u') coth(-,'p, ) = v '(v'+go') cot(2v). (32)

The lowest root fixes the instability to an even de-
formed state with no nodes, and higher ones in-
clude successively more oscillations.

Equation (32) i's a transcendental equation, and
explicit determination of q, requires numerical
analysis. Thus we first examine a few limiting
eases, where analytic expressions can be found.
If m-0, an expansion in powers of m precisely
reproduces the variational approximation [Eq.
(28a)]; for ~-~, moreover, the exact result dif
fers from (28b) only in the correction term, where
the factor (3+ 2y) is replaced by [(3+2y)(1+ 2y)]' '.
In these limits, at least, the variational approxi-
mation seems remarkably accurate, and detailed
evaluation of (32) confirms this behavior for all

The approximate free energy (f) in (18) has the
Euler- I.agrange equations

8"= (1+2 y) '[2M~' —2q'y(1+ y)]8 —2''(1+ 2 y)
' P,
(29a)

(29b)

which must be combined with the boundary condi-
tions (13b). For general u and q, no solutions
exist, leading to an eigenvalue problem for the
dimensionless parameter q, in a channel of fixed
dimensionless width so. The solutions may be
classified as even or odd, and each set has an
infinite sequence of eigenfunetions and eigenval-
ues, with the nth even (odd) solution signalling the
appearance of an orientational instability to an
even (odd) state with n nodes. Similar behavior has
been studied in 'He-B by Fomin and Vuorio. " As
noted previously, the first instability is expected
to yield an even deformation, and only such solu-
tions are considered here.

Equations (29) have constant coefficients, which
allows a direct solution in exponential form 8,
Q ~ e"'. Substitution into (29) yields the consist-
ency relation

p,
' —p, '(1+ 2y) '[(3+ 2y)u' —2q'y(1+ y)]

—2q'za'y(1+ y)(1+ 2y) ' = 0, (30)

which can be solved directly for the two roots p. ', .
Since the product p, '. p,

' is negative, it is convenient
to redefine them as p.,= p, , p, =iv, and the corre-
sponding even solutions become

8(z) = (1 —p'/zo')A coshgz+ (1+ v'/w')B cos vz,

Figure 1 plots the slowly varying product

q, =Q, Wagainst w=W/I. *, with y=1. As noted
previously, this curve represents a transition to
the lowest even state, but the boundary for transi-
tions to odd states should have a similar shape,
but displaced upward. On the present scale, the
variational approximation (27) is indistinguishable
from the exact expression.

To conclude this section, we consider the cur-
rent densities for these two states. The uniform
configuration has a constant current density
(BE,n'/h)Q(1+ y) y, with no spin current. On the
other hand, the deformed state is considerably
more eomplieated. To first order in 8 and Q, J',
remains unchanged, but the bending of / induces a
small transverse flow 7„=—(4K,n'/K W)8' that
changes sign at z=0. In more physical configura-
tions, like axial flow in a cylindrical tube, this
transverse flow would presumably become a cir-
culating current about the symmetry axis. The
deformed state in a slab also carries a weak-spin
current J'„,= (4K,&'/W)Q' that changes sign at
z =0. This flow transports the x component of spin
towards or away from the center of the channel,
with spin conservation ensured by the "internal
Josephson effect, " as discussed by Fomin and
Vuorio. "

IV. UNIFORM MAGNETIC FIELD

2.0 i
0 20

FIG. 1. Critical value of the product q~ = Q~@'
= 2m 3& ~ ~'/@ for a hydrodynamic ally induced or ientational
transition of He-A from a uniform state (shaded) to a
deformed one (unshaded) in a channel of width ~. Here,
24'= W/L*, with &*=6&10 cm, and p=1. The curve
was determined either from the exact eigenvalue equa-
tion (32), or from the variational approximation (27).

The vector / played a dominant role in the pre-
ceding example of hydrodynamic flow, for it ex-
periences direct perturbations both from the sur-
face and from the macroscopic velocity field. On

the other hand, the spin vector d senses the hydro-
dynamic flow only indirectly through the dipole
energy. The situation changes markedly if the flow
is replaced by a. magnetic field, which affects d
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x'= 1 —2k' cos2$+ h4 (34)

is nonnegative. These relations confirm that d lies
along z for H along y. More interesting is the case
H along z, when d changes discontinuously from z
to y as II increases through II*=25 oe. A similar
but continuous transition oeeurs for other P, with

d rotating fx'OD1 z to x x H with increasing field.
To study the possibility of an orientational tran-

sition in a uniform tipped magnetic field, consider
small deviations from the uniform state, with

directly, tending to align it perpendicular to H. If
H lies along-y, then the configuration / jjd jjz min-
imizes both the magnetic energy Rnd the dipole
energy. For othex orientations, however, com-
peting effects aet on d, and only a detailed study
can determine the equilibrium state. Ambegaokar
and Hainer' have performed such a calculation for
H jj z, Rnd we here extend the analysis to a tipped
magnetic field H = H( y sing+ 2 cos)t)) lylllg 111 the yz
plane at an angle Pfromz. Although this modest gen-
eralization eomplicates the algebra considerably,
it predicts that many physical properties (like the
shape of the phase boundary for orientational tran-
sitions) depend qualitatively on g.

The problem of interest is to obtain the equili-
brium configuration of 'He-A in a slab geometry
by minimizing the free-energy density (15}, with

q = 0. The simplest state that satisfies the bound-

ary condltloDs I.s strictly unlformy with I jjz Rnd

d tipped in the yz plane at a constant angle 4. The
equation SfjSC =0 yields the solution

cos2e = y '(1 —h' cos2$),

slIl2@ = —g 9p sln2$ y

A. Variational approximation

Before presenting an exact solution for the phase
boundary, we again apply the variational method
from Sec. IIIA. This approach is algebraically
simpler than the exact one; it also clarifies the
new physical phenomena induced by tilting the
magnetic field. The symmetry of the problem sug-
gests an even solution, and we accordingly take
8(z) in the form (19). Use of (34) reduces the
Euler-Lagrange equation for Q to

P" —v'w'(t) = —n)' cos(2C) 8, (36)

again implying an expansion of the form (21), but
with P„now satisfying

y'„'—)('u)'(t)„=- n)' cos(24 ) cos[(2n+ 1)))z] . (37)

An elementary calculation leads to

d

order in the small quantities 0 Rnd p yields

f= h' —1 —)(' —28 sin24+ n) '[(8')'(1+ 2w)+ 2((f)')']

—2h' cos{24 —2P) P'+ 2 cos{24)((t)—8)', (35)

where the bar on Q has been omitted for simplicity.
Note the presence of a linear term in 8, which im-
plies that the system can always lower its free
energy by undergoing a small deformation when-

ever sin24 40. If the quadratic contributions are
positive definite, however, the equilibriun1 state
remains "quasiuniform" with 8 and fIt) remaining
small; otherwise, the state undergoes large de-
formations. The problem then is to determine the
boundary in the WH plane where (f) ceases to be
bounded from below with increasing 8 or Q.

'cocos (-()" (S +()cosh(s *)
( ))g'w'+ v'(2n+ 1)' )(w sinh[(1/2}dna]

which also follows from (23).
The evaluation of the free energy per unit area. (f) is straightforward and eventually gives

(38)

where

b„=-4v 'sin(24)(-1)"(2n+1) '

c
(1+2y)v'(2n+ 1)' +co»~- »w cos'24) 4''(cos224)()(n)} ' coth(~)(n))(- 1} '"v'(2m+ 1)(2n+ 1}

mn mn 2K ~'w'+ ))'(2n+ 1)' [~'n'+ v'(2m+ 1)'][~'w'+ v'(2n+ 1)']

The linear term in (39) occurs whenever the mag-
netic field is tipped from y or z. For definiteness„
suppose P is negative; Eqs. (33b) and (40a) then
imply that bo is also negative. Independent of the

(40b)

quadratic parts of (39), the choice A, =O can never
minimize the free energy, for (f) initially de-
creases linearly with increasing A, . Consequently,
the strictly uniform state (A„=Ofor all n) is never
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favored for 'He-A in a slab with a tipped magnetic
field (unless sin2$=0). Instead, the field acts on
d in the bulk fluid, bending it away from the uni-
form orientation 4» making it more nearly per-
pendicular to H. Simultaneously, the dipole cou-
pling bends l away from 8 and H.

The existence of such deformations immediately
raises the question of their stability, which may
be answered by considering the quadratic terms in

(39). If they are positive definite, then (f) has a
true minimum for some set of finite coefficients;
conversely, an instability occurs whenever the
quadratic terms cease to be positive definite. This
eriter ion, which does not involve the linear terms,
is precisely that used in Sec. IIIA.

To illustrate the preceding remarks, consider
the simple trial function AoWO»A, =A, = =0. For
positive c», the free energy (f) has the minimum
value

(f) „=b'—1 —N' — bo/4c» (41)

(A,) „=—b,/2c„. (42)

f coo becomes small as h and m vary, the equili-
brium state becomes increasingly deformed; in

particular, the condition coo = 0 characterizes the
onset of instability, which here takes place at

+ cos24=go eos 24
1+ 2y) p'

2'w

(
1 4v' coth(-, rut)

» (»* *~ *)*) '

(43)

This equation determines the phase boundary in the
&eh plane separating the quasiuniform state with
bounded deformations from one involving large-
arnplitude bending.

It is valuable to investigate the detailed form of
the phase boundary predicted in Eq. (43).

(i) If b-0, an expansion of (33), (34), and (43)
yields the explicit relation

(ii) If b-», the critical field is given approxi-
mately by

(1/2)(1+ 2y)w'w '= cos2&+ b ' cos4&. (45)

This equation identifies a characteristic channel
width w, = p[-,'(I+2y)/cos2$]'~', with the guasi-
uniform state stable at high fields for re& coo.
Moreover, the critical-field curve for large 6
approaches ceo from smaller or larger values of
so, determined according to whether eos4$ is posi-
tive or negative.

(iii) For zv-~, an expansion of (43) leads to the
implicit relation for the critical field

v'a '[-,'+ y+ v '(1 —b' cos2&)']

= v 'b'(I —b' cos2$)(cos2$ —b') . (46)

Since the left-hand side is small and positive (of
order w '), solutions exist only if one of the three
factors on the right-hand side is also small. The
first possibility (b-0) has already been analyzed,
and the remaining two require that the product
(1 —b'cos2$)(cos2$ —b') be positive. No solutions
exist in the range

eos2g~h ~ see2$»

where the quasiuniform state remains absolutely
stable. As h' approaches these limiting values
from below and above, respectively, the critical
field curves move toward large ze; the only ex-
ception is at /=0(H (Ia), when the critical-field
curve actually reaches u =0 at 8=1. This last
ea.se, which was examined by Ambegaokar and
Rainer, ' also follows from (43) with a suitable
limiting procedure.

The preceding discussion indicates that a tipped
magnetic field significantly affects the location of
the orientational transition in the sob plane. Owing
to the linear term in (35), tipping the field also
tends to smear the transition, because [compare
(42)] the texture is somewhat deformed in any
finite field. To estimate this effect, we may aug-
ment the free-energy density with a cubic term,
leading to the approximate form

b' cos2q= v'n) ' ,'(3+ 2y), -- (44) (f)=(fo)+ boAO+ c»AO+ doA3~.

showing that the critical field for an orientational
transition varies inversely with se for large se; in
add1t1on, no trans1t1on can occur unless cos2$~ 0
(namely,

~
tt

~

~ —,
' p). If the latter condition holds,

an experimental determination of the product hm

along the phase boundary as h-0 could provide an
alternative means of measuring y.

For small h, the previously calculated bo has the
order-of- magn1tude h' sin2$» wh1ch properly van-
ishes at k=0 and for /=0 or 90; we assume a
slmllar value do ~ —xk sln2$» with A. a nurner1eal
constant of order unity. Minimization of this (f)
near the critical field b, [given in Eq. (44)] yields
the approximate equilibrium amplitude

—
& h, sin2$

(b, —b) cos2$+ [(b, —b)' cos'2$+ —,
'

X b', sin'2g]'I' '
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Whenever the coefficients A and B are bounded,
then the inhomogeneous tex'm fixes the whole solu-
tion, exactly as in the variational approximation,
with A, 40. This behavior represents the quasi-
uniform state, with the tipped field inducing a
slight departure from strict uniformity. As the
parameters w and h vary, however, the last fac-
tor in the denominator of (51) can vanish, leading
to an orientational instability at the phase boundary
determined by the transcendental equation

(p, —K w ) p, coth(g tl) = (v + IPw )v cot(2 v) .

(52}
This equation turns out to have no solutions if
cos2$&0, or if h lies in the range (4'I), indicating
that the quasiuniform state is absolutely stable in

these cases. Moreover, rather tedious expansions
reproduce the several limits obtained previously
in Sec. IVA with vax'iational methods. Finally,
numerical evaluation for y= 1 and certain selected
g yields the curves in Fig. 2, which axe indistin-
guishable from the variational phase boundaries
obtained from Eq. (43). Once again, the varia-
tional approximation is seen to be remarkably ac-
curate.

To conclude this section, we may note that even
the quasiuniform state generally involves bending
of the unit vector d. Consequently, despite the ab-
sence of particle currents, such textures in tipped

magnetic fields carry spin currents like those dis-
cussed at the end of Sec. III. A similar situation
in 'He-B has been studied by Fomin and Vuorio. "

V. COMBINED HYDRODYNAMIC FLOW AND TIPPED
MAGNETIC FIELD

Actual experiments on hydrodynamic flow in
'He-A. will often involve a magnetic field, for ex-
ample, to provide the static field for NMR stud-
ies." Hence, it is interesting to consider the corn-
bined effect of a uniform hydrodynamic flow
v = tfgy/2m„and an external uniform magnetic
field tipped at an angle P in the yz plane to the
normal z. As in the previous section, the unper-
turbed uniform solution is given by (33), with 8 =0
and ft} = 4. In the presence of hydrodynamic flow,
the dimensionless free energy (35) is augmented
by a term 2q'w '(1+ y)(1 —y8'+ ), and the criti-
cal curve again can be determined either varia-
tionally or exactly; for simplicity, only the varia-
tional approximation will be considered here. The
trial functions (19), (21), and (38) continue to ap-
ply, with the one new feature that c

„

in Eq. (40b)
acquires an additional term —6 „q'y(1+y)w '. If
we retain only the term A, in the expansion of 8 and

P, the approximate condition coo=0 implicitly de-
termines the onset of the orientational transition.
It is convenient to consider H fixed, interpreting
the resulting expression

w cos24 4w v cos (24) coth[(l/2)itw]
(KSU +g2 2 2~2

to give the critical flow velocity v, =hQ, /2m, in a
slab of width W= zvt. * subject to a tipped magnetic
field II=hII*. Equation (53}evidently reduces to
(27) when h= 0 (and hence g= cos24 = 1}; for a spec-
ified tipping angle P, it is meaningful only in the
shaded portions of Fig. 2, because otherwise the
orientational transition already occurs for sta-
tlollary flllld (q = 0}. Ill partlcuiarq lt shollld apply
for all h and w if

~

$~&45', with the transition in-
creasingly sharp as the field becomes parallel to
the flow.

The implications of Eq. (53) are most readily
appreciated by examining the limiting behavior
for narrow and wide channels. A straightfox'ward
expansion yields

v'(I+ 2y) W'
2W'y(1+ y) I.*'

h'(1 —h' cos2$)(h' —cos2tt)
' I,*'y(1+ y)(1 —2h' cos2$+ h'}"'

1+0, W» I +

I

which should be compared with Eq. (28). As sug-
gested by physical considerations, the magnetic
field has little effect for narrow channels, because
the kinetic energy predominates; thus the corre-
sponding critical velocity v, = (v h/2m, W)[(1+2y)/
2y(1+ y)]'t' varies inversely with W, independent
of the field. On the other hand, Q, and v, approach
constant, but field dependent values for large
W» I.*:

tf h'(1 —h' cos2$)(h' —cos2$)
2m I.* y(1+ y)(1 —2h' cos2$+ h~)'~'

(55)

This expression is well defined whenever the quan-
tity in large brackets is positive, which always
holds for

~
tt

~

&45' (namely, H lying within 45 of
the direction + v). Moreover, it vanishes for h=0,
leaving only the correction term which then re-
produces the previous inverse relation (28b) be-
tween Q, and W. The transition should be sharp
for H parallel to the flow, and (55) predicts that
the corresponding v, for wide channels grows
monotonically as h(1+ h') "~' with increasing h.
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Figure 3 illustrates this behavior for various fixed
field strengths. Similar field depend nce occurs
for all

~
i(~ &45'. The dim~ensional coefficient in (55)

has the numerical value = 0.1V cm sec ', and the
second factor is less than 1. Taking, for example,
H= 25 Oe and g = 90', we find v, = 0.08 cm sec '.

a L"

I.0-

VI. DISCUSSION

This paper has analyzed the simplest type of
orientational transitions in superfluid He-those
of the A phase confined between parallel planes of
constant z. As in other more complicated cases,
the possibility of transitions between various tex-
tures arises from a competition between various

A

orientational perturbations that act on l and d.
Transitions of the sort considered here might be
detectable through NMR. In particular, the quasi-
uniform state should produce a narrow resonance
line that broadens on passing into the deformed
configuration, because of the separate resonances
associated with the spatially nonuniform orienta-
tions of l and d."'"

Hydrodynamic flow provides the most straight-
forward example. ' In narrow channels with width
8'« I.*=6 x 10 ' cm, the kinetic energy of curva-
ture opposes the tendency for l to lie along the
flow direction, leading to a critical velocity of the
form v, ~hjm, W. As Whecomes larger, however,
the dipole coupling between d and l also plays a
role, increasing the numerical value of the product
v, W, but leaving the essential form unchanged. An
experimental study of such effects might determine
the ratio y=(E, +K,)j2K, of constants that appear
in the kinetic energy density.

From a mathematical point of view, a hydrody-
namic flow with wave number Q and a magnetic
field H couple to the axial state in similar ways
involving products of the form(H d)' and —(Q *l '.
In practice, however, H and Q differ significantly
in that Q necessarily lies in the xy plane, whereas
H can be arbitrary. As a result, magnetic fields
offer a much richer variety of textures in a bound-
ed domain. Indeed, we find that the general situa-
tion for arbitrary tipping angle P of H relative to
z is much more complex than for the special cases
/= 0 and g= —,

'
z, which are most closely analogous

to the uniform hydrodynamic flow. For example,
certain values of angle g and field strength never

0
0

W/L
20

FIG. 3. Critical now rate @c&*=2m3~cL *I'@ for an
orientational transition of He-A in a channel of width,
S', subject to a magnetic field &, parallel to the flow
velocity (/=90'). Here, I *=6&10 cm, and y=l.
The curves, computed from (53), are labeled with the
value of & =&/&*, where &*=25 Oe.

induce an orientational transition for any channel
width W, yet other values lead to transitions over
wide ranges of 8'. In any specific case, the quali-
tative behavior can be inferred from Fig. 2, which
provides several distinct examples. As in the case
of hydrodynamic flow, the precise location of the
magnetic phase boundary depends on y, and ex-
perimental studies of this effect again could help
determine the kinetic energy density.

It is interesting to relate the present slab geo-
metry to practical physical configurations. Most
importantly, our model lacks boundaries in the
transverse (x and y) directions, so that z specifies
a unique normal to the surface. In contrast, ex-
perimental geometries typically have spatially
varying normals, so that a uniform applied mag-
netic field would act differently at different points
on the boundary. One conceivable procedure to
incorporate the effect of curved boundaries would
be to perform an appropriate average of the ex-
pressions from Sec. IV, but this approach seems
unlikely to predict the correct phase boundary in
(say) a cylindrical container. As a more rigorous
alternative, we are now investigating cylindrically
symmetric solutions to the Ginzburg-Landau equa-
tions, where the explicit appearance of the radial
variable should preclude an exact solution of the
type considered in Secs. III B and IVB. Fortu-
nately, variational techniques remain feasible, and
we hope in a subsequent paper to consider orien-
tational transitions in a cylindrical geometry.
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