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Intensity operator for forbidden lines in EPR spectra of S-state ions
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An intensity spin operator is derived: it leads to a simple description of the intensity of EPR forbidden
(6M = 2, 5 m = 0) lines. These theoretical results are discussed and compared with experimental
measurements on Al, O, :Mn'+ EPR spectra.

I. INTRODUCTION

It is known that the selection rules for magnetic-
dipole transitions are often broken down and this
leads to the observation of forbidden transitions.
Bleaney and Rubins' ascribed the large intensities
of these forbidden lines to cross terms arising
from off-diagonal operators in the spin Hamil-
tonian.

Some authors' ' have reported the observation
of AM=2 transitions in the EPR spectra of Mn"
ions; only Narayana made an attempt to derive an
expression of line intensities but in a particular
and incomplete case. It seems of interest to cal-
culate line intensities by using the method pro-
posed by Mialhe and Erbeia who have introduced
an intensity operator to describe allowed transi-
tions.

In this paper we have derived an intensity spin
operator that leads to a description of bM =2,

4m = 0 lines of the EPR spectra of S-state ions
with axial or cubic environments. %'e have con-
sidered the case when both crystal-field and hy-
perfine interactions are of the same magnitude
and are small compared with Zeeman interaction.
These theoretical results have been compared
with experimental measurements of Al, o, :Mn"
EPR spectra.

II ~ THEORY

The complete spin Hamiltonian for Mn" ions
may be written as

3C= H g'%+X, +X,+8 A T.

The g tensor is approximately isotropic for S-
state ions, X, and K, are the cubic and axial field
operators, and A is the hyperfine tensor. In the
crystal field of corundum (Al, Q, ), the Hamiltonian
3C takes the form'

X=gpsH 8+ D[S', 3S(S+ 1))— — [35S,'—308(S+ 1)S',+ 258', —68(8+ 1)+3S'(8+ 1)']

+ [8,(8,'+S')+(8,'+8')8, ]+AS,I, +—(S,I +8 I,).

In this expression a is the cubic-crystal-field
splitting paxameter, D and F correspond to the
axial crystal field of the second and fourth degree,
respectively, A and 8 determine the hyperfine
components, and the direction of the axial crystal
field defines the s axis which lies along the [111]
direction when referred to the cube axes. %e
need 3C relative to a coordinate system in which
the Zeeman terms are diagonal; this may be ob-
tained by using' a rotation operator. Furthex-
more, the crystalline- electric-field gradient that

exists at the cation sites distorts the spherically
symmetrical el,ectron cloud in the ion, so that the
nuclear spins are not acted upon by the external
magnetic field alone, but by a much greater ef-
fective field' associated with hyperfine interaction
as well. For line-intensity calculations, it has
been shown' that it is important to take the ex-
pression of the hyperfine operator, which con-
siders the actual quantization axes of electronic
and nuclear spin operators. Then, the nondiagonal
part of the Hamiltonian may be written as
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K, =—[$,(2$z+ 1) + (2Sz+ 1)S ]sing cosg+ —(S', + S')sin'8

f——' sing cosg(4 —7 sin'8) [S,F,(Sz) + F,(Sz}S ] ——,
' sin'8(6 —7 sin'8) [S,'F, (Sz) + F,(Sz)S']

+ '
—,
' sin'8 cosg [S,'F, (Sz)+F,(Sz)S')+ p sin 8(S,'+ S')j

av2
+ jsin3y(4 sin'8 —3)sin'8 [S,F,(Sz)+F,(Sz)S ]+ 3i cos3cp cosg sin'8[S, F, (Sz) —F, (Sz)S ]

+ 2 sin3rp sin 8 cos38 [S',F,(Sz) + F,(Sz)S' ] —i cos3&p sing(2 —3 sin'8)[S',F,(Sz) —F,(Sz)$']

+ sin3y (4 —11 sin'8+ 4 sin'8) [S,' F,(Sz) + F,(Sz)S'] —i cos3y cos 8(4 —9 sin'8) [S',F,(Sz) —F,(Sz }S']

+ sin3y sing cosg(4 —sin'8)(S, + S') —i cos3y sing(4 —3 sin'8)(S,' —S'))

+i sin28(3Sz —S')(I,' —I')+ (A' sin' +B'cos'8)sin28(3Sz —S')Sz'(S, +S )Iz
0 0

.B A, , , B A
+ i 1 ———',S,I,' —S I') + i 1—+—(S,I' SI,'), -

with

F, (Sz) = —14Sz —21$z+ 6$'Sz —19Sz+ 3$' —6,

F2 (Sz) = —14Sz —2 8Sz + 2S —18:
F(S )=2S +3.

(4)

(5)

(6)

field at the nucleus taken as nuclear-spin axis of
quantization.

The eigenfunction C„of the spin Hamiltonian
of the paramagnetic ion can, in perturbation the-.
ory approximation, be obtained as a linear com-
bination of zero-order lM, m& eigenstates of the
diagonal part of the Hamiltonian;

In this expression the electronic axis of quantiza-
tion is along the magnetic field (Z axis) which
makes angles (8, y) with respect to the crystal
axes, K is defined by K= (A' cos'8+ B' sin'8)'~',
and I~, I,', I' are defined relative to the effective

n~'& M+ i, rn +j .

The admixture coefficients e",. ',. enable us to
write a simple expression of line intensity I;

(7)

+ (n",',)*o,",' h(M —2)+ (oz, )*o.z 2'™h(M)

+ (n~, )*n, ,'h(M 3)+ Q-((x,"', )*o.".,' h(M 1+i)-

+ g(+z, m) g+hf-z, mh(M + i) (8)

(10)

with h(M) = [S(S+ 1) M(M+ 1)]'~'.
The evaluation of each coefficient n",. '~ that we need in the second-order approximation leads to long cal-

culations. We use the method given in Ref. 6 and recalled in the Appendix.
If we consider all the contributions in Eq. (8) up to second order [we include terms in (D/H, )' but we

neglect terms in Da/Ho or DF/Ho which are of a lower order of magnitude], we get the intensity of
4M = 2, 4M = 0 lines as matrix elements of a simple spin operator J„

I~
l (M, m

l J,
l
M —2, m&

f
'/4, (9)

D2
sin28$', — cosg sin'8[2(Sz —1)$' —2$~z+ 6Sz —19$z+ 15)]S,

2H0 ' 8'~

+
27 [sin3y(8 sin'8 —4 sin'8 —1)+i cos3y cosg(4 sin'8 —1)]+ sing cos8(9 —14 sin'8)

0 0

X (Sz —7Sz+ 14$z —9)S2.
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The operator J~ appears as an intensity operator
expanded in terms of the powers of 1/H, and is
easy to use.

III. EXPERIMENTAL RESULTS AND DISCUSSION

The EPH spectx'a, were obtained with R parian
P 4502 apparatus working in the X band. The
modulation frequency of the static field was 100
kHz and the amplitude was about 0.7 G. In order
to enhance the signal-to-noise ratio of the forbid-
den lines, linea, r sweeps were accumulated in a
computer of average transients (CAT) triggered
by a NMB signal. The crystals were e-AL, O,
single cxystals, obtained from Baikowsky Co.
(France) and doped with approximatively O. I-wt%%uo

divalent manganese ions. Measurements of the
fine and hyperfine structure yielded the values D
=207.4+0.2 G, A. = —85.1+0.2 G, B=—83.7+0.2 6,
a=12.8~0.3 G, E=-11.5*1G.

The half-field spectrum a,rising from transitions
where 4M = 2 is weak and, compared with the
central allowed group, it is 1% in intensity at
most. Because of this weak intensity and also
because of the superposition of the lines, only a
few results are available and these are plotted in

Fig. 1.
In first order in D/H, and with a =F = 0 G we get

results derived by Narayana. ' But the asymmetry
given by the intensity operator for xesults be-
tween 0' and 90' compared to results between 90'
and 180' shows the importance of terms from the
crystal field in a and F. (It may be noted that this
asymmetry provides a way to find the relative
sign of a and D, the same sign hex"e, and that this
justifies the F minus sign proposed elsewhere ").

The intensity operator J„derived by using the
complete spin Hamiltonian with the correct ex-
pression of the hypex"fine operator, is independent
of nuclear-spin opera, tors. This fact must be
pointed out when we compare these results with
the description of the angular variation of allowed
line intensitiese (AM = 1,bm =0); in this last case
the nuclear-spin operators had a great part in the
expression of the intensity operator.

60 90 120 Angle R(deg} 180

IV. CONCLUSION

%e have shown that a, good description of the
angular dependence of forbidden &M =2 line inten-
sity is gotten with the intensity operator. This
operator is easy to use and depends on the physi-
CRL system considered. It ls Rn attempt to Rsso-
ciate an operator with the physical quantity "in-
tensity" and to derive an approximation method,
theoretically mox e satisfactory, since it makes
it possible to work with zero-order wave functions
and then to use an expanded operator.

To show the method we used in the calculations,
let us derive in first order the coefficients

(M + 1,m l 3C, i M, m)
+1,0 E0 EON~l hf, m

In this case D is small and we have taken enexgy
denomlnRtol's Rs

0 0
F~~1 —E @

= +80.
%e obtain

(12)

sin 8 cos8(M s 1,m
~
(2S~ + 1)S,

~
M, m) .

(13)
Assuming here that e0"; is equal to 1, we have

FIG. l. Intensity of Pf, m) I'M- 2, m) lines as a func-
tion of the angle between external field and crystal C axis.
(M values are indicated). q =30'. The curves are drawn
from values calculated with the intensity operator. The
error bars indicate the results of measurements for
A12OS..Mn2+.

of,' h(M-1)+ ( 'o)*h(M —2) = sin8cos8 [(M, m~S, (2S~+ I) (M 1,m)h(M- 2}

l, m~(2S, 1)S ~M 2 m)h(M I)].
If we write in Eq. (14)

h(M-1) =(M, m)S, )M- I, m),

h(M-2)=(M I, m)S. (M 2, m),

(15)

(16)
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we get

a~ 2™h(M-1)+ (a~' 0)*h(M —2)= sin8cos8(M, m~S, (2Sz+1)S,—S,(2Sz —1)S,~M —2, m)

It is the first term that appears in J',.

sin28(M, m
~
S.

~

M —2, m) .
0

(17)
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