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Structural and vibrational properties of a threefold-coordinated two-dimensional random lattice
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A two-dimensional amorphous lattice has been constructed using the generalized random-walk technique. The
bond lengths and angles were obtained from the random-number-generation functions. The lattice sites were

assumed to have a coordination number of 3 and were connected to form closed polygons. The lattice and the
associated structural properties, such as polygon types, radial distribution function, density„bond length, and

bond-angle distribution are calculated. The lattice dynamics is then performed using this network as a two-

dimensional amorphous structural representation. A simple harmonic force field with central and noncentral

near-neighbor interactions which vary from site to site is utilized for the present lattice-dynamical calculation.
The explicit vibrational spectra are obtained for the random network and the corresponding threefold-

coordinated honeycomb lattice. The implication and extension of the present construction technique to a real

amorphous system are discussed.

I. INTRODUCTION

The random-network concept was first introduced
by Zachariasen in the description of a two-dimen-
sional lattice for a glass. Using this concept Ord-
way, Evans and King, and Bell and Bean' have
constructed ra, ndom models for vitreous silica. In
the last few years, this concept has been exten-
sivt. ly studied in the modelling of an amorphous
structure. Kaplow et al. ~ simulated a model for
amorphous selenium by perturbating the atomic
positions in the corresponding crystalline lattice.
Although the resulting model radial distribution
function (RDF) matched well with the experimental
one, the original. crystalline topology did not change
appreciably. Therefore, the model would not be
considered to be truly amorphous in structure. '

olks hand built a 440-atom tetrahedrally bonded
random network with no broken bonds and a rather
large-bond length variation (= 6%). ' This model
was then expanded to 5j.9 atoms and refined to re-
duce the bond-length variation by Polk and Boud-
reaux. 9 3hevchik and Paul'0 computer-modeled a
1000-atom model using a pro", edure very similar
to the actual deposition process. This model,
however, was characterized by a large number of
broken bonds. Henderson and Herman" obtained
a 64-atom model by perturbing the atoms in a dis-
torted diamond lattice. Even though the variations
of the bond lengths and angles mere found to be
rather large, 7'~ the small number of atoms made
the model convenient for the calculation of various
physical properties. ' Fnergy minimization
methods employing Keating's expression'~ have
recen'. ly been carried out by Steinhardt et aE. ~5

and also by Duffy et aE. 7 The relaxation procedure,
which implies that the amorphous atomic arrange-
ments are in a metastable equilibrium system, is

a physically realizable approach. However, Keat-
ing's expression for the energy cannot be defined
exactly because of the uncertainty of the force
constants. 6 Random-network models have also
been built for the nontetrahedrally bonded amor-
phous materials such as carbon and arsenic.
Kakinoki et aE. 6 have constructed a model, for
amorphous carbon using a mixture of diamondlike
and graphitelike basic units. Greaves and Davis'7
have modeled amorphous arsenic based on the
structural units derived from the double layers of
the corresponding crystalline material.

Most of the previous models are either pertur-
bations of crystalline structures or rough hand-
built models consisting of tetrahedral units. The
tetrahedral units were distorted in order to achieve
the connectivities. However, the randomness and
the statistics of the bond lengths and bond angles
mere not considered in the connecting process.
Further adjustments were therefore necessary to
make the model HDF match well with the experi-
mental one. The adjusting procedure obviously
improves the model geometry but does not change
the topological structure. 6 The nonrandomness
introduced by using crystalline structural units as
a starting point may still exist after adjustments.
It might be more realistic to use random numbers
with a certain distribution rather than any per-
turbated structural interconnections for the random
model construction. This certainly will cause
more difficulty in the construction process in or-
der to satisfy the randomness and the statistics of
bond lengths and bond angles as well as to achieve
perfect connectivities. However, the resulting
model should have real amorphous topology and
geometry, hence further adjustment is no longer
needed.

The purpose of this paper is to present an ap-
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proach which utilizes the random-walk concept to
construct a truly random network. The interatom-
ic bonds in the amorphous material are compared
to the random steps of a drunkard. As an example
to illustrate the application of the random-walk
technique, a two-dimensional random network with
coordination number 3 w3s constructed in this
work. The assumption of a constant coordination
number complies with the short-range-order (SRO)
characteristic of amorphous materials. ' The
corresponding crystalline lattice exhibits the hon-
eycomb structure. This kind of amorphous net-
work might serve as a two-dimensional analogy
for certain planes in three-dimensional diamond,
zinc-blende, or wurzite structures. It can also
be used as a basis to develop the random models
for graphitelike or layerlike amorphous materials
such as amorphous graphite, amorphous arsenic,
and chalcogenide glasses.

In the present approach, random numbers for
bond lengths and bond angles are first generated
from a random-number-generation function. A
two-dimensional amorphous lattice is then drawn
by using these random numbers under the con-
straint of a coordination number of 3. The model
structural properties are examined and compare
well with the input data.

The present random model is also employed for
lattice-dynamical calculations. The vibrational
properties of the structurally disordered solids
such as glasses or amorphous systems have been
extensively studied in recent years. Dean' has
first computed the vibrational spectra for glasslike
disordered chains. The disorder was introduced
by the continuously distributed force constants
through different interatomic distances. The
authors have also calculated the phonon density
of states of a 40000-atom disordered chain with
SRO. The various lattice spacings were deter-
mined by a sequence of random numbers with
Gaussian distribution. In the above one-dimen-
sional systems, the geometrical disorder not only
smeared out the spectral singularity but extended
the frequency range of the corresponding ordered
chain. Bell ' has obtained the vibrational spec-
trum of a topologically disordered chain by as-
suming the force constants were equal but the
neighbor interactions were randomly selected.
The resulting spectrum is essentially a smoothed-
over version of the corresponding ordered-chain
spectrum.

Two- and three-dimensional work are much
more difficult. Bell et al. ~2 have examined the
frequency spectra in a two-dimensional glass-
forming model. The effect of topological disorder
and that of geometrical disorder were discussed
separately. Bell's recent paper~' also indicated
the influence of topological disorder on the vibra-

tions of three-dimensional lattices. It was pointed
out ' that, in glasses, topological disorder
mainly changes the detailed spectral character-
istic, whereas geometrical disorder extended the
frequency range. Very recently, Alben and
Weaire 4 have extensively reviewed the vibration-
al properties of amorphous Si and Ge. The vibra-
tional density of states has been calculated using
various kinds of physical models for the amor-
phous solids. These models, however, consist
of only 90 atoms because of the computational
complexity involved. In addition, the geometrical
disorder incorporated with force-constant varia-
tions was not considered in the paper.

A majority of the work mentioned above simply
shows the effects of some sort of structural dis-
order on the vibrational spectra rather than an
explicit calculation of the lattice dynamics using
a physical model which is truly random and has a
significantly large size. Additionally, either to-
pological disorder or geometrical disorder does
not, in general, appear isolated but always com-
bines with the other to form amorphicity in actual
amorphous materials. '3 Recently, the authors '
have introduced a statistical approach to calculate
the phonon distribution function in amorphous sili-
con and germanium. However, this approach
makes use of the amorphous structural properties.
In this paper, the 272-atom truly random network
is used for the lattice-dynamical calculation. Both
geometrical disorder caused by bond length and
angle variations and topological disorder inherent
in the structural connectivity are included in the
present calculation. The vibrational spectra are
obtained for both the random lattice and the cor-
responding perfect honeycomb lattice.

II. MODEL CONSTRUCTION

The construction of the model basically consists
of two steps. First, the random numbers associ-
ated with the bond lengths and bond angles were
generated by a random number generation com-
puter program. Second, a two-dimensional ran-
dom lattice was manually drawn using these num-
bers.

Experimentally, it is known from the RDF of
amorphous materials, ' ' '" that the bond lengths,
i.e. , nearest-neighbor distances, have a Gaussian
distribution with a static standard deviation about
a mean corresponding to the crystalline value.
The bond-angle distribution is also suggested to
have a shape similar to a Gaussian form ' with a
mean at the perfect tetrahedral angle, a standard
deviation and a cutoff angle. In the present work,
experimental data appropriate to amorphous sili-
con was used for the bond length. ~7 The data used
for the bond angle spread and cutoff was according
to the RDF analysis of amorphous germanium'
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and silicon. ~6 The random numbers for bond
lengths were generated from a random number
generation function having a Gaussian distribution
with a mean at 2. 35 A and a standard deviation of
0. 09 A. Since there are only two linearly inde-
pendent angles associated with one lattice site,
two sequences of Gaussian distributed random
numbers were generated having a 120' mean and
10' standard deviation. In order to obtain a cut
off angle of 20' from the mean angle, only those
angles between 100' and 140' were retained. Also,
a pair of angles whose sum was outside the inter-
val of 220'-260' was rejected to ensure that the
third angle had a cutoff of + 20' from the mean.

In the second step, a two-dimensional amorphous
lattice, was drawn using the random numbers gen-
erated for the bond lengths and bond angles, re-
spectively. The assumption of three nearest
neighbors for each lattice site implies that no in-
terior broken bonds exist and no bonds cross each
other. In other words, the lattice sites when con-
nected form closed polygons. In the process of
connecting the last two bonds on a polygon, two
random bond lengths and one random bond angle
were chosen simultaneously. In order to achieve
perfect connectivity in the polygon, the random
bond lengths and angles were allowed to vary up to
a few percent about the value given by the random-
number generation procedure. The bond-angle
variation usually was higher than the bond-length
variation. This is due to the fact that the bond
lengths should maintain a Gaussian form, whereas
the bond-angle distribution is not necessarily an
exact Gaussian. As indicated in Polk's paper, '
the bond angles might form a shape similar to a
Gaussian distribution because of the Gaussian dis-
tribution for the second-nearest-neighbor dis-
tances along with the small change for the nearest
neighbor distances. The small but nonzero static
standard deviation of bond lengths indicate that the
bond-angle distribution is at best a distorted
Gaussian. The individual polygon construction
was time consuming in that if a polygon could not
be closed, the bonds had to be erased and new
bonds drawn to attempt to close the polygon. Final-
ly, a lattice consisting of 233 interior atoms and
39 boundary atoms was obtained. A total of 369
random numbers have been used for the bond
lengths and 699 for the bond angles. From the
coordinates of all the sites, the corresponding lat-
tice was redrawn by the computer to ensure that
the coordinates are correct and to reduce the mod-
el size. Figure 1 presents the resulting two-di-
mensional random lattice. No crystallinity ap-
pears in the lattice, however, SRQ does exist in
the immediate neighborhood of each lattice site.
Every bulk atom has three nearest neighbors and
six next-nearest neighbors.

FIG. 1. Two-dimensional random network of coordina-
tion number 3.

m= 5+6/n . (2)

Equation (2) has served as an independent check

III. STRUCTURAL PROPERTIES

A. Polygon types

The number of sides in the polygon can be ex-
pressed as

n = 360'/(180' —8) .
n is the number of polygon sides and 8 is the aver-
age internal angles of the polygon. Since 8 lies
between 100' and 140', the polygon could have
only 5, 6, 7, 8, or 9 sides. By referring to the
angular distribution, it can be seen that the prob-
ability of having a nine- or eight-sided polygon
with average internal angles of 140' and 135', re-
spectively is quite low. Among the 98 polygons
in the random lattice, there are 10 pentagons, 11
septagons, and the remaining 77 are all hexagons.
The average number of polygon sides is 6.0102.
This result agrees well with Euler's theorem, ~

which states that in an infinite two-dimensional
lattice with a coordination number of 3, the aver-
age number of polygon sides is exactly six. An-
other interesting fact is that the pentagons and
septagons in the lattice always locate together.
The reason for this is that for any random two-
dimensionally connected array, the distortion of
the internal angle inside a polygon has to be com-
pensated by the variation of a corresponding ex-
ternal angle. A relation between the number of
sides (n) in a polygon and the average number of
sides (m) of the neighboring polygons was origi-
nally proposed by Aboav ' and then modified by
Weaire as
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FIG. 2. Radial distribu-
tion function J'(r) of the
model. The histogram is
calculated with radius in-
tervals Q~=0. 1 A.
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for the present lattice and the agreement is very
good

B. Radial distribution function

Figure 2 presents the HDF of this model. The
calculations were based on the method described
in Polk and Boudreaux's paper for a finite-size
model. The 40 atoms around the lattice centroid
(Fig. 1) were selected as central atoms. The
preservation of SRO in this lattice produces the
distinct first and second peak under which the area
is exactly 3 and approximately 6, respectively.
As a consequence of the two-dimensional model,
the HDF increases linearly with distance instead
of the parabolic variation observed in three di-

mensions. ~

The density of this lattice is shown in Fig. 3.
The average density within x=6. 4 A was used for
the first point on the density curve; the other
points represent the local density in the ring be-
tween r and x+Ar. Since our density plot corre-
sponds to the local density for different circular
rings the density fluctuations are larger than that
of other density calculations in which the average
density was calculated within the total circle. The
density of the entire lattice is 0. 1401 atoms/Aa.
This value is close to the density of the perfect
honeycomb lattice which is 0. 1394 atoms/A'. This
result along with the other density investigations"5
concludes that the density of a fully coordinated
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FIG. 3. Density dis-
tribution. p(r) of the model.
The histogram is calcu-
lated with radius intervals
Dx= 0.2 A. The dashed
line represents the density
of the corresponding per-
fect-lattice honeycomb.
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amorphous model is approximately the same as
that of the corresponding crystal.

C. Bond-length and bond-angle distribution

The values of all the bond lengths and angles
were calculated using the measured coox"dinates
as 1Dput data. The bond-length dlstx'lbutloll shown
in Fig. 4 simulates a Gaussian shape fairly well,
whereas the angle distribution in Fig. 5 is a dis-
tox ted Gaussian. The reason for this has been
discussed previously. The quantitative data, such
as the means, the standaxd deviations, and the
cutoff angle has also been calculated. The bond
length mas found to have a mean 2. 35 A, with a
standard deviation of 0. 12 A. The large standard
deviation of +5k about the mean is mainly due

to the fact that in the laborious connecting process,
a few distorted bond lengths were allowed. It is
very difficult if not impossible to obtain a perfect
connection using only the generated random num-
bers without any exceptions. 3 This 5/g value,
is lower than other unrefined random network cal-
c lat ons. ' ' ' All the calculated statxstxcal
values for bond angles fit fairly mell to the data
used in this paper. The mean bond angle is 120'
with a standard deviation of 11' and a cutoff at
+23 .

CD
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CD
CD

105.QQ 120.00 135.00 150.00

I'IG. 5. Bond-angle distribution of the model. The
hlstograIQ 18 calculated w1th Rn Rllgle 1ntelval of A~ = 2

The 272-atom random network showD 1D Fig.
is employed in the present lattice-dynamical cal-
culation. Each atom was assumed to be subject to
a simple force field~' with central and noncentral
nearest-neighbor interactions. The equation for
the eigenfxequency w for an interior atom i in the
lattice can be written

p ~r—pl& ug = ~ [A ~ (t' g) Jjg &g~

I fl 6
2.55 2. 75

FIG. 4. Bond-length dlstr14utlon of' tile Dlodel. . The
histogram is calculated with a length interval Ql = 0.02 A.

where n;~(r;, )is the near. est-neighbor central force
constant, p;z(r&;) is the nearest-neighbor noncentral
force constant, xq,- is the bond length between atom
i and atom j at equilibrium, x;& is the unit vector
from atom i to atom j at equilibrium, u& is the dis-
placement vector of atom i, m is the particle
mass, and 1 is a 2x2 unit dyadic. The summation
is restricted to the three nearest neighbors.

The free-end boundary conditions which are
physically realistic for the actual solid surface31
are imposed on the lattice boundaries. The equa-
tion of motion for a boundary atom is the same as
Eq. (3) except there is no summation sign because
there is only one nearest neighbor for each bound-
ary 8 tom.

The secular equation for eigenfrequencies for
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the entire 272-atom lattice then becomes

(D —s&'f)u =0 .
The dynamical matrix D is a real 544@544 sym-
metx"ic matrix.

Since only nearest-neighbor intex'actions are
considered, there axe no more than eight nonzero
elements in each row of the matrix. The neighbor
atoms were labeled so closely that these nonzero
elements only appeax" near the main diagonal sub-
matrix. The resultant 544' 544 D matrix is there-
fore of band33 form which means all. the nonzero
elements are within an interval around the main
diagonal with a half-bandwidth of 80. Those non-
zero elements are placed according to the neigh-
bor relationships. Theix positions were not regu-
lar because of the topological disorder in the lat-
tice. The matrix elements, which are a function
of force constants, hence the bond length and bond
angle (8;&) are different due to the geometrical
disorder associated with the variation of bond
lengths and angles.

The force constants are detexmined by relating
them to the pressure dependences of the elastic
constants and the optical-mode frequency. In the
perfect threefold coordinated honeycomb lattice,
the relationship between the physical observables
and force constants may be written o

nag(ocg+ 3P sg)
11

rg g ng~+P;g

and noncentral force constants is presented in
Fig. 6. There are a total of 369 values for each
of the force constants which correspond to the
369 bond lengths. The arrow in each figure cor-
responds to the force constant value associated
with the perfect honeycomb lattice. The high val-
ues fox' some of the force constants is due to the
fact that a few distorted bond lengths were allowed
in the laborious connecting process.

After the location and value of each nonzero ma-
trix element is specified, the D matrix is stored
in a 544x80 computer array. Dean and Bacon'8
method33 based on the negative eigenvalue theo™
rem36 is then used to find the frequency distribu-
tion associated with D. Both the computer storage
and execution time are enormously reduceds~ since
the D matxix is symmetric and of band form.

A simple force field with nearest-neighbox cen-
tral and noncentral force constants is used for the
perfect honeycomb lattice. The details of this
calculation may be found elsewhere. o The phonon
density of states for the perfect honeycomb lattice

P;g(P g+3& g)
C66

2Fgy Qsg+Ps)

A pressure may be associated with the bond length
by the use of Murngahan's equation

3 {dB/dP)

dBdP '

50-

20-

lljll»& II ~II@» n»»
zoo zoo ~co ~ho 4ho

Q; (I0 dy /C~)

8= ,'(C~~ 2C+(—)2
alld K 18 the clystalline bond 16Ilgth. This approx-
imation enables one to determine an appropriate
pressure given a lattice spacing &;&. The physical
observable associated with that pressure is then
used in Eq. (5) to calculate the appropriate force
constants in a least-squares sense. In order to
obtain numerical results the elastic constant data33

and Haman frequency"" appropriate to silicon
was used.

The distribution of the near-neighbor central

g;~ (~0' dye/cm)

FIG. 6. Force-constant distribution for the central
force constant n&& and the noncentral force constant P&&.
The arrows in each figure indicate the appropriate values
for the perfect-honeycomb lattice.
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is calculated for 91 independent k vectors equally
distributed over the irreducible ~th of the first
Brillouin zone.

The resulting phonon density of states of both
the perfect honeycomb and the random lattice is
presented in Fig. 7. In the amorphous material
the phonon spectrum becomes broader due to the

amorphous disorder in the lattice. The geometric
disorder induced by force constant variations ex-

m(IO'cm ')

FIG. 7. Vibrational spectrum. Solid line, the random-
network lattice; dashed line, the perfect-honeycomb
lattice.

tends the spectrum to a higher-frequency range,
hence reducing the height of the high-frequency
peak. The finite size of our model, although quite
large as far as computer storage and time is con-
cerned, may not be large enough to produce a very
smooth vibrational spectral profile (Fig, 7).

V. CONCLUSIONS

In the present work, a two-dimensional random
lattice has been constructed using the random-walk
technique. The bond-length and bond-angle random
number statistics were obtained from the experi-
mental data. The only topological constraint in the
connection process was the assumption of a co-
ordination number of 3. No other constraint was
introduced which might have caused any degree of
periodicity in the lattice. The resulting lattice is
a truly random network having amorphous prop-
erties which agree well with the input data. A

lattice of this type can also be utilized for the cal-
culation of electronic and vibrational properties
since there is no broken bond inside the model.
Two-dimensional random networks of higher co-
ordination numbers, e. g. , four (quadratic) and
six (triangular) can also be constructed using this
technique. An extension of this random-walk
technique to a three-dimensional tetrahedrally
bonded lattice is under consideration. Such a mod-
el is expected to be a better simulation of amor-
phous Ge, Si, and the III-V compounds than any of
the restricted models so far presented.
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