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Absence of magnetization in a nondegenerate half-filled band of electrons: Weak coupling
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%'e examine the conditions of coexistence of ferromagnetism, antiferromagnetism, and charge order in a one-

dimensional system of weakly interacting electrons. The extended Hubbard Hamiltonian with one electron per
atom is decoupled in a Hartree-Fock approximation and self-consistent equations for the three order
parameters are obtained, including ferromagnetic band splitting. These equations are solved numerically at
O'K. %'e find no solution with a net magnetic moment. This result is consistent with Hubbard's result that
there is no ferromagnetic solution for small enough interaction. Since we allow the ferromagnetic order
paramater to be coupled to the charge order or to the antiferromagnetic order our proof is more general than
Hubbard's, even though it is not the more general one.

I. INTRODUCTION

In a recent paper' we investigated the extended
Hubbard model within the Hartree-Fock approxi-
mation. We restricted our attention to solutions
with no net spin (m=0), allowing nonzero sublat-
tice spin (s x0) and charge-density ordering (de-
scribed by a quantity co 0). Although there is no
obvious motivation in the extended Hubbard model
for ferromagnetism, it seemed possible that some
intricate effects, such as a partial mixture of m,
s, and c, could be overlooked in so subtle a prob-
lem. The purpose of this note is to investigate
solutions in which, a Prior, m, s, and c are si-
multaneously allowed to be nonzero. Our result
is that m=O. We note that the weakly interacting
electron gas is generally believed" to be unstable
with respect to char ge- and spin-density waves and
not to a ferromagnetic state. The result of this
paper agrees with this belief. It also agrees with
Hubbard's result' that at sufficiently small cou-
pling one does not get a ferromagnetic solution.
Hubbard did not allow for the possibility of coex-
istence of m and s and therefore our proof is more
general than his, although not the most general
one (even within Hartree-Fock); a more complex
wave function, perhaps with a larger unit cell,
might lower the energy still further.

II. ORDER PARAMETERS AND ENERGY LEVELS

We follow the notation of Ref. 1. The Hamil. to-
nlan ls

~cia ~i+ i,a+ C i+ l, a ia~

+U Q ) n) nV+Q n(in;„.

Equation (2.1) is written in the Wannier-function
basis of a nondegenerate band; c;„c,'„and n;,
are the destruction, creation, and number oper-
ators, respectively, in this basis; a is the spin
index, 0 or 0; pl] = pli)+pli ).

Next we attempt standing-wave solutions as fol-
lows:

(n~~)=A~+ 2n~ cosq~R~,

(n, , )=a, + 2n, cosq, ft, . (2.2)

( ~ ) denotes thermal average, It; denotes the
position of atom i, A~ ~, and q~ &

are parameters
which satisfy the following equation:

Q (n;,)=HA~, (2.4)

NA is the average number of electrons with spin
o(N is the total number of atoms).

q, = 2k~; (o = -o), (2.5)

Furthermore, from the definition of Fermi mo-
mentum

where a is the lattice constant.
Since we restrict ourselves to the half-filled

band, we have

1
(n;Q=Ai+A ) = 1 .

&a

where k~; is the Fermi momentum of the one-par-
ticle energy band with spin 0. Since we allow for
the existence of a net moment, we assume A ~

WA~, k~~t k~~ and we define the average magneti-
zation per atom as
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From Eqs. (2.6)-(2.8) we have

k») = (w/2a)(1+ m),

k») = (w/2a)(l —m) .
(2.9)

(2.10)

Our order parameters are then n&, nf„and m,
which we will use in the Hamiltonian after pulling
out averages in the Hartree-Fock decoupling. It
is also instructive to relate n& and n& to the anti-
ferromagnetic (s) and charge (c) order parame-
ters atm =0. We have

n;}n;j = n(((—n;))+n;}(n;}),

n; n;„n;=(n;„)+n;„(n;)

(2.13)

(2.14)

In a previous paper' we showed that the lowest-
energy self-consistent solution with m= 0 has either
s t 0 or ca 0 depending upon whether U & 2V or U
& 2V but not both s and ct 0. Therefore we will
look for self-consistent solutions with m c 0 and
either n~+n~ or n~ —n~ equal to zero. For the
time being we carry through the general case.
Substituting

1
g S —th) Pl) y

1
p C —Rf +N) ~

(2.11)

(2.12)
in Eq. (2.1) and using Eqs. (2.2)-(2.10), we get,
after some algebraic manipulations:

U N 2

H= —t P (c~~c„,,+c~„,c ) ——m g ( n& n;))+-2U n, (cos(2wjm)n„. , —cos[w(2j+l)m]n„.„,)
g=1

—Ssoos( j(s,+, j P (oos(oss jso —sos[ (Sj+(j j „.,j.
$ =1

To diagonalize Eq. (2.15) one needs to rewrite ff in the Bloch basis using the identity

(2.15)

cos(wj m/nj 4 Lck ck '(a/a)m + ck (a/a)(mk () + ck ck+(a/a)m + ck cka(a/a)(mk ()) s

j = even or Odd

(2.16)

where the minus signs in the terms in parentheses refer to the case j odd. The plus or minus signs in the
wave vector labels

k —(w/a)(m+ 1), k+ (w/a)(m+ 1)

in Eq. (2.16) have to be chosen appropriately as explained below.
With ek =+2t coska and (2.16) in (2.15) we have

Um
ek nka 2 ( k( nk j) +U ~ (cko k-( /o)(ma (),a + ka ck+((r/a)( a (),a)

kg Ng

2Vcos(wm)(n) +n) ) (ckack (a/a}(ma(), a+c-kaca+(a/a)(m&z), a) ' (2.1"I)

To make the problem tractable we now make a simplification which we believe does not affect the impor-
tant effects of the interaction.

Let us consider the up and down bands separately. For the up band we have the situation shown in Fig. 1.
We translate the k states as in the figure so that the new Brillouin zone extends from —4~~ to k~&, with a
lower (I) and an upper (u) band.

For —w/2 & k & —wm/a we retain only those terms of Eq. (2.17) of the form cd) ck, (,/, }( „}) (choosing the
plus sign in the momentum label). For wm/a&k& w/a we retain the terms ca~ca (,/, )(„+». We neglect the
other terms because they couple pairs of Bloch states of much different energies. The states with —wm/a

&k& wm/a are left unchanged. In Eq. (2.17) we have therefore
—ff m/a

tt ut & 4 ~ I l t g tttUn) a(s (Ck} Ck (a/a)(ma () }+ Ck) Cks. (a/a)(ma( ) ()—Un j (Ck) Ck) + Ck) Ck) ) + ~ (Ck) Ck} + Ck} Ck) ) (2.18)
0= ffm//a

and similarly for the V term. E and u are the new
band indices for "lower" and "upper. " We have,
for example, in the new notation,

1
cp) cp

ck} = ck+(((/a)(m+ i}} }f k» ( k -wm/(( -s (2 2o)

We apply a similar procedure to the down band
as shown in Fig. 2. Here k»j -—(w/2a)(I —m) and
therefore we choose the minus sign in the k labels
in Eq. (2.17). After performing the translation as
in Fig. 2 we again neglect the terms of Eq. (2.17)
which couple k with k+ (w/a)(1 —m) for 0& k& k»)
and those which couple k with k —(w/a)(1 —m) for
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-k» & k& 0. We entirely neglect the highest ener-

gy states for -wm/a& k& wm/a. In weak coupling

these are states of high energy. We now proceed
to diagonalize the approximate Hamiltonian by de-
fining new fermion operators

The real parameters 6~ are found using the con-
dition that the terms of the Hamiltonian proportion-
al to (a~~ b~+b~a~) must vanish. These are the
only nondiagonal terms which appear.

After some algebraic steps we arrive at the
final form for the Hamiltonian

1 I
ya cos&yacya+ slnOyacya ~

bI = —sin6)~c~, +cos8~c~,

and their Hermitian conjugates.

(2.21)

(2.22) 8 = Q (Ef„a~+E~,b~, b~)

with

(2.23)

—2Um —twmsinka —[(e, —twmsinka)'+6'& ]'~'

—
2 Um —

I ey I

—2 Um+ twm sinka —[g~+ twmsinka)'+ dP& ]' '

for —kw~ & k& —wm/a,

for —wm/'a & k & wm/a,

for wm/a & k & k»,

I
——,Um —twm sinka+ [(e~ —twm sinka)'+ &~]" for —kz~ & k & —wm/a,

Ea) =

I
——,

' Um+twmsinka+ [(e~+twmsinka)'+ &~]"' for wm/a& k & kw~,

I
—,Um+twmsinka —[(e, —twmsinka)'+&'~]' ' for —k~~&k&0,

a

I
—,Um —twmsinka —[(e~+ twmsinka)'+&'~]' ' for 0&k&k+&,

(2.24)

( 2 Um +twmsinkka+[(e~+twmsinka)'+ n'~]' ' for —kw~& k & 0,
b

—,Um —twmsinka+ [(e, —twmsinka)'+ 4'j]'t' for 0 & k & k~& .

' +~/2t

ti 6K/2f

20 =k
0

FIG. 1. Folding the Brill.ouin zone of the up band:
A» =~~/2 i g. +~~.

FIG. 2. Folding the Brillouin zone of the down band:
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4) ——Un) —2&4'n)+n ) ),
a, =Uv, -2V(n, +n, ). (2.26)

III. SELF-CONSISTENT EQUATIONS

As we explained above, we take it that n~ = + n.
&

=n; This reduces the order parameters to two,
m and n; [from Eqs. (2.25) and (2.26)] in either
case

In these expressions we have approximated sinmm

by ~m since we are interested in the weak-cou-
pling regime, where the order parameter m is a
small quantity with respect to unity. We have

Equations (3.4) and (3.5) require justification.
They are obtained by completely filling the a~

and a~ bands so as to favor m as much as possi-
ble. To be able to do this the 5 bands must be
higher than the a bands and this imposes a restric-
tion on the relative magnitude of m and n.

In fact, if we write the following quantities (re-
taining only terms of order m):

Z,',„=fvm- ( ~) ——,
' Um,

I (U —4V)n if n( n(, ——

—Un if n4, = —n], .

&;,= —tv' I a[+—,' Um, —

Z,"„=tv'+ i &( - —.'Um,

(3 7)

Let us suppose that n~ = —n~ (all the calculations
are the same if n~ =n&). To find the self-consis-
tent equations for the order parameters at O'K
we Fourier transform Eqs. (2.2) and (2.3) and use
the inverse transformations of Eqs. (2.21) and
(2.22):

n) = — sin(28, ))(a„)a, ) —b„)b,)),
~=-zt

(3.2)

1
n„) = — sin(28~ ))(a, ( a, (

—b, ) b„)) . (3.3)

Of course {9~ are functions of m and n and of the
parameters of the Hamiltonian; the condition n~

nI =n gives -[from Eqs. (3.2) and (3.3)] two self-
consistent equations for the two parameters m

and n:

(3.9)E'„,= —tarn+ I 4)+ -,' Um,

we see that E& & E~ and E& & E„' because in"Ft ~a& ~st "s )
the weak-coupling regime tom is certainly» [&{

and Um. Furthermore, to fill completely the two
a bands, and thereby attain the maximum m, E+&
must be &F.,' and this means

ni &Un/fv« I (3.10

(neglecting —,
'

U as compared to 2vt).
We solve numerically Eqs. (3.4) and (3.5) and

we find that besides the solution m = 0, there is a
solution with m c 0 which does not satisfy Eq.
(3.10) (i.e. , it is not self-consistent). The only
self-consistent solution is m = 0.

This is the final result. We find that in the Har-
tree-Fock approximation a half-filled band of
weakly interacting electrons is spin ordered, or
charge ordered, but there is no ferromagnetic
component (in the context of the particular types
of solutions that we assume).
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