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Perturbation-theoretic-model approach to the study of alkali halides
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Starting from the Hartree-Fock wave functions of the free ions a method is suggested to make a
comprehensive calculation of the lattice static and dynamic properties of alkali halides. This is achieved
through the intermediary of a model, the parameters of which are extracted from a first-principles calculation.
It may be mentioned here that until now no calculation of lattice dynamics of alkali halides, without using

any experimental input, has been reported. In the present calculation for the KCl crystal neither any
measured property of the solid is used nor any parameter is varied arbitrarily to fit experiment. The calculated
properties are found to agree quite satisfactorily w!th the measured ones.

I. INTRODUCTION

The group of ionic solids known as alkal. i h3lides
is characterized by electron distributions which
form closed shel. ls round each ion. Being satu-
rated structures, their electron distributions are
not radically altered when the free ions are
brought together to form the solid. The response
of the electron system may, therefore, be ade-
quately treated by perturbation theory. The elec-
tron distributions round isolated ions are well
known from the accurate Hartree-Fock calcul. ation
of the wave functions for the free ions. ' It would

be highly desirable, if one could make a compre-
hensive calculation of the static and dynamic pro-
perties of alkali halides from a knowl. edge of the
Hartree-Fock wave functions of the corresponding
free ions.

A first-principles cal.culation of the above type
of some of the static properties of alkali halides
was initially attempted by Lowdin, ~ Lundqvist, 3

and Landshoff. The main purpose of these au-
thors was to calculate the cohesive energy, the
equilibrium lattice constant, and the elastic con-
stants. Recently, Gordon and Kim' have used
the Clementi wave functions' to calculate some of
the static properties, The result of their cal.cula-
tions is very encouraging. They, indeed, prove
the basic correctness of the approach. The major
difficulty of their method is that every property
involves lengthy and tedious numerical computa-
tions. Further, for some properties these be-
come prohibitively unwieldy. Because of this
limitation, the calculation of even the static prop-
erties of a crystal in all its entirety has not
been done. The more serious limitation, how-

ever, is the difficulty of extending the method to
calculate the lattice dynamics.

The first-principles calculation of the lattice-
dynamical spectra of alkali halides presents many

problems. Particularly difficult is the inclusion
of the effect of short range and electrical polar-
izability. An initial. attempt by .Lundqvist' in this
direction was not very successful. . During the
l.ast few years there have been several attemptse "
to formulate a microscopic theory for the lattice
dynamics of alkal. i halides. The most persistent
attempt to tackle the problem has been made by
Sinha"' in a series of papers. He has recently
been successful in reducing his equations to a
form which makes the numerical. calculation of
dispersion curves possible. However, several
drastic approximations had to be made to carry
out the calculation and four parameters were in-
troduced. Two of these were related to the lattice
constant by ad ho@ assumptions and the remaining
two were treated as adjustable. This procedure
somewhat detracts from the spirit of a first-prin-
ciples calculation. Wakabayashe and Sinha's final
result for'3 KCl and KBr is simil. ar to that of a
simple shell model. , '3

It is clear from the above discussion that a
comprehensive first-principles calculation of the
properties of alkali halides is still a far cry. Qn
the other hand, using a suitabl. e effective-poten-
tial. function within the framework of the shell
model several authors' ' have shown that it is
possible to obtain best-fit values of the parameters
of the model which give a fairly good representa-
tion of the lattice mechanics of alkali halides.
Such a calculation has been done for AgCl by Sar-
kar and Roy' and for NaF by Ghosh eg gE. "
Earlier Sarkar and Sengupta' did a similar cal-
culation of the static properties of six potassium
and rubidium halides. From the over-all success
of these calculations one can conclude that within
certain limitations this model describes the actual
situation and the model is considered to be em-
pirically verified. The question, therefore, na-
turally arises, if the parameters of the model can
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be calculated from the free-ion wave functions.
If this can be done, it is possible to predict the
properties of a crystal from a knowledge of the
wave functions of the constituent free ions alone.
This method which we call a perturbation theoret-
ic-model calculation combines the advantages of
a model approach with the essence of a first-prin-
ciples calculation. Moreover the utility and sim-
plicity of the approach are all of the more im-
pressive. We propose to do a calculation of the
above type for the KC1. crystal.

V=be '&= V(r„), (2)

where rz is the separation between the center of
the rigid positive-ion and the center of the neg-
ative-ion shell. If —Y is the shell charge and $,
the core-shell separation of the negative ion,
and r» is the separation vector for the positive
and the negative ions then

and the dipole moment of the negative ion is

II. METHOD OF CALCULATION d=- Y$, . (4)

We consider only the dominant part of the static
interaction, namely, the Coulomb interaction be-
tween the ions and the overlap repulsive interaction
represented by V(r) = be "~' As .a first approxi-
rnation we neglect the van der Waals and the many-
body interaction which are much weaker. From
the Clementi wave functions' for K' and Cl and

using the well-known expression for the zero-
point, exchange, and correlation energy, the over-
lap potential for K' and Cl can be calculated in
a straightforward manner (for details see Ref.
5) for several values of ~, the interionic separa-
tion. Using these energies we plot lnV against
x, which is found to be an accurate straight line
in the region of r which is significant for the
crystal properties. From this curve are derived
the values of b and p.

Next, to take account of the electrical and
short-range pol. arization of the ions in the lattice
spectrum we make use of the polarizable one-ion
shell model' in which the overlap interaction is
assumed to act entirely through the shells. The
negative-ion polarizable shell model introduces
two new parameters, one is —Y, the shell charge,
and the other is K, the core-shell spring constant.
The electrical pol. arizability of the negative ion
is given by'

a= Yz/K

Now, a quantum-mechanical calculation of n for
an ion can be done in a straightforward manner
using the coupled Hartree-Fock equations in pres-
ence of a perturbing electric field. " Such a cal-
culation for several ions have been done by Lahiri
and Mukherjee. ' But in order to get the values
of Y and K separately we require another first-
principles calculation of a property of the ion
which depends on Y and/or K. To achieve this we
use the fact pointed out by Sarka. r and Sengupta"
that the shell. model implies a modification of the
overlap interaction between the two ions, when
one of them has a dipole moment. Since we as-
sume that the overlap interaction acts entirely
through the shells, the overlap interaction between
nearest neighbors is given by

From these relations we get

r~ = r, z
—d/Y.

Hence, we can write the overlap interaction be-
tween the two ions, when one of them has a dipole
moment d, as

V= V(~„)+(V(~r»- &/Y~) —V(r»)],

where the first term is the usual interaction for
rigid ions and the second term is the correction
due to the polarization of one of the ions. The

parameter Y or do= Yp can be found by consider-
ing the special case when d and r» are in the same
direction. For this case the correction reduces
to

& V= V(x») d/dz.

Here, ~V is the change in overlap energy be-
tween a chlorine and a potassium ion, separated
by a distance r», when the chlorine ion develops
a dipole moment 2 along r» dz may be regarded
as a characteristic constant of the chlorine ion
which determines its short- range polarizability.
Further it may be mentioned that both the electri-
cal. polarizability Q. and the short- range polarizabil-
ity parameter do have direct physical significance.

Our problem, therefore, reduces to a first-
principles calculation of do from the Hartree-Fock
wave functions of the free potassium and chlorine
ions and the perturbed wave functions of the chlo-
rine ion. We proceed in the following way. Let
the chlorine ion be polarized by an arbitrary ex-
ternal electric field, E,„along the Z direction.
The dipole moment developed in the chlorine ion
is also in the Z direction and its magnitude is
d= nE,„, where n is the polarizability of the free
ion already computed. " The perturbed wave func-
tions upto first order in E,„ for the chlorine ion
with dipole moment d are now known. Next we
place a potassium ion on the Z axis at a distance
r» from the chlorine ion. In the present calcula-
tion the potassium ion is considered to be rigid
and hence its wave functions are the same as
those of a free ion. However, a similar but not
exactly identical calculation may be performed
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Parameters and calculated crystal properties. All properties refer to harmonic values.

Parameters

b = 6. 998 && 10 erg

p=0. 298 A.

~ = 3.74 A'

dp/e = 0. 887 A

Lattice constant Cohesive energy Bulk modulus

(&cal/mole) (10"dyn/cm )

Static dielectric
constant

Cp

High-frequency
dielectric
constant

6 ~ 216 6.214 169.2 168~ 93 2.09 2.03 4.49 4.67 2. 2 2. 1

Expt Calc. Expt Calc. Expt Calc. Expt Calc. Expt Calc.

See Ref. 16 ~
See Ref. 21.

to include the effect of the deviation of the positive
ion from being rigid. We now compute the over-
lap interaction between the polarized chlorine ion
and the unpolarized potassium ion using the well-
known equations given in detail in Ref. 5. As
mentioned earlier in this section, we have also
computed, using the same procedure, the overlap
energy between the two ions, when the perturba-
tion E,„on the chlorine ion is absent. The differ-
ence gives us &V as a first-order quantity in E,„.
Let us put the computed energy in the form

~comyuted = ~Eexy

where A is the numerical factor. Equation (7) may
now be written in the form

or

(1O)

Since all the quantities on the right-hand side are
computed using the free-ion Hartree- Fock wave
functions of the ions, we get the value of d, with-
out using any solid- state property.

Thus all the four parameter b, p, n and dp are
obtained from the free-ion wave functions. The
values for e and dp may be used to get the shell-
model parameters, namely, Y and K. The values
of F and K determined from the negative-ion po-
larizable-shell. -model calculation for KC1 by Basu
and Sengupta, ' by fitting the crystal properties,
are found to compare favorably with those ob-
tained from n and dp.

Now, using these parameters, some of the crys-
tal properties, namely, the harmonic lattice con-
stant, the harmonic cohesive energy, the har-
monic balk modulus, the static and high-frequency
dielectric constants, and the dispersion of phonons
in the symmetry directions have been calculated,
The detailed equations for al. l these properties
are given in Refs. 15, 19, and 20. All the cal-
culations have been done on an IBM 113Q com-

pute r. In Tabl. e I and Fig. 1, the calculated prop-
erties are compared with experiment.

III. RESULTS AND DISCUSSION
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FIG. 1. Phonon dispersion curves for KCl crystal at
80 'K. Solid and dashed lines represent the theoretical
calculation for longitudinal and transverse modes, re-
spectively. Experimental points are taken from Ref. 22.

It is clear from the results that the agreement
with experiment is quite satisfactory. However,
Fig. 1 shows that there are some small discrep-
ancies specially in the [111]LO, [111]LAbranches
as also in the TO branches in all three directions.
It is interesting to note that these discrepancies
may be understood in terms of the interactions
neglected in the present calculation. It is well
known that the discrepancy in the LO and LA [111]
branches is specifically due to the type of many-
body interaction arising out of the deformation of
the shell and which is not included here. SimQar-
ly it is presumed that the neglect of the van der
Waals interaction might be responsible for the
discrepancies in the TO branches. Apart from
the specific discrepancies mentioned above, the
ove r- all small remaining discrepancy m ay be
partly due to the neglect of the positive-ion po-
larizability. It is to be further noted that the elec-
trical polarizability of the negative ion in the pres-
ent case is somewhat larger than the correspond-
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ing value of Tessman-Kahn- Shockley polarizability.
It appears that in a more rigourous calculation, the
polarizability of the positive ion should also be in-
cluded. Nevertheless, considering the simplicity
of the approach it appears that the present method
is adequate enough to describe the basic features
of both the static and dynamic aspects of alkali

halides, without the knowledge, whatsoever, of
any of the measured properties of the solid.
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